当前位置:好文网>实用文>教案>因数和倍数教案

因数和倍数教案

时间:2024-11-08 13:28:34 教案

因数和倍数教案

  作为一名辛苦耕耘的教育工作者,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?下面是小编为大家整理的因数和倍数教案,欢迎大家分享。

因数和倍数教案

因数和倍数教案1

  【教学内容】

  认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。

  【教学目标】

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  【重点难点】

  理解因数和倍数的含义。

  【复习导入】

  1. 教师用课件出示口算题。

  10÷5= 16÷2=

  12÷3= 100÷25=

  220÷4= 18×4=

  25×4= 24×3=

  150×4= 20×86=

  学生口算

  2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。

  A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。

  因数和倍数(2)

  【教学内容】

  一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

  【教学目标】

  1.通过学习使学生掌握找一个数的因数,倍数的方法;

  2.学生能了解一个数的因数是有限的,倍数是无限的;

  3.能熟练地找一个数的因数和倍数;

  4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

  【重点难点】

  掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

  【复习导入】

  说出下列各式中谁是谁的因数?谁是谁的倍数?

  20÷4=5 6×3=18

  在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

  (板书课题:因数和倍数(2))

  【新课讲授】

  (一)找因数:

  1.出示例1:18的因数有哪几个?

  一个数的因数还不止一个,我们一起找找18的因数有哪些?

  学生尝试完成后汇报

  (18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  教师:18的因数中,最小的.是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  2.用这样的方法,请你再找一找36的因数有哪些?

  小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36

  教师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  教师板书:一个数的最小因数是1,最大因数是它本身。

  3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

  4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数:

  1.我们一起找到了18的因数,那2的倍数你能找出来吗?

  小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……

  教师:为什么找不完?

  你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?

  2.让学生完成做一做1、2小题:找3和5的倍数。汇报

  3的倍数有:3,6,9,12

  教师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……)

  5的倍数有:5,10,15,20,……

  教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。

  教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

  (一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】

  1.完成课本第7页练习二第2~5题。

  2.完成教材第8页练习二第6~8题。

  【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(2)

  一个数的因数的个数是有限的,,最小的是1,最大的是它本身.

  一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.

  本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

因数和倍数教案2

  教学目标

  1、使学生进一步认识升和毫升的意义,正确进行升与毫升的简单换算。

  2、使学生进一步认识三角形、平行四边形和梯形的特征,进一步明确三角形三条边之间、三个角之间的关系,加深对等腰、等边三角形的认识。

  3、使学生进一步认识轴对称图形和平移、旋转,会画简单的轴对称图形的对称轴,会把图形按要求平移或旋转90度,发展空间观念。

  教学重点

  复习已学内容并进一步的巩固已学知识

  教学难点

  如何帮助学生沟通知识的内在联系,加深对知识的体验和理解,提高综合运用知识分析问题,解决问题的能力。

  设计理念

  小组合作回忆-反思-整理

  教学步骤

  教师活动

  学生活动

  一、复习

  升和毫升

  (一)回顾与整理,提问:

  1.说一个容器装液体比另一个容器多的时候,我们说这个容器的什么比较大?

  指出:我们说这个容器的容量大。

  2.为了准确测量或计算容量的多少,要用统一的测量单位。通常用到哪两个单位?

  指出:通常用到升和毫升这两个单位。

  3.一升等于多少毫升?

  指出:1升=1000毫升1L=1000ml

  4、你能举例说说一些常见容器的容量吗?

  (二)巩固练习

  1、完成书第116页第15题

  完成书第117页第16题

  小组交流,指名口答

  学生独立填空,集体校对:说说自己的想法?

  学生独立完成后交流:说说怎么想的`?

  二、复习三角形、平行四边形和梯形

  (一)回顾与整理,提问:

  三角形由什么围成?

  三角形的三条边有什么关系?

  什么叫三角形的高和底?

  三角形可以分成哪几类?怎么分?

  三角形的内角和是多少?

  什么叫等腰和等边三角形?它们有什么特点?

  平行四边形有什么特点?什么是平行四边形的高和底?

  梯形有什么特点?和平行四边行比有什么区别?

  什么是梯形的上底,下底,腰和高?

  等腰梯形有什么特点?

  指出:1、三角形是由三条线段围成的。

  2、三角形两边之和大于第三边。

  3、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。

  4、三角形可以分为三类,三个角都是锐角(锐角三角形),有一个角是直角(直角三角形),有一个角是钝角(钝角三角形)。

  5、三角形的内角和是180度。

  6、两边相等(等腰三角形),三边相等(等边三角形)。

  7、平行四边形对边相等平行。从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。

  8、梯形有一组对边平行。

  9、互相平行的一组对边分别是梯形的上底和下底,不平行的一组对边是腰,从上底到下底的垂直线段是高。

  10、等腰梯形两腰相等。

  (二)巩固练习

  1、完成书第117页第17题

  完成书第117页第18题

  3、完成书第117页第19题

  4、完成书第117页第20题

  小组讨论交流,指名口答,学生独立画图,同桌互查

  学生独立画高,要求学生分清哪条是底边,并正确画出高,标出直角标记。

  学生动手操作完成,并在小组里交流,最后全班交流。

  学生独立计算,交流时说说时怎样想的?

  三、复习对称、平移和旋转

  回顾与整理,提问:

  1.什么叫轴对称图形?

  2.长方形有几条对称轴?怎样画?

  3.正方形有几条对称轴?怎样画?

  4.在方格纸上平移简单的图形注意哪些?

  5.怎样把简单的图形顺时针或逆时针转90度?

  指出:

  1、对折后,折痕两边完全重合的图形是轴对称图形。

  2、长方形有2条,沿折痕画。

  3、正方形有3条,沿折痕画。

  4、在方格纸上平移简单的图形弄清楚平移的方向和距离。

  5、找准旋转的中心,旋转的方向和旋转的角度。

  (二)、巩固练习

  完成书第118页第21题

  小组讨论交流,指名回答

  学生弄清题意后独立完成,集体校对,说说如何思考的?

  四、评价总结

  通过这节课的复习,你有什么收获?

  小组交流,汇报

  五、作业设计

  完成相应的补充习题

  六、教后反思

因数和倍数教案3

  第三课时

  教学内容:教科书第26~27页,例3、例4、练一练,练习五第1~5题。

  教学目标:

  1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中表示两个数的因数和它们的公因数。

  2、使学生会从不同的角度找出两个数的公因数和最大公因数,体会因数、公因数和最大公因数的联系与区别,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学重点:认识公因数和最大公因数,掌握找两个数的公因数和最大公因数的方法。

  教学准备:长18厘米、宽12厘米长方形纸片一张,边长6厘米、边长4厘米的小方块纸若干张。

  教学过程:

  一、复习引入

  6的因数有();8的因数有()。

  说说怎样可以找到一个数的因数?

  二、教学新课

  1、教学例3。

  (1)出示例3。

  (2)那种纸片能正好铺满这个长方形呢?在小组中试一试,拼一拼。

  小组进行操作活动。

  (3)汇报交流。

  为什么边长6厘米的正方形纸片能正好铺满呢?你们知道是什么原因吗?

  12÷6=2,18÷6=3,长方形的长和宽都是6的倍数。

  12÷4=3,18÷4=4……2,长方形的长不是4的倍数。

  (4)讨论:还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形?

  小组讨论。

  交流汇报各自的想法。

  指出:只要正方形的边长既是12的因数,又是18的因数,就能铺满。

  (5)既是12的因数又是18的因数的数有哪几个?(1、2、3、6)

  (6)揭示概念。

  1、2、3和6既是12的因数,又是18的因数,它们是12和18的公因数。(板书)

  板书课题:公因数

  (7)12和18的公因数有几个?任何两个自然数的公因数的个数是有限的吗?为什么?

  4是12和18的公因数吗?为什么?

  指出:两个数的公因数必须既是第一个数的因数,又是第二个数的因数。

  2、教学例2。

  (1)出示例2。

  (2)8和12的公因数有哪些?最大的公因数是几?能试着找一找吗?

  小组活动,各自说说自己方法。

  (3)汇报交流方法:说说你是怎样找的?

  (先分别找出两个数的因数,再找出它们的'公因数和最大公因数。)

  (先找出一个数的所有因数,再从中找出另一个数的因数,这些因数就是两个数的公因数,其中最大的一个就是这两个数的最大公因数)

  (4)小结。

  8和12的公因数中最大的是4,4就是8和12的最大公因数。(板书)

  (板书课题:最大公因数)

  说说找两个数的公因数和最大公因数的方法是怎样的呢?

  (4)用集合圈表示。

  两个数的因数、公因数和最大公因数还可以用画图的方法来表示。

  出示集合圈图。

  说一说,哪些数是8的因数?哪些数是12的因数?哪几个数是8和12的公因数?

  3、完成练一练。

  (1)理解题意,独立完成。

  (2)集体核对,说说你是怎样找的?

  三、巩固练习

  1、完成练习五第1题。

  独立完成。

  15和20的因数分别有哪些?

  15和20的公因数有哪些?最大公因数是几?

  2、完成第2题。

  按要求填表。

  8和10的公因数有哪些?最大公因数是几?

  8和20的公因数有哪些?最大公因数是几?

  10和20的公因数有哪些?最大公因数是几?

  8、10、20的公因数你能找到吗?

  3、完成第3题。

  独立完成,集体核对。

  4、完成第4题。

  (1)理解题意。

  (2)每组中两个数有没有公因数,关键看什么?

  有没有公因数3,有没有公因数5,怎样看呢?

  6和27没有公因数2,有没有公因数3呢?

  24和42有公因数2和3吗?

  5、完成第5题。

  独立完成。

  说说自己有什么方法能很快找出6和9的最大公因数?

  20和30可以怎样很快找出最大公因数呢?

  四、课堂总结

  通过这节课的学习,你有什么收获?给大家讲讲你今天收获的内容。

  板书设计:

  公因数

  1、2、3和6既是12的因数,又是18的因数,它们是12和18的公因数。

  8和12的公因数中最大的是4,4就是8和12的最大公因数。

因数和倍数教案4

  一、教学目标:

  1、初步理解因数和倍数的的含义和它们之间相互依存的关系。

  2、理解并掌握找一个数的因数和倍数的方法,培养学生的抽象概括能力和有序思考问题的能力。培养学生的优化思想。

  3、体会概念之间的内在联系和区别,体验数学学习的乐趣。

  教学重点:正确理解因数和倍数的概念及之间的关系。

  教学难点:探索并总结找一个数所有因数的方法,能正确地找出一个数的所有因数。

  二、教学过程:

  (一)导入

  (二)展示交流(前置研究的内容):

  概念:你是如何理解因数和倍数的概念的?请举例说明。

  在小组内交流,然后在班级内交流,畅谈自己对因数和倍数的理解。

  有问题及时提出,小组内解决或者老师解决。

  在乘除法算式中可以分辨出因数与倍数;

  在两个数字或者三个数字之间理解因数和倍数

  归纳:因数和倍数是互相依存的.

  求法:如何求一个数的所有因数(做到不重复,不遗漏)

  如何求一个数的倍数

  在小组内交流想法后把上面两个问题展示在黑板上。并讲清楚自己的作法。

  点拨升华:

  针对学生在黑板上展示的结果,总结出求一个数的因数的有效的方法。并引导学生分析一个数的因数与一个数的倍数的特点。

  归纳出求一个数的因数最优化的方法,做到不遗漏不重复

  一个数的因数的特点:个数是无限的

  最大的因数是它本身

  最小的因数是1

  演练拓展:

  判断题

  1、5的倍数一定大于5;

  2、1没有因数;

  3、2680的因数有无数个,永远找不完;

  4、因为2 6=12,所以12是倍数,6是因数;

  5、一个数的最大的因数是24,这个数的最小的倍数也是24;

  解答题

  30的因数有哪些?

  5的倍数有哪些?

  完全数(课后了解)

因数和倍数教案5

  授课学科: 数学

  授课内容: 《因数与倍数》

  授课日期:

  一、教学目标

  1.理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法。

  2.在探究的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。

  3.培养学生的探索意识以及热爱数学学习的情感。

  二、教学重、难点:

  1.理解因数和倍数的意义以及两者之间相互依存的关系

  2.掌握找一个数的因数和倍数的方法

  三、准备教学:

  教学课件

  四、教学过程

  (一)创设情境,引入新课

  人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是?

  (父子、母子、母女关系)我和你们的关系是?(师生关系)

  在数学中,数与数之间也存在着多种关系,这节课,我们一起研究两数之间的因数与倍数关系。

  (二)探究新知-理解因数和倍数的意义

  教学例1:

  1.观察算式的特点,进行分类。

  (1)仔细观察算式的特点,你能把这些算式分类吗?

  (2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)

  第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。

  2.明确因数和倍数的意义。

  (1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。

  (2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?

  (3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。

  3.理解因数和倍数的依存关系。

  (1)独立完成教材第5页“做一做”。

  (2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?

  4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

  (1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?

  课件出示:

  乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。

  (2)今天学的“倍数”与以前的'“倍”又有什么不同呢?

  “倍数”是相对于“因数”而言的,只适用于整数;而“倍”适用于小数、分数、整数。

  (3)交流汇报。

  (三)探究新知-找一个数的因数

  教学例2:

  1.探究找18的因数的方法。

  (1)18的因数有哪些?你是怎么找的?

  (2)交流方法。

  预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。

  因为18÷1=18,所以1和18是18的因数。

  因为18÷2=9,所以2和9是18的因数。

  因为18÷3=6,所以3和6是18的因数。

  方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。

  因为1×18=18,所以1和18是18的因数。

  因为2×9=18,所以2和9是18的因数。

  因为3×6=18,所以3和6是18的因数。

  2.明确18的因数的表示方法。

  (1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?

  (2)交流方法。

  预设:列举法,18的因数有:1,2,3,6,9,18。

  集合图的方法(如下图所示)。

  3.练习找一个数的因数。

  (1)你能找出30的因数有哪些吗?36的因数呢?

  (2)怎样找才能不遗漏、不重复地找出一个数的所有因数?

  (四)探究新知-找一个数的倍数

  教学例3:

  1.探究找2的倍数的方法。

  (1)2的倍数有哪些?你是怎么找的?

  (2)想方法:利用乘法算式找2的倍数。

  因为2×1=2,所以2是2的倍数。

  因为2×2=4,所以4是2的倍数。

  因为2×3=6,所以6是2的倍数。……

  (3)2的倍数能写完吗?你能继续找吗?写不完怎么办?

  (4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、集合图的方法)

  2.练习找一个数的倍数。

  你能找出3的倍数有哪些吗?5的倍数呢?

  (五)我的发现-因数与倍数的特征

  举例子,找规律,勾画知识点,读一读。

  预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。

  (六)智慧乐园

  1.在练习本上完成下列填空题。(独立完成后,师订正答案)

  一个数的最大因数是17,这个数是( ),它的最小的因数是( )。

  一个数的最小倍数是17,这个数是( ),它( )最大的倍数,17的倍数的个数是( ).

  一个数既是12的因数,又是12的倍数,这个数是( )。

  2.在练习本上完成下列判断题。(独立完成后,师订正答案)

  (1)在算式6×4=24中,6是因数,24是倍数。 ( )

  (2)15的倍数一定大于15。 ( )

  (3)1是除0以外所有自然数的因数。 ( )

  (4)40以内6的倍数有12、18、24、30、36这5个。 ( )

  (5)34的最小倍数是34;34的最小因数是17。 ( )

  (6)1.2是3的倍数。 ( )

  (七)全课总结,交流收获

  这节课我们学了哪些知识?你有什么收获?

因数和倍数教案6

  人教版数学五年级下册

  第二单元

  因数与倍数

  姓名:________

  班级:________

  成绩:________

  小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!

  一、仔细想,认真填。

  (共17题;共43分)

  1.(2分)写出一个既是奇数又是合数的数是_______;_______既是偶数又是质数。

  2.(4分)在24,120,75,78,210,105中,2的倍数有_______,3的倍数有_______,5的倍数有_______,同时是2,3,5的倍数的数有_______。

  3.(2分)在23、35、60、75这些数中,既是偶数又含有因数5的数是_______,既是奇数又是3的倍数的数是_______。

  4.(4分)39÷13=3,_______是_______的倍数,_______是_______的因数。

  5.(1分)最小质数是最大的两位偶数的_______。

  6.(1分)在20以内的自然数中,既是奇数又是合数的数是_______。

  7.(2分)两个质数,它们的和是20,积是91,这两个数分别是_______和_______。

  8.(3分)里有_______个

  ;1

  分数单位是_______,再增加_______个这样的分数单位就等于最小的质数.

  9.(2分)_______只有1个因数,_______只有两个因数.

  10.(2分)A=2×2×5×7,B=2×3×5×7,A与B的最大公因数是_______,最小公倍数是_______.

  11.(5分)36的因数有_______,在这些因数中,质数有_______,合数有_______,奇数有_______,偶数有_______.

  12.(7分)在0、、、3、4、17、30中,质数有_______、_______,合数有_______、_______,_______是_______的因数,同时是2、3、5的倍数的数是_______。

  13.(1分)两个自然数的和与差的积是41,那么这两个自然数的和是_______。

  14.(2分)一个两位数,既含有因数2和因数5,又是3的倍数,这个数最小是_______,最大是_______。

  15.(1分)判断下列结果是奇数还是偶数。

  2784+795的和是_______

  16.(3分)三个连续偶数的和是30,这三个数分别是_______,_______,_______。

  17.(1分)100以内15的倍数有_______。

  二、明辨是非。

  (共10题;共20分)

  18.(2分)一个数的倍数一定比原数大。()

  19.(2分)若ab=12,那么a与b是12的因数,12是它们的倍数.()

  20.(2分)凡是3的倍数都是奇数。()

  21.(2分)判断对错.在自然数中,除了质数就是合数.

  22.(2分)质数都是奇数。()

  23.(2分)两个不同奇数的积可能是质数也可能是合数。

  24.(2分)一个自然数不是质数,就是合数。

  25.(2分)两个质数的积一定是合数。

  26.(2分)自然数不是奇数就是偶数,不是质数就是合数.()

  27.(2分)判断对错

  两个数相除,商是5,那么其中一个数就是另一个数的倍数.

  三、选一选

  (共11题;共22分)

  28.(2分)在算式15=3×5中,3和5是15的()。

  A

  .质数

  B

  .公约数

  C

  .质因数

  29.(2分)一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有余数,这筐苹果最少应有()。

  A

  .90个

  B

  .60个

  C

  .30个

  30.(2分)48的全部因数共有()个。

  A

  .8

  B

  .9

  C

  .10

  D

  .无数

  31.(2分)2不是()。

  A

  .合数

  B

  .质数

  C

  .偶数

  D

  .自然数

  32.(2分)淘气最初面向东站立,听到第一声指令“向后转”就面向西站立,当他听到第17次这样的指令后,面向()站立.

  A

  .东

  B

  .南

  C

  .西

  33.(2分)两个奇数的乘积一定是()

  A

  .质数

  B

  .合数

  C

  .偶数

  D

  .奇数

  34.(2分)a,b和c是三个非零自然数,在a=b×c中,能够成立的说法是()

  A

  .b和c是互质数

  B

  .b和c都是a的质因数

  C

  .b和c都是a的约数

  D

  .b一定是的倍数

  35.(2分)有1、2、3、4四张数字卡片,每次取3张组成一个三位数,可以组成()个奇数.

  A

  .2

  B

  .3

  C

  .4

  D

  .12

  36.(2分)42÷3=14,我们可以说()。

  A

  .42是倍数

  B

  .42是3的倍数

  C

  .42是3的因数

  37.(2分)421减去(),就能被2、3、5分别整除.

  A

  .1

  B

  .11

  C

  .21

  38.(2分)一个数是合数,它的因数至少有()个。

  A

  .1

  B

  .2

  C

  .3

  D

  .4

  四、按要求写一写:

  (共4题;共20分)

  39.(5分)在右面的6个

  内填入不同的质数。使的和都等于30以内的`同一个偶数,并把这个偶数填在中间的里。

  40.(5分)下列各数哪些数是2的倍数,哪些数是5的倍数,哪些数是3的倍数。哪些数同时是2、3、5的倍数。54、35、48、72、99、27、108、9、126、91、120、1305、80、(5分)分一分。

  1,2,11,18,23,45,73,87,128,20xx

  42.(5分)如果一名同学的身份证号是xxxxxxxx0042,请给这名同学补全身份证号码。(她的生日是3月6号,出生于1999年。)

  五、按要求组数。

  (共1题;共5分)

  43.(5分)笑笑和淘气用转盘玩游戏,如果转盘指针指向3的倍数就是笑笑胜,指向5的倍数就是淘气胜,如果是3和5的公倍数就是平局重新玩。你认为这个游戏对双方公平吗?请说明理由。

  六、请你来解答。

  (共6题;共45分)

  44.(5分)求下列各组数的最大公因数和最小公倍数

  5和7

  18和54

  29和58

  45.(5分)请把下面的数填在相应的苹果里.

  115

  306

  360

  46.(20分)请你把5、4、0排成符合下面要求的三位数,你能想出几种排法?试一试。

  (1)是3的倍数。

  (2)同时是2和3的倍数。

  (3)同时是3和5的倍数。

  (4)同时是2,3和5的倍数。

  47.(5分)找出质数和合数(按题中数的顺序填写)

  23,35,47,24,51,63,72,91,111

  48.(5分)指出下列各题的错误,并加以改正.

  49.(5分)请你写出100以内9的所有倍数

  参考答案

  一、仔细想,认真填。

  (共17题;共43分)

  1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、二、明辨是非。

  (共10题;共20分)

  18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、27-1、三、选一选

  (共11题;共22分)

  28-1、29-1、30-1、31-1、32-1、33-1、34-1、35-1、36-1、37-1、38-1、四、按要求写一写:

  (共4题;共20分)

  39-1、40-1、41-1、42-1、五、按要求组数。

  (共1题;共5分)

  43-1、六、请你来解答。

  (共6题;共45分)

  44-1、45-1、46-1、46-2、46-3、46-4、47-1、48-1、49-1、

因数和倍数教案7

  本单元安排在学生已经掌握了许多自然数的知识之后,系统地教学分数的意义和性质之前,可以使学生进一步丰富自然数的知识,了解自然数之间存在的倍数与因数关系,体会自然数都有因数,而且不同自然数的因数个数是不同的。这些内容还能为以后教学分数知识作必要的准备。研究倍数与因数一般在非零自然数范围内进行,可以减少不必要的麻烦。因此,教材在底注中给予明确的规定。教学内容分四部分编排。

  第70~73页教学相关的自然数之间的倍数与因数关系,求一个数的倍数或因数的方法。

  第74~77页教学5、2、3的倍数的特点,以及偶数、奇数等知识。

  第78~79页教学素数与合数的概念和判断方法。

  第80~82页整理全单元的知识并组织综合练习。

  编写的你知道吗介绍哥德巴赫猜想和我国数学家研究这一猜想取得的显著成就。两道思考题让学生利用所学的数学概念探索有挑战性的问题。

  1? 联系实际体会自然数之间的倍数、因数关系,探索找一个数的倍数与因数的方法。

  教材的第一部分先教学倍数、因数关系,再教学求倍数与因数的方法。前者是形成数学概念,后者是应用概念。

  (1) 第70页的例题从12个相同的正方形拼长方形开始教学,学生对这个活动已经很熟悉,几乎人人都知道有不同的拼法,都能顺利地拼出三种不同的长方形。教材根据各种拼法中每行正方形的个数与行数,把三种拼法分别表示成43=12、62=12和121=12。以43=12为例讲了12是4的倍数,也是3的倍数,4和3都是12的因数。又让学生说出62=12、121=12里存在的倍数、因数关系。这道例题有两个编写特点: 第一个特点是作为研究对象的三个数学式子都从具体的操作活动中提取出来,有助于学生联系现实情境和实际经验体会倍数与因数的含义;第二个特点是给学生举一反三的机会,用43=12里学到的倍数、因数知识解释62=12、121=12这两个式子里的倍数与因数关系,充分地调动了学生的积极性和主动性。教学这道例题要注意,倍数与因数是一种关系,客观存在于两个具体的自然数之间。因此,要通过完整的语言表达关系,让学生体会这种关系,如4是12的因数、12是4的倍数,不能说成4是因数、12是倍数。

  (2) 第71页的两道例题分别是教学找一个数的倍数和找一个数的因数的方法,虽然内容不同,教学方法都非常相似。即利用初步建立的倍数与因数的概念,联系已经掌握的乘除法口算,让学生在探索中找到方法。

  找3的倍数,采用的思路是3和任何非零自然数的乘积都是3的倍数。这一思路容易理解、容易操作,与建立倍数、因数概念的大背景保持一致。教学时要引导学生从3的倍数是怎样的数想起,先形成找3的倍数的思路,然后从小到大一个一个地找,并按顺序写出来。还要理解例题在写出3的倍数时为什么用了省略号。试一试独立找2和5的倍数,一方面巩固找一个数的倍数的方法,另一方面通过3、2、5的倍数可以发现有关倍数的一些规律。如一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数等。在若干个实例中寻找共同特点,总结成规律,虽然仍旧是不完全归纳,但对小学生来说已经是比较科学的方法了。

  在找36的因数时,如果沿乘积是36的自然数都是36的因数这个思路就能得出想乘法算式这种方法,这条思路容易形成,在操作时往往不大顺畅。如果按36除以哪些自然数没有余数?这个思路想就能得出想除法算式这种方法,这条思路一旦形成,方法易于操作。因此,例题从因数的概念出发,利用()()=36这个式子先让学生明白,找36的因数就是写出这个式子的因数。然后联系除法的意义,引导学生利用除法求36的因数。

  在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。教学要承认学生实际,允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中相互评价,删去重复的,补上遗漏的,并组织学生认真讨论怎样找才能不重复不遗漏,体会过程、总结方法、提升水平,学会有序地思考和寻找。

  还有一点需要指出,《标准》要求学生能够写出10以内自然数的倍数、100以内自然数的`因数。教材在编写时认真落实了这些规定,在想想做做里没有编排找较大自然数的倍数的练习题。适量出现一些稍大的数(如30),写出它的全部因数。

  2? 在找百以内5的倍数、2的倍数、3的倍数的活动中,认识这些数的特点。

  教材第二部分教学5、2、3的倍数的特点。判断一个数是不是5的倍数,是不是2的倍数都是看这个数的个位上是几,方法是一致的。判断一个数是不是3的倍数要看它各位上数的和是不是3的倍数,特征与判断方法与5的倍数、2的倍数完全不同。所以这部分教材分两段编写,把5和2的倍数的特点合并在一道例题里教学,把3的倍数的特点安排在另一段里教学。两段教材都是寻找特点利用特点判断的教学线索,给学生很大的自主活动空间。

  (1) 第74页例题先在百数表里5的倍数上画△、2的倍数上画○,于是表里出现两列画△的数和五列画○的数,其中一列数上画△也画○。这些符号有利于学生分别观察5的倍数和2的倍数,发现表现在个位上的特点。也便于发现哪些数既是2的倍数,又是5的倍数。结合2的倍数,联系以前讲过的双数和单数,列举了哪些数是偶数、哪些数是奇数。这道例题安排的操作活动和提出的问题难度都不大,教学时要尽量让学生通过自主探索和合作交流建构自己的认识。

  想想做做的安排很有层次。第1、2题是简单的判断,初步应用2的倍数与5的倍数的特点,起巩固知识的作用。第3、4题按要求组数,第3题组成的是两位数,没有明确每名学生都要全部、有序地写出符合要求的数,可以通过交流达到全部、有序的要求。第4题组成的是三位数,你排出了哪几种这个问题对有条件的学生要求有序思考并排出所有的数,对少数有困难的学生应尽量多排出几种,并向同伴学习有序的思考方法。第5题通过在数表中涂色,体会4的倍数一定是2的倍数,2的倍数不都是4的倍数。

  (2) 发现3的倍数的特点比较难,第76页例题充分研究学生的思维习惯和学习需要,作了五步安排:

  第一步在百数表里3的倍数上画○,这项活动让学生看到3的倍数与2的倍数、5的倍数不同,分散在表的各行各列里。由此产生猜想,3的倍数的特点可能与2、5的倍数不同。

  第二步提出个位上是3、6、9的数都是3的倍数吗这个问题,学生可以在百数表上看到画○的数的个位上并不都是3、6或9,还有其他数。许多个位上是3、6、9的数上没有画○,它们都不是3的倍数。学生还可以任意写出一些个位上是3、6、9的数,逐一检验是否是3的倍数。这一步的目的是让学生更清楚地知道,3的倍数的特点不表现在它的个位上。

  第三步为学生指点新的探索方向。把3的倍数用计数器的算珠表示,看看用几颗珠。先找较小些的两位数,再找更大的数。通过计算表示各个数所用算珠的颗数,初步发现算珠的颗数总是3、6、9、12等,这几个数都是3的倍数。这一步对发现3的倍数的特点关系很大,学生也乐意进行,要适当多安排一点时间。

  第四步把算珠的颗数转化成各位上数的和,发现3的倍数的特点,这一步是教学难点。要引导学生从数的某一位上是几,计数器的那一位上就拨几颗珠这一事实理解计数器上算珠的总颗数就是这个数各位上数的和。从算珠的颗数是3的倍数推理出各位上数的和是3的倍数。

  第五步是试一试,通过不是3的倍数的数,各位上数的和不是3的倍数的研究,从另一个角度验证上面发现的规律是正确的。

  教材设计的五步教学过程是连贯的,步步深入、逐渐逼近数学的本质内容。既有对例证的细致研究,又有反例作验证,是科学而严密的过程。

  想想做做里的习题数学思考的含量都比较高,除了第1题利用3的倍数的特点进行简单判断外,其他习题都需要仔细地想一想。如第2题要准确理解题意,除以3有余数即不是3的倍数的意思。第3题在方框里填数字的时候,要依据3的倍数的特征进行推理,而且答案是多样的,在每个方框里都有3个数字可填。第5题是组成三位数,首先要从四张数字卡片中选择3张,而且3张数字卡片之和必须是3的倍数,有两种选择,分别是5、6、7和0、5、7。然后再有序地把选出来的卡片排一排,组成三位数。前一种选择能排出6个不同的三位数,后一种选择只能排出4个不同的三位数。这些习题不要急于得出答案和结论,要注重过程,提供充分的时间,鼓励学生自主探索或合作学习。

  3? 通过写因数、比因数个数等活动,建立素数和合数的概念。

  第三部分教学素数和合数,教学活动的线索是: 分别找到2、3、5、6、8、9等自然数的因数按因数的个数把这些自然数分类接受素数、合数等数学概念应用数学概念判断50以内的自然数是素数还是合数。这些活动难度都不大,学生都能进行。在按因数的个数把、2、3、5、6、8、9分类时,可能需要稍微点拨,明确分类的标准。在讲述素数、合数概念时,语言必须准确。

  这部分教材有三个特点: 一是在写2、3、5、6、8、9的因数时充分利用学生的已有能力,让他们在独立写因数的过程中体会这些数的因数个数不同;二是用填空形式引导学生把2、3、5、6、8、9按因数的个数分类,避免教学中出现不必要的枝节;三是主要使用素数这个名词,质数只是带了一带。这对学生无所谓,教师在开始阶段可能不习惯。

  想想做做第1题利用11~20各数,让学生再次经历认识素数和合数的过程。要通过例题、试一试和这道题,让学生记住20以内的八个素数: 2、3、5、7、11、13、17、19。至于更大的素数就不要求记忆了。

  4? 练习六整理和应用全单元教学的数学知识。

  本单元教学了许多数学概念,是按下图的线索展开的。

  乘法算式倍数2、5、3的倍数的特征偶数与奇数因数素数与合数

  为了帮助学生进一步清晰地认识概念,提升应用数学知识的水平,练习六把上面的结构图分成四块组织整理。

  (1) 扩大倍数与因数概念的背景。

  倍数与因数的概念是在自然数(一般不包括0)的乘法算式上教学的。在一道乘法算式中,学生明白了倍数关系和因数关系。练习六第1题继续在除法算式中理解被除数是除数和商的倍数,除数和商都是被除数的因数。这样,学生对倍数关系和因数关系的认识得到深入,对用除法找一个数的因数的方法有进一步的体会。做到这一点并不困难,有除法的意义和乘、除法的关系为基础。

  (2) 数学问题和实际问题并举,综合应用2、5、3的倍数特征的知识。

  第2~4题练习2、5、3的倍数的特征,其中两道题是数学问题,一道题是实际问题。数学问题的形式容易引起对有关数学知识的回忆,实际问题的形式反映了数学内容在现实生活中的存在和应用。先安排数学问题,再安排实际问题,有助于学生在解决实际问题时运用有关的数学知识。第4题有一定的综合性,能发展思维的条理性,培养全面考虑问题的能力。

  (3) 对容易混淆的概念,进行比较和区分。

  学生对奇数与素数、偶数与合数往往混淆不清,第6题是为了区分这些概念而设计的。先在1~20各数中用○圈出素数、用△圈出偶数,回忆素数的意义和偶数的意义;再回答题中的两个问题,体会它们是不同的概念。要注意的是,两个问题都是看着表格呈现的现象回答的。其中的2既画了○,又画了△,这就表明素数里有偶数,偶数里有素数。教学时既要引导学生主动区分不同的概念,正确回答问题,又不要对这些问题进行抽象的,甚至文字游戏式的机械操练。

  (4) 紧扣基础知识探索数学现象的内在规律。

  第7题对学生来讲有两个特点: 一是涉及了几个数学概念,有连续的自然数、连续的奇数、3的倍数等,二是两个问题都是微型课题,题目中的找一找、算一算指点了研究方法。

  第10题把五个数分别写成两个素数相加的形式。这五个数都是偶数,其实任何一个大于2的偶数都可以写成两个素数相加的形式。如果学生有兴趣,可以继续尝试。

因数和倍数教案8

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第30~32页例1、例2和试一试、例3和试一试练一练,第35页练习五第1~4题。

  教学目标:

  1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

  2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

  3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

  教学重点:

  认识因数和倍数。

  教学难点:

  求一个数的因数、倍数的方法。

  教学准备:

  小黑板、准备12个同样大的正方形学具。

  教学过程:

  一、操作引入,认识意义

  1.操作交流。

  引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。

  交流:你有哪些拼法?请你说一说,并交流你表示的算式。

  结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。

  2.认识意义。

  (1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的'因数;反过来,12是4的倍数,也是3的倍数。

  (2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。

  (3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是O的自然数。

因数和倍数教案9

  教学目标:

  1.结合整数乘、除法运算初步认识倍数和因数的含义;

  2.自主探索求一个数的倍数或因数的方法;

  3.在认识倍数和因数以及探索一个数的倍数或因数的过程中,感知因数和倍数的依存关系,进一步体会数学知识之间的内在联系。

  教学重点:

  理解因数和倍数的含义。

  教学难点:

  自主探索并初步总结找一个数的倍数和因数的方法。

  教学过程:

  一、课前谈话:(略)

  二、新课引入:

  1.师:同学们的桌上都放着12个同样大的正方形,请你每次用这12个正方形拼成一个长方形,注意你不同的摆法?(每排摆几个?摆了几排?)看谁的方法多?速度快?会用算式表示你的摆法吗?

  学生交流几种不同的摆法。随着学生交流屏幕上一一演示。2.进行交流:

  如:每排摆了几个,摆了几排?你会用算式表示吗?

  师:12个同样大小的正方形能摆3种不同的的长方形,可以用乘法算式或除法算式来表示,千万别小看这些算式,今天我们研究的内容就在这里。我们以第一道乘法算式为例。(屏幕出示)

  43=12,

  师:在这个算式中,你认为4、3、12有什么关系呢?

  我们一起来读一读:

  因为:43=12,

  所以:12是4的倍数,12也是3的倍数,

  4是12的因数,3也是12的因数,

  读读看,能读懂吗?

  继续出示:因为:62=12 ,所以

  因为:121=12 ,所以

  谁也来出个乘法算式说一说。(略)

  三、探索研究:

  1.师:我们刚才初步认识了因数和倍数,下面要进一步来研究因数和倍数。(出示课题:因数 倍数)

  屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

  4、5、18、20、36

  师:老师在听的时候发现4、18都是36的因数,你也发现了吗?

  师:4、18、都是36的因数。

  师:36的因数只有这2个吗?

  师:看来要找出36的一个因数并不难,难就难在你能不能把36的所有因数全部找出来(既不重复又不遗漏)?请你选择你喜欢的方式,可以同桌合作,也可以独立完成,找出36的所有因数。如果能把怎么找到的方法写在纸上更好。

  学生填写时师巡视搜集作业。

  2.交流作业。(略)

  板书:36的因数:1、2、3、4、6、9、12、18、36。

  师:通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?试一个。

  15的因数有 再试一个:

  16的因数有

  观察36、15、16的所有因数,你有什么发现吗?

  边交流边板书:

  个数 最小 最大

  因数 1 它本身

  倍数

  3.师:找一个数的因数掌握的不错,会找一个数的倍数吗?

  3的'倍数:(找不完怎么办?) 有小巧门吗? (略)

  板书:3的倍数:3、6、9、12、15

  找出7的倍数:7、14、21、28、35

  交流方法。在找一个数倍数时发现:板书:

  个数 最小 最大

  因数 有限的 1 它本身

  倍数 无限的 它本身 (没有的)

  30以内5的倍数:(注意反馈)5、10、15、20、25、30

  4.判断:(下面的说法是不是正确?)

  ⑴ 12是4的倍数,12也是6的倍数。

  ⑵ 8是16的因数,8又是4的倍数。

  ⑶ 1没有因数。

  ⑷ 5是倍数。

  小结:倍数或因数都是指两个数之间的关系,不能单独说

  我们在研究倍数和因数时,所说的数一般指不是0的自然数。

  板书完整: 不是0的自然数

  四、实践应用

  师:因数和倍数的知识在实际生活中有很多运用。

  1.春游。

  乘坐小艇每人应付4元,你能把下表填写完整吗?

  24个同学表演团体操,把队伍的排列情况填写完整。2.做操。

  表中的排数和每排人数与24都有怎样的关系?反馈:表中的应付元数都有什么共同特点?(都是4的倍数)

  排数是24的因数。每排的人数呢?(也都是24的因数。为什么?)

  3.存钱。

  有一位青年志愿者要省下30元生活费,买学习用品送给生活困难的同学。他每天存出一样的钱数,请问有几种存法?

  (30的因数:1、2、3、5、6、10、15、30)

  师:看来因数倍数大量存在于我们的生活中。

  五、课堂小结。

  刚才我们一起研究、认识了倍数和因数,你学得怎样?

因数和倍数教案10

  【教学内容】

  内容:冀教版小学数学四年级上册第51-52页的《2和5的倍数的特征》

  本节内容位于冀教版小学数学四年级上册的第五单元第三个课时,这部分内容在掌握倍数概念的基础上进行教学的。这部分内容将为以后学习3的倍数打下基础,同时它也是学习分解质因数、通分和约分的重要基础知识。因此,掌握本节课的内容至关重要。

  【学情分析】

  从学生年龄特点看,学生的归纳概括能力还比较弱。而本节课的内容比较抽象,对于四年级的学生来说有一定的难度,因此在讲授这节课时,要鼓励学生从多角度思考问题,调动学生的学习积极性。让学生自己去观察自己去思考。

  【教学目标】

  1.经历自主探索5和2的倍数的特征的过程。

  2.知道2和5的倍数的特征,会判断一个自然数是否是2或5的倍数。

  3.积极参与探索活动,愿意与同学交流自己发现的结论,并尝试用语言描述2和5的倍数的特征。

  【教学重点】

  归纳、概括2和5的倍数特征。

  【教学难点】

  通过探索2和5的倍数特征,判断一个数是否是2、5的倍数。

  【教学准备】

  课件、数位表纸片

  【课时安排】

  1课时

  【教学过程】

  一、旧知铺垫

  1.说出1到30以内2所有的倍数(点名让学生回答)。

  2、4、6、8、10、12、14、16、18、20、22、24、26、28、30

  二、探索新知

  (一).2的倍数的特征。

  1.2、4、6、8、10、12、14、16、18、20、22、24、26、28、30(30以内的数)

  师:同学们,2的这些有倍数有哪些特征?(用红颜色把个位上的数字强调出来,方便学生更清楚观察出来)

  生:这些数的个位上是0、2、4、6、8。

  师:那同学们这些数都是什么数?

  生:这是数都是偶数。

  师:不是2的倍数的数是什么数?

  生:不是2的倍数的数是奇数。

  2.师总结:(板书)

  2的倍数特征l个位上是0、2、4、6、8的数都是2的倍数。

  l2的倍数都是偶数,不是2的倍数就是奇数。

  3.课件出示数字卡片;

  例一:在1~100的自然数中,找出2的所有倍数,用黑笔圈出来

  师:不用计算,谁能快速说出来?并且向大家分享一下你的方法(点名让学生回答)

  生:(说出具体数字)我是根据2的倍数特征的得出来的。

  (二)5的倍数的特征:

  1.师:同学们学完2的倍数特征,我们再来一起探讨一下5的倍数有哪些特征?请同学们拿出练习本,写出50以内5所有的倍数。

  师(点名让学生分享自己写出的数)

  生:5、10、15、20、25、30、35、40、45、50

  师:这些数字有哪些规律?(把个位上的数字用红颜色表示出来,方便学生观察)

  生:这些数的末尾不是0就是5。

  2.教师总结:(板书)

  5的倍数特征个位数上是0或5的数都是5的倍数。

  3.课件出示数字表

  例二,在同一张数字表上(2的倍数已经在例一的时候圈出),圈出5的倍数

  师:提出要求,不计算,快速准确的圈出来,并且分享方法。

  生:根据5的倍数特征,快速准确的圈出来。

  4.师:同学们,在这张数字表上有哪些数比较特殊?为什么它们同时拥有两个圈?

  生:因为它们既是2的倍数,同时又是5的倍数。

  (三)2和5共同的倍数特征:

  师:这些数有哪些特征?生:这些数的末尾是0.师总结:板书2和5共同的倍数特征:末尾是0。

  三、巩固练习,学习课堂检测。

  1.圈出2的`倍数。

  3246938035772.圈出5的倍数9099651305212853.说出2和5共同的倍数。

  243567909915607510613052128

  四、进入游戏环节,此阶段共分两个游戏:

  第一个游戏:

  请四位同学上台,每人拿一个数位,每人说出一个不大于9的自然数,让其他同学判断是不是2的倍数,或者是不是5的倍数。(此游戏主要是加深学生对于判断是否是2和5的倍数时,个位的重要意义。)

  第二个游戏:

  找三名同学,一名同学出题,一个同学答题,最后一名同学来判断答题人答题是否正确,出题人考察的知识点。(加深学生对知识点的认识)

  【作业布置】

  课本“练一练”3、4题。

  【板书设计】

  2和5的倍数的特征

  1.2的倍数特征:

  1)个位上是0、2、4、6、8的数都是2的倍数。

  2)2的倍数都是偶数,不是2的倍数就是奇数。

  2.5的倍数特征:个位数上是0或5的数都是5的倍数

  3.个位上是0的数,既是2的倍数,又是5的倍数。

  【教学反思】

  通过整节课的观察和实际,我发现大部分学生都能根据自己的观察发现其中的规律,但是语言组织能力较弱,不能完全和准确的表达出来。对游戏环节的设计,深受学生的喜欢,调到了学生的学习积极性,在以后教学中要多增加此类环节。

因数和倍数教案11

  第五课时

  教学内容:教材第30页练习五的第12~14题

  教学目标:

  1、通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。

  2、通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。

  教学重点:熟练掌握求两个数最大公因数和最小公倍数的方法

  教学难点:熟练掌握求两个数最大公因数和最小公倍数的方法,提高解决实际问题的能力。

  教学具准备:教学光盘。

  教学过程:

  一、揭示课题。

  师:今天我们继续完成一些公因数、公倍数的有关练习。

  二、基本练习。

  1、写出36和24的公因数,最大公因数是多少?

  2、写出100以内10和6的公倍数,最小公倍数是多少?

  学生独立完成,完成后汇报交流。

  分别让学生说说自己是用什么方法找出的?

  三、综合练习。

  1、完成练习五第12题。

  提问:谁能说说什么数是两个数的公倍数?两个数的公因数指什么?

  学生在书上完成后汇报方法。

  提问:你是怎样找到24和16的公因数的?

  你是怎样找到2和5的公倍数的?

  学生可能用不同的方法。

  24和16的公因数有1、2、4、8;

  2和5的公倍数有10、20、30……

  2、完成第13和14题。

  (1)学生独立完成。

  (2)在小组内交流各自的方法。

  提问:求最大公因数和最小公倍数的'方法有什么相同和不同?

  什么情况下可以直接写出两个数的最大公因数?

  什么情况下可以直接写出两个数的最小公倍数?

  3、指导完成思考题。

  (1)小组讨论方法。

  (2)教师指导解法。

  四、阅读与自学“你知道吗?”[11]

  五、课堂总结。

  大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。

因数和倍数教案12

  一、教学内容

  1.因数和倍数

  2.2、5、3的倍数的特征

  3.质数和合数

  二、教学目标

  1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2.使学生通过自主探索,掌握2、5、3的倍数的特征。

  3.逐步培养学生的数学抽象能力。

  三、编排特点

  精简概念,减轻学生记忆负担。

  四、方面的调整:

  A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

  B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

  C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

  2.注意体现数学的抽象性。

  数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

  五、具体编排

  1.因数和倍数

  因数和倍数的概念

  过去:用÷=表示能被整除,÷=表示能被整除。

  现在:用=直接引出因数和倍数的概念。

  (1)用2×6=12给出因数和倍数的概念。

  (2)用3×4=12进一步巩固上述概念。

  (3)让学生利用因数和倍数的概念自主发现12的其他因数。

  (4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

  (5)说明本单元的研究范围。

  注意以下几点:

  (1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

  (2)因数和倍数是一对相互依存的概念,不能单独存在。

  (3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

  (4)注意区分“倍数”与前面学过的.“倍”的联系与区别。

  例1(一个数的因数的求法)

  (1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

  (2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

  一个数的因数的特点

  (1)因数是其自身,最小因数是1。

  (2)因数个数有限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  例2(一个数的倍数的求法)

  (1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

  (2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

  做一做

  与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

  一个数的倍数的特点

  (1)最小倍数是其自身,没有的倍数。

  (2)因数个数无限。

  (3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

  2.2、5、3的倍数的特征

  因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

  2的倍数的特征

  (1)从生活情境“双号”引入。

  (2)观察2的倍数的个位数,总结出2的倍数的特征。

  (3)介绍奇数和偶数的概念。

  (4)可让学生随意找一些数进行验证,但不要求严格的证明。

  5的倍数的特征

  (1)编排方式与2的倍数的特征类似。

  (2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

  3的倍数的特征

  (1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。

  (2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

  (3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

  3.质数和合数

  质数和合数的概念

  (1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

  (2)可任出一个数,让学生根据概念判断其为质数还是合数。

  例1(找100以内的质数)

  (1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

  (2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

  六、教学建议

  1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

  从因数和倍数的含义去理解其他的相关概念。

  2.要注意培养学生的抽象思维能力。

因数和倍数教案13

  小学数学“综合与实践”是一类基于学生直接经验,紧密联系现实生活,综合运用知识技能,以问题为载体,让学生参与为主的数学学习活动。它具有生活性、实践性、研究性、自主性、生成性和开放性等特点。加强数学“综合与实践”的教学,有助于推进素质教育,有助于开发学生的潜能并促进其身心和谐发展。然而,笔者在教学实践中发现,许多教师对数学“综合与实践”活动的认识不是十分清晰,对基本课型不够熟悉,对实施策略体会不深,从而不能满足课程改革的要求。在此背景下,我们展开了《小学数学综合实践活动课课型及教学策略研究》的研究,重在研究数学“综合与实践”课不同课型的特点、实施要求及教学策略。以下笔者结合自己执教的《铺贴地砖》这一则典型课例,谈如何融合“社会实践”与“课题研究”两大课型的特点,激励学生研究不同方案,并学会优选合适方案,从而提高解决实际问题能力和创造能力。

  一、教学目标

  1.引导学生运用因数和倍数、长方形和正方形的面积计算方法,物体搭配的规律等知识综合解决实际生活中的铺地问题。

  2.让学生经历设计铺地方案、优选铺地方案的过程,发展数学思考,积累活动经验,有机渗透初步的数学思想,提升数学应用能力、实践能力和创造能力。

  3.培养学生主动关注现实生活、积极参与社会实践的意识,激发数学学习的兴趣。

  二、教学重点和难点

  教学重点是运用因数和倍数、长方形和正方形的面积计算方法、物体搭配的规律等知识综合解决铺地问题;难点是综合运用知识解决实际问题,设计并优选铺地方案。

  三、教学资源

  多媒体、课件、学生测量的视频、调查表、学生活动单等。

  四、教学过程

  (一)创设情境,激发兴趣

  导入:在我们美丽的学校周边,矗立着一幢幢学区房(多媒体出示图片)。楼房从开工到居住,需要人们付出艰辛的劳动。

  1.师生谈话:你想做一名装潢设计师吗?请喜欢装潢设计的小组介绍测量活动,说明测量地面长和宽的意图(设计铺贴地砖的方案)。

  2.教师揭示课题:铺贴地砖。

  3.调查小组汇报家庭购房需求统计情况,帮助学生了解人们购房时需要考虑的一些因素。

  【设计意图】课伊始,趣已生。本节小学数学“综合与实践”活动课贴近生活,关注实践。教师从现实生活出发,以学区房的地砖铺设问题为引线,以家庭购房需求的调查情况为素材,使学生对如何选择地砖铺地产生兴趣,激活了学生自主探索的欲望。这样的情境创设紧贴生活实际,紧扣学生心弦,具有一定的开放性、实践性和启思性,有利于发展学生的数学应用意识和创造意识。

  (二)问题导引,优选方案

  1.教师提问:一间客厅地面长5.6米,宽3.2米,现在店里提供了三种瓷砖,你准备选择哪一种?

  2.教师相机板书:只铺一种;正好铺满。

  3.学生完成活动一:优选合算的方案。

  一间长方形客厅,地面长5.6米,宽3.2米,如果正好铺满一种瓷砖,怎样铺贴比较合算?

  (价格表)瓷砖1规格:80cm×80cm,每块价格:90元;

  瓷砖2规格:40cm×40cm,每块价格:25元;

  瓷砖3规格:30cm×20cm,每块价格:10元。

  (1)同桌说一说:你准备怎样铺?

  (2)独立算一算:需要多少块?一共多少元?

  (3)组内比一比:选择哪一种瓷砖比较合算?

  (4)展示汇报。

  ①学生先说一说怎样铺,再算一算、比一比。

  ②教师巡视指导,注意关注学生不同的方法,适时进行评价、点拨;对于学生可能出现的问题进行个别指导。

  预设1:

  5.6米=560厘米;3.2米=320厘米

  560÷80×(320÷80)×90=2520(元)

  560÷40×(320÷40)×25=2800(元)

  因为:2800元>2520元

  所以:铺贴边长80厘米的比较合算。

  预设2:(560×320)÷(30×20)有余数,地面的面积不是长方形瓷砖面积的整数倍,不能正好铺满……各小组推选代表展示汇报,交流数学思考的过程。

  ③教师借助图示进行点评,与学生谈话小结:当长方形的长(m)、宽(n)均为正方形瓷砖边长(a)的整数倍时(或者m是a的倍数,n也是a的倍数),一定能正好铺满。

  可以运用以下解决问题的模型求一共的块数:

  ④借助多媒体直观显示:用30cm×20cm的瓷砖不能正好铺满。

  师生交流:无论怎样铺贴,地面面积总不是每块瓷砖面积的整数倍,用这样的瓷砖不能正好铺满地面。

  教师板书:mn÷(ab)不是整数倍,不能正好铺满。

  让学生选择80cm×80cm瓷砖铺地,算出怎么铺总价最少、价格合算。

  【设计意图】小学数学“综合与实践”是以问题为引领,学生自主参与,综合运用已有知识、经验解决实际问题的活动。在“活动一”中,学生自主探索“如何选择一种不同价格的瓷砖”,经历了说一说铺法、算一算块数、比一比价钱的活动过程,积累了丰富的活动经验,学会对不同的方案进行比较并优选。教师没有停留于解决具体问题的层面,而是继续引领学生观察,建构解决问题的模型:当长方形的长(m)、宽(n)均为正方形瓷砖边长(a)的整数倍时(或者m是a的倍数,n也是a的倍数),一定能正好铺满,可以用这样的方法求块数:m÷a×(n÷a)或mn÷a2。另一方面,教师继续引导学生进行思辨:无论怎样铺贴,如果地面面积总不是每块瓷砖面积的整数倍,这样的`瓷砖不能正好铺满地面(但这句话不能说明:无论怎样铺贴,只要地面面积都是每块瓷砖面积的整数倍,这样的瓷砖能正好铺满地面)。

  优选方案是学生不断深化数学思考的过程,当学生对倍数与因数、面积知识等学会了灵活运用,思维经验就会得到提升,优化解决实际问题的能力也会增强。

  (三)合作探索,设计方案

  师生谈话导入:人们在生活中经常将不同种类的瓷砖搭配起来铺地。

  1.师生共同设计铺设方案。

  (1)地面最外面一层铺满长方形瓷砖(多媒体展示铺贴过程),提问:最外面一层铺了多少块?

  (2)里面如果正好铺满另一种正方形地砖,可以怎样铺?同桌交流。

  (3)重点突出:560-20×2、320-20×2都是40的倍数,但都不是80的倍数。

  小结:里面长、宽都是40的倍数,能够用边长40厘米的瓷砖正好铺满;里面长、宽都不是80的倍数,不能用边长80厘米的瓷砖正好铺满。

  2.完成活动二:设计不同的方案

  如果在客厅地面最外面一层正好铺满一种正方形瓷砖,里面正好铺满另一种瓷砖,可以怎样铺贴?

  (1)组内分工合作,一人做好记录。

  (2)我们小组的设计:最外面一层铺贴xxxxxxx;里面铺贴xxxxxxxxxx。

  研究过程:

  我们的研究结论

  (3)全班交流。

  ①请同学们尝试用不同种类的瓷砖搭配起来铺地,完成活动二。

  ②学生分工合作,教师指导小组活动,注意对有困难的小组或学生进行点拨。

  预设1:最外面一层铺贴80cm×80cm的瓷砖,里面铺贴40cm×40cm的瓷砖

  (560-80×2)÷40=10(块)

  (320-80×2)÷40=4(排)

  560÷80×2+(320-80×2)÷80×2=18(块)

  10×4×25+18×90=2620(元)

  预设2:最外面一层铺贴80cm×80cm的瓷砖,里面铺贴30cm×20cm的瓷砖

  (560-80×2)×(320-80×2)÷(30×20),不是整数倍,里面不能正好铺满……

  ③指名小组展示汇报,学生互评、补充。

  ④师生共同谈话:在不同的搭配方式中,关键是求出里面地面的长和宽,看能不能正好铺满。对于不同的方案,可以计算出总价,比较哪种更合算。

  【设计意图】数学是思维的学科,实际问题的解决需要学生主动探索、积极思考。活动二从“人们在生活中经常将不同种类的瓷砖搭配起来铺地”这一生活中的常见现象出发,精心设计开放性问题:如果在客厅地面最外面一层正好铺满一种正方形瓷砖,里面正好铺满另一种瓷砖,可以怎样铺贴?让学生再次经历不同方案的设计,综合运用物体搭配的规律、因数和倍数以及“活动一”归纳出的问题解决模型等解决更为复杂的挑战性问题。这一活动充分融合了“综合与实践”中“社会实践”课型与“课题研究”课型的特点,需要学生关注生活、想象“模拟生活”情境;面对问题,学生必须在合作研究的基础上进行方案的选择、优化,验证方案是否可行。最后,师生谈话小结:在不同的搭配方式中,关键是求出里面地面的长和宽,看能不能正好铺满。对于不同的方案,可以计算出总价,看哪种比较合算。

  这一活动具有丰富性、复杂性和严密性等特点,学生的活动经验在画画、算算、比比等操作、思考活动中愈加深刻。尤其是最外面一层铺贴正方形地砖后,里面可以怎样铺需要学生借助图示深度思考。由提出方案,到验证方案是否可行,再到得出结论,这样的过程是一个科学探究的过程,有利于学生掌握探究的方法。

  (四)交流体会,拓展延伸

  1.说一说课堂学习的收获,并提出一些有待继续研究的问题。

  2.课后延伸:请同学们继续挑战。

  我来挑战:

  (1)如果在长方形客厅和两间卧室分别铺贴一种不同的瓷砖,都是正好铺满,你认为怎样铺比较合算?(图略;瓷砖价格同活动一)

  客厅地面长:7.2m 宽:4m

  房间1地面长:4.8m 宽:3.6m

  房间2地面长:4.8m 宽:3.2m

  (2)一间长方形客厅,地面长4.2米、宽3.6米。如果在最外面一层正好铺满若干块边长30厘米的瓷砖,里面正好铺满另一种正方形瓷砖。

  ①最外面一层一共铺贴了多少块?

  ②里面瓷砖的最大边长是多少厘米?一共铺贴多少块?

  【设计意图】本节课的小学数学“综合与实践”从问题出发,最终回到一些更高层次的问题,让学生带着问题继续探索,这很有价值。教师鼓励学生提出问题,也注意从课堂生成的问题中精选话题。另一方面,练习设计突出了开放性、实践性和综合性,让学生继续运用物体搭配的规律寻求优化的方案。

  五、总体设计反思

  本教学设计贴近现实生活,较好地激发了学生的探索兴趣。小学数学“综合与实践”课与现实生活联系紧密,具有很强的实践性。本节课能够充分利用生活资源,结合人们的购房需要、用一种或不同种方砖铺地、选择合算的铺地方案等内容,巧妙地设计不同层次的铺地问题,激发了学生的探索兴趣,使学生在解决生活问题的活动中体验数学思维的愉悦,感受数学应用的乐趣。

  (一)体现课型特点,灵活运用策略

  波利亚说:“学习任何知识的最佳途径是通过自己的实践活动去发现。”小学数学“综合与实践”活动有利于学生积累数学活动经验,培养应用和创新意识。同时,活动课型丰富多样,教师只要准确把握各种课型的特点、结构模型和实施要求,灵活运用各种课型的模型和方法,就一定会取得良好的教学效益。

  这节课很好地体现“社会实践”课型、“课题研究”课型等特点。从社会实践的角度看,教师在课前组织学生到附近的学区房进行实地测量、搜集数据,组织学生进行社会调查,了解人们购房的一些需求,通过明确问题、参与实践、展示成果等活动过程,使学生的数学思考和实践意识得到了激活,实践能力和综合素质也得到了提升。

  同时,这节课也力求体现“课题研究”之特点。以“活动二”为例,学生重点围绕“如果在客厅地面最外面一层正好铺满一种正方形瓷砖,里面正好铺满另一种瓷砖,可以怎样铺贴?”进行具体研究。由提出初步方案,到验证是否可行,再到得出结论,学生经历了科学探究的过程。教师在这一过程中灵活运用策略,通过精心组织合作、鼓励画图思考、探究不同方案、比较优化方案等方式引领学生丰富解决问题的路径,体验方案的多样性,提升了学生的综合运用能力和创新能力。

  (二)启迪发散思维,优化解决方案

  在“综合与实践”活动中,教师应积极启迪学生的数学思维,让学生充分发挥自主性和创造性。在“活动一”中,学生经历算一算、比一比的过程,并结合已经学过的因数、倍数和长方形、正方形的面积知识思考哪种方法是不可行的,哪种方法是合算的;模型的建构更加深化了学生的数学思考。在“活动二”中,学生的思维更加活跃,思路更加开阔,在确定最外面一层铺设不同的正方形地砖之后,就对里面的铺设产生了不同的方法。在学生进行发散思维之后,教师又引领学生回归问题解决的关键之处:在不同的搭配方式中,关键是求出里面地面的长和宽,再看能不能正好铺满。最后,又进一步优选合算的铺设地砖的方案。

  (三)注重设疑引申,促进素质发展

  教学的境界不是教学生无疑,而是让学生有疑,“小疑则小进,大疑则大进”。“综合与实践”活动综合性强,课堂生成性问题较多。这节课有一个结论:无论怎样铺贴,如果地面面积总不是每块瓷砖面积的整数倍,用这样的瓷砖不能正好铺满地面。对此,学生容易产生这样的想法:无论怎样铺贴,只要地面面积总是每块瓷砖面积的整数倍,这样的瓷砖就一定能正好铺满地面。对于这一问题,教师可以让学生课后去探讨:当地面面积是每块瓷砖面积的整数倍时,用这样的瓷砖铺地,一定能正好铺满吗?课结束,教师又设计了这样的练习:如果在客厅和两间卧室分别铺贴一种不同的瓷砖,都是正好铺满,你认为怎样铺合适?练习的设计促进了学生的再提升和再创造。

  总之,本节课的设计力求体现“综合与实践”的自主性、开放性、实践性与综合性,注重融合“社会实践”与“课题研究”两大课型的特点,从现实生活出发,以社会实践为立足点,以综合运用知识解决实际问题为着力点,灵活运用多种策略,激励学生研究不同方案、优选合适方案,使学生在丰富的活动中深化体验,在积极的探究中深化认识,最终使解决实际问题的能力和创造能力得到了发展。

因数和倍数教案14

  一、教学内容

  教材分两段:

  例1教学公倍数和最小公倍数的认识,例2教学求两个自然数的公倍数和最小公倍数;

  例3教学公因数和最大公因数的认识,例4教学求两个自然数的公因数和最大公因数。

  安排了实践与综合应用“数字与信息”。

  二、教材编写特点和教学建议

  1.借助操作活动,经历概念的形成过程。

  以往教学公倍数的概念,通常是直接找出两个自然数的倍数,然后让学生发现有的倍数是两个数公有的,从而揭示公倍数和最小公倍数的概念。公因数和最大公因数的教学同样如此。本单元教材注意以直观的操作活动,让学生经历公倍数和公因数概念的形成过程。

  这样安排有两点好处:

  一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;

  二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。

  以公倍数为例,教学时应让学生经历下面几个环节:

  第一,准备好必要的图形。要为学生准备长3厘米、宽2厘米的长方形,边长6厘米和8厘米的正方形,也要准备边长为12、18、24厘米等不同的正方形。

  第二,经历操作活动。让学生按要求自主操作,发现用长3厘米、宽2厘米的长方形可以正好铺满边长6厘米的正方形,而不能正好铺满边长8厘米的正方形。在发现结果的同时,还应引导学生联系除法算式进行思考。这是对直观操作活动的初步抽象。

  第三,把初步发现的结论进行类推,先自己尝试看还能铺满边长是多少的正方形,再在小组里交流。不难发现能正好铺满边长12厘米、18厘米、24厘米等的正方形;在此基础上,还应引导学生思考12、18、24等这些边长和长方形的长、宽有什么关系。

  第四,揭示公倍数和最小公倍数的概念,突出概念的内涵是“既是……又是……”即“公有”。

  第五,判断8是不是2和3的公倍数,让学生通过反例进一步认识公倍数。理解概念的外延。在此基础上,教材注意借助直观的集合图显示公倍数的意义。公因数的教学同样如此。

  为了帮助学生加深对最小公倍数和最大公因数的理解,教材在练习中安排了一些实际问题。如第25页第7题,先引导学生用列表的策略通过列举找到答案,再引导学生联系最小公倍数的知识解决问题。第8题也可用最小公倍数解决问题,但也允许学生用列表的策略列举出答案。第29页第10题让学生先在图中画一画找到答案,也可让学生联系最大公因数的知识解决问题。第11题为学生提供了彩带图,学生可以在图中画一画,也可以直接用最大公因数的知识思考。

  2.提倡思考方法多样化,找公倍数和公因数。

  课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。

  不教学用分解质因数的方法求最小公倍数和最大公因数还有两个原因:

  一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;

  二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。在教学找公倍数或公因数时,应提倡思考方法多样化。以求8和12的公因数为例,学生可能会分别写出8和12的所有因数,再找一找;也可能先找出8的因数,再从8的因数中找出12的因数,或着先找出12的因数,再从中找出8的因数。

  在找出公倍数或公因数之后,还应引导学生用集合图表示出来。要让学生经历填集合图的过程,明确集合图中每一部分的数表示的意义,体会初步的集合思想。

  对于两个数有特殊关系时的最小公倍数和最大公因数,教材在练习中安排,引导学生探索简单的规律。由于教材不讲互质数,所以两个互质数的最小公倍数是它们的乘积,最大公因数是1这样的结论不要出现,只要求学生在具体的对象中感受。

  为了拓宽学生对求最小公倍数和最大公因数方法的认识,教材在“你知道吗”栏目里介绍了“辗转相除法”求最大公因数和用短除法求最大公因数和最小公倍数,并介绍了两个数的.最大公因数和最小公倍数的符号表示。教学时,可以让学生结合阅读进行思考。必要时,教师可以进行简单的讲解。

  3.通过调查、交流和尝试,感受数在表达信息中的作用。

  教学“数字与信息”这一实践与综合应用时,应注意引导学生通过调查和交流参与活动,感受数字在表达信息中的作用。

  课前调查的内容有:

  (1)110、112、114、120等特殊电话号码是什么号码;

  (2)自己所在学校和家庭居住地的邮政编码;

  (3)自己家庭成员的出生日期和身份证号码;

  (4)生活中用常见的数字编码表达信息的例子;

  (5)自己学籍卡上的学籍号。课后调查的内容有:

  (1)去邮局调查有关邮政编码的其他信息;

  (2)生活中还有哪些常见的数字编码。教学时,应引导学生充分开展交流活动:比如,为什么有些编号的开头是0?怎样从身份证中看出一个人出生的日期?身份证上的数字编码有哪些用处?等等。

  在此基础上,教材在“做一做”中让学生结合实际问题,尝试用数字编码表达信息。比如,为某宾馆的两幢客房大楼的房间编号,为一年级新生编号,还安排了与方位和距离联系的问题,用编码表示家大约在学校的什么位置。

  教学时,可以根据需要和时间情况,灵活安排教学时间。

因数和倍数教案15

  课前考虑:

  1.概念揭示变“逻辑演绎”为“活动建构”。因数和倍数,保守教材是按数学知识的逻辑系统(除法整除约数和倍数)来布置的,这种概念的揭示,从笼统到笼统,没有同学亲身经历的过程,也无须同学借助原有经验的自主建构,同学获得的概念是刻板、冰冷的。假如能借助同学的操作和想象活动,唤起同学的“因倍意识”,自主建构起“因数和倍数”的意义,那么同学获得的概念必定是生动的、有意义的。

  2.解决问题变“关注结果”为“对话生成”。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉同学,迫切地寻求结果,还是给同学充沛的探究时间,让他们通过独立考虑、交流讨论,从而发现问题、解决问题呢?很多胜利的教学标明,在教学中为同学营造出一个“对话场”,在生生、师生多角度、多层面的'对话中,能让师生相互分享经验、沟通考虑,生成新的看法。

  3.教学宗旨变“关注知识”为”启迪智慧”。“知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。”从知识课堂走向智慧课堂,为同学的智慧生长而教,应成为我们数学教学的倾心追求。怎样通过对“因数和倍数”内涵的深度挖掘,在教给同学数学知识的同时,更教会他们数学考虑的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计“因数和倍数”这堂课的宗旨所在。

  教学目标:

  1.通过“活动建构”,使同学领会因数和倍数的意义;通过独立考虑、交流谈论,初步掌握求一个数所有因数的方法。

  2.在解决问题的过程中,培养同学思维的有序性、条理性,增强同学的探究意识和求索精神。

  3.通过教学,让同学从中感受到数学考虑的魅力,体验到数学学习的乐趣。

  教学准备:

  练习纸、学号卡等。

  教学重、难点:

  掌握求一个数的所有因数的方法,学会有序地进行考虑。

【因数和倍数教案】相关文章:

《倍数和因数》教案03-18

因数和倍数教案05-29

因数和倍数的教案03-10

《倍数与因数》教案03-14

因数和倍数教学反思10-20

倍数和因数教学反思02-26

因数和倍数教学反思05-16

倍数和因数的教学反思03-06

因数和倍数的教学反思02-14