分数的基本性质教案
作为一名专为他人授业解惑的人民教师,通常会被要求编写教案,教案是教学蓝图,可以有效提高教学效率。那要怎么写好教案呢?下面是小编收集整理的分数的基本性质教案,欢迎大家分享。

分数的基本性质教案1
目标
①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。②培养学生观察、分析和抽象概括能力。③渗透”事物之间是相互联系“的辩证唯物主义观点。
教学及训练
重 点
理解分数的基本性质。
仪器
教具
每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学内容和过程
教学札记
一、创设情境
1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:
(1)商不变的性质是什么?
(2)分数与除法的关系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示课题
让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的.性质存在呢?这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三、探索研究
1.动手操作,验证性质。
(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。
(2)观察比较后引导学生得出:==
(3)从左往右看:==
由变成,平均分的份数和表示的份数有什么变化?
把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。
把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:==
引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。
板书:====
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的”相同的数“,是不是任何数都可以呢?(补充板书:零除外)
2.分数的基本性质与商不变的性质的比较。
在除法里有商不变的性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
(教师相机板书:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。)
3.学习把分数化成指定分母而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。
教师板书:
4.练习。教材第96页的练一练。
四、课堂实践。
练习十八的1、3、2、5题。
五、课堂小结
1.这节课我们学习了什么内容?
2.什么是分数的基本性质?
六、课堂作业
练习十八的第四题。
七、思考练习
练习十八的第10题。
分数的基本性质教案2
教学内容:教科书第60~61页,例1、例2、
练一练,练习十一第1~3题。
教学目标:
1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。
2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。
教学重点:让学生在探索中理解分数的基本性质。
教学过程:
一、导入新课
1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。
2、出示例1图。
你能看图写出哪些分数?你是怎样想的`?说出自己的想法。
二、教学新课
1、教学例1。
(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?
(3)演示验证。
2、教学例2。
(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。
(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)
(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?
(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。
(6)为什么要“0”除外呢?
(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。
(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。
3、完成练一练。
(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?
(2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?
三、巩固练习
1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?
2、完成第2题。独立完成,交流想法。
四、课题总结
今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?
分数的基本性质教案3
教学目标:
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。
3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。
教学重点:
运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。
教学难点:
联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。
教学准备:
多媒体课件 长方形白纸、圆片,彩色笔等。
教学过程:
一、 创设情境,激趣导入
师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?
生1:四、五、六年级分的地一样多。
生2:……
师:到底校长分的公平不公平,我们来做个实验吧?
二、动手操作,探究新知
1、小组合作,实验探究。
师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。
2、汇报结果
师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。
生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生2:用三个同样的`圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大 。
生5:……
3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)
(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)
4、探索分数的基本性质。
师:三个年级分的地一样多,那么你们觉得、 这三个分数的大小怎么样?
生:相等。
师:同学们请看这组分数有什么特点?(板书 =)
生:分数的分子分母发生了变化分数的大小不变。
师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?
生:分子分母同时乘2,……
师:谁能用一句换来描述一下这个规律?
生:给分数的分子分母同时乘相同的数。(师随着板书)
师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?
生:分数的分子分母同时除以相同的数。
师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书 分数的基本性质)。
师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?
生:0除外。
师:为什么0要除外?
生:因为分数的分母不能为0.
师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?
生:同时 相同 0除外
师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?
生:商不变的性质。
师:为什么?
生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。
师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。
三、应用新知,练习巩固。
(一) 练一练
(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。
(二) 判断(抢答)
1、 分数的分子、分母都乘过或除以相同的数分数的大小不变。( )
2、 把的分子缩小5倍,分母也缩小5倍分数的大小不变。( )
3、 给分数的分子加上4,要是分数的大小,分母也要加上4。( )
(四)测一测
1、把和都化成分母是10而大小不变的分数。
2、把和都化成分子是4而大小不变的分数。
3、的分子增加2,要是分数大小不变,分母应增加几?
四、总结。
1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?
2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)
五、作业
练习册2、4题
板书设计:
分数的基本性质
给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。
分数的基本性质教案4
教学目标:
1、理解并掌握比的基本性质,知道“最简单的整数比”,会根据比的基本性质将比化成最简单的整数比。
2、培养学生自主迁移、自主构建知识的能力。
3、搞清求比值和化简比的区别与联系,建立事物间相互联系的观念,对学生进行辨证唯物主义的思想教育。
教学重点:比的基本性质和化简比
教学难点:求比值和化简比的区别和联系
教具:小黑板
一、故事引入
引言:同学们知道猴子最爱吃桃子,下面就来看一看一个猴王分桃的故事。猴王管辖的猴群分为三个组,一组有4只猴分得3个桃,二组有8只猴分得6个桃,三组有12只猴,分得9个桃。请问猴王的分配公平吗?
让学生思考:每只猴分得几个桃?桃与猴的比怎样?比值是多少?
教师根据学生的回答板书:
3÷4 6÷8 9÷12 3:4 6:8 9:12
=3/4 =6/8 =9/12 =3/4 =6/8 =9/12
1、三个除法算式有什么关系?
2、三个分数的值相等吗?
3、三个比相等吗?(相等)为什么?
4、猴王的分配公平吗?(公平)为什么?
是啊!猴王的分配是公平的,由于它的公平才被众猴推为猴王。
三、探讨规律
师:上面的三个比什么变了?什么没变?
生:比的前后项变了,比值没变。
师:比的前后项是如何变化的?变化有没有一定的规律可循?下面我们来共同寻找、共同探讨。
1、首先让学生从左往右观察前后项的变化:前项3→6(3→9、6→9),后项4→8(4→12、8→12)分别是怎么变化的?让学生通过“观察→思考→讨论”后回答,教师根据学生的回答板书:
3:4=(3×2):(4×2)=6:8
3:4=(3×3):(4×3)=9:12
6:8=(6×1.5):(8×1.5)=9:12
上面的变化谁能用一句概括性的语言表达出来,让学生讨论回答,教师板书:
2、然后从右往左观察前后项又是如何变化的:
9:12=(9÷3):(12÷3)=3:4
6:8=(6÷2):(8÷2)=3:4
9:12=(9÷1.5):(12÷1.5)=6:8
3、讨论:上面同乘以或除以的“数”是不是任何数都可以?
4、揭示课题:这就是我们今天学习的.“比的基本性质”。
5、尝试:
(1)、4:5的前项扩大2倍,要使比值不变,比的后项应该( )
(2)、如果3:2的后项变成15,要使比值不变,比的前项应该为( )
四、运用规律
3:4、6:9、8:12这三个比中,比的前后项为互质数的是哪个比?(3:4),像这种前后项为互质数的比叫最简整数才(简称最件简比)。(板书)
1、化简比。
出示例1:把下面各比化成最简单的整数比。
(1)14:21 (2)1/6:2/9 (3)0.25:1.2 30:10
让学生讨论14:21如何化简?
2、小结化简比的方法。
师:谁来说说整数比如何化简,分数比如何化简,小数比如何化简?化简比的方法是什么?
3、比较化简比和求比值的异同。
强调:比值是一个数,化简比仍是一个比。(板书)
五、强化认识
1、判断:
①、1/2:1/4化简后得2( )
②、比的前项和后项同时乘以或除以相同的数,比值不变( )
③、两个数的比值是1/3,这两个数同时扩大5倍,它们的比值是1/3( )
④、圆周率表示一个圆的周长和直径的比 ( )
2、填空。(小黑板出示)
(1)、3÷4=()/()=()÷()=21:()
(2)、两个的比值是5/6,这两个数的最简比是()。
3、甲数是乙数的50%,用比的角度来描述这两个数的关系。
4、А、Б两圆的重叠部分是圆А的1/7,也是圆Б的1/5,求А、Б两圆的面积比
六、总结全课
今天我们学习了什么?应用它可以解决什么问题?化简比和求比值是否一样?
分数的基本性质教案5
教学目的
1.使学生理解和掌握分数的基本性质.
2.培养学生观察、思考、动手操作和自学能力.
教学过程
一、导入新课.
故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).
分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)
到底谁回答得对呢?上完这节课你们一定能得到准确的答案.
二、新课.
1.实际操作列等式证实两组分数,每组分数大小相等.
(1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的
.(板书: )
(2)教师提问:比较一下阴影部分的大小,结果怎样?
阴影部分相等,说明这三个分数怎样?
(随着学生回答老师将三个分数用“=”连接)
(3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?
(4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?
(随着学生回答老师在三个分数间用“=”连接)
2.初步概括分数基本性质.
(1)观察两个等式,每个等式的三个分数什么变了?什么没变?
(2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.
板书:
(3)谁能用一句话把这个变化规律叙述出来?
板书:分数的分子、分母都乘上同一个数,分数大小不变.
(4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?
板书:
(5)问:谁能用一句话把这个变化规律叙述出来?
谁能用一句话把这两个变化规律叙述出来?
(板书:或除以)
3.完整分数基本性质.
填空:
教师追问:第三题( )里可以填多少个数?第4题呢?
为什么3、4题( )里可以填无数个数?
( )里填任何数都行吗?哪个数不行?(板书:零除外)
这里为什么必须“零除外”?
教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.
(板书课题:分数基本性质)
4.深入理解分数基本性质.
教师提问:分数的基本性质里哪几个词比较重要?
为什么“都”和“相同”很重要?
为什么“分数大小不变”也很重要?
为什么“零除外”也很重要?
三、课堂练习.
1.用直线把相等的.分数连接起来.
2.把下列分数按要求分类.
和 相等的分数:
和 相等的分数:
3.判断下列各题的对错,并说明理由.
4.填空并说出理由.
5.集体练习.
四、照应课前谈话.
问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?
板书:
五、课堂小结.
这节课你有什么收获?
六、布置作业.
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
分数的基本性质教案6
教学目标:
1、学生能理解和掌握分数的基本性质;
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生的动手操作能力和观察、比较、分析、概括的思维能力
教学重点:理解和掌握分数的基本性质
教学难点:运用分数的基本性质解决实际问题。
教学过程:
一、导入新课
你眼中的猪八戒是什么样的?请用词语来表述一下。
今天老师给大家带来一个关于猪八戒的小故事,你们猜猜猪八戒会做出怎样的选择:唐僧把一张饼分给三个徒弟,三份分得有点不一样,一份是一块,一份是两块,还有一份是三块,你们认为猪八戒会挑选哪一份?猪八戒是否真的会得如所愿?(PPT进行展示)
二、探究分数的基本性质
1、出示PPT,学生说出分数,(用PPT展示:首先重合,然后进行对比。)再让学生用三个图片进行重合并质疑:分子、分母都不相同,这些数的大小怎么会一样?
2、引导学生观察分子分母的变化:
(1)从左往右看,三个分数得分子和分母是按什么规律变化的?(分子、分母同时乘以相同的数,分数的大小不变)
(2)从右往左看,三个分数得分子和分母是按什么样的规律变化的?(分子、分母同时除以相同的数,分数的'大小不变)
3、进行总结:分数的分子和分母都乘以或都除以相同的数,分数的大小不变。
质疑:可以同时乘以或者同时除以0吗?
总结分数的基本性质:分数的分子和分母都乘以或都除以相同的数(0除外),分数的大小不变。
三、殊途同归利用商不变验证分数基本性质
从商不变规律来验证分数的基本性质。
被除数和除数同时除以一个非0的数,那么商不变。
分子相当于被除数,分母相当于除数,它们也同时除以一个非0的数,大家想一下:分数的大小会发生变化吗?
刚才我们是从实际的例子中总结出了分数的基本性质,现在我们是用逻辑推理的形式证明了分数的基本性质,殊途同归。
只不过不同的是,在除法中,叫做商不变规律;在分数中,是分数的基本性质。
四、运用提升
1、奇效的红方块,能用几分之几表示?
分数的基本性质教案7
教学目标
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
教学重点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:形成对分数基本性质的统一认知
教学准备:圆形纸片、彩笔、各种卡片
一、导入新课
出示例1种中的四幅图
提问:看图写出哪些分数?你是怎样想的?
学生回答后,教师导入新课。进一步研究分数方面的知识。
二、发现概括
1、教学例1、
观察一下这个式子,4个分数有什么不同?你知道其中那几个分数是相等吗?板书:==
追问:你是怎样知道这几个分数相等的?和它们相等的分数还有没有?
2、教学例2
谈话:请同学们拿出课前准备好的一张正方形的纸,指出:这些正方形纸都一样大。提问:你能先对折,并涂出它的吗?
学生折纸。涂色。
交流后,追问:你能通过继续对折,找出和相等的其他分数吗?
学生操作。组织交流。
在学生交流时,注意让对折方法不同的学生充分展示,引导发现:只有
对折次数相同,平均分的份数就相同,涂色部分就是相等的。
三、沟通联系
引导观察:请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?
学生观察、思考,完成课本上的填空,再在小组内交流。
学生交流后,教师集中指导观察。
先从左往右看,是怎样变为与它相等的的?
(分母乘2,分子乘2。)
根据分数的意义,”“表示把单位”1“平均分成2份,取其中的1份,而现在把单位”1“平均分成4份,也就是把原两份中的每一份又平均分成2份,所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]==
即原来把单位”1“平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的大小相等,分数值没变。
(2)由到,分子、分母又是怎样变化的?(把平均分的份数和取的份数都扩大了4倍。)==
(3)谁能用一句话说出这两个式子的变化规律?
再从右往左看
是怎样变化成与之相等的的.?==
又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)==
谁能用一句话说出这两个式子的变化规律?
综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?
这就是今天我们所学的”分数的基本性质“(板书课题,出示”分数的基本性质“)。
谈话:你能根据分数的基本性质,再写出一组相等的分数?
引导辨析:所写的分数是否相等?你是怎样想的?
提出要求:根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?
四、巩固练习
练一练的第1题。
练一练的第2题
啄木鸟诊所。(请说出理由)
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。()
分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。()
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。()
小结:从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
五、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?
课堂作业
六、练习十一第3题
分数的基本性质教案8
教材简析:
分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。
设计理念:
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了“猜想——试验分析——合情推理——探究创造”的教学模式。
在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。
《数学课程标准》指出:“学生是学习数学的主人,教师是数学学习的`组织者、引导者与合作者。”这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。
教学目标:
1、使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.
2、培养学生观察、分析、思考和抽象、概括的能力.
3、渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.
教学重点:
使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教具准备:
每生三张正方形纸
教学方法:
演示法、观察法、讨论法、交流法。
课堂小结:
反思、回顾、整理、交流。
“今天这节课,我们一起学习了什么内容?你知道了些什么?它有什么作用?”
巩固练习:
练习十八1
练习十八2
练习十八3
先操作,再比较。
先判断,再说理。
指名口答。
“这题验证了什么性质?”
分数的基本性质教案9
教学目的:
1、理解和掌握分数的基本性质。
2、理解分数的基本性质与商不变规律的关系。
3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。
学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。
4、应用分数的基本性质解决简单实际问题。
5、正确认识、处理变与不变的的辨证关系。
教学重点:掌握分数的基本性质。
教学难点:抽象概括分数的基本性质。
教具学具准备:多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。
教学步骤:
一、1、复习旧知
除法与分数之间有什么联系?
被除数÷除数=被除数
除数
1)、你能用分数表示下面各题的'商吗?
1÷2=()3÷6=()5÷10=()4÷8=()
2)、根据400÷25=16在□里填数:
(400×4)÷(25×4)=□
根据360÷90=4在□里填数:
(360÷□)÷(90÷10)=4
(2)你是怎样想的?(回忆除法中商不变性质)
商不变的性质内容是什么?
3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?
2、激趣引入:和尚分饼
从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:1/22/43/6
你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16
这几个分数真的相等吗?让我们做个实验来证明。
3、操作感知:
(1)请同学们拿出三张大小相同的长方形纸条。
通过实验、观察、分析、讨论
①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;
②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;
③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来
然后看涂上颜色的部分是不是一样大。这说明了什么?
引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。
二、比较归纳揭示规律
比较这三个分数分子和分母,它们各是按照什么规律变化的?:
1、说说这三个分数的意义。
2、总结规律:
(1)从左往右观察:
a、观察手中第一、第二张纸条。
发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4
b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?
板书:1/2=1×3/2×3=3/6
c、分数的分子和分母同时乘以相同的数,分数的值不变。
(2)引导学生观察、讨论:
从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?
学生边回答边板书:3/6=3÷3/6÷3=1/2
2/4=2÷2/4÷2=1/2
并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。
3、抽象概括归纳性质
(1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。
(2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。
分母不能为零,因此分数的分子和分母不能同时乘以零;另外在除法运算中,零不能做除数,所以分数的分子和分母也不能同时除以零。
分数的基本性质教案10
教学目的
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.
2.培养学生观察、分析、思考和抽象、概括的能力.
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.
教学过程
一、谈话.
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.
二、导入新课.
(一)教学例1.
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.
1.分别出示每一个圆,让学生说出表示阴影部分的分数.
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).
4.观察、分析相等的分数之间有什么关系?
(1)观察 转化成 , 的分子、分母发生了什么变化?
( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)
(2)观察
(二)教学例2.
出示例2:比较 的大小.
1.出示图:我们在三条同样的数轴上分别表示这三个分数.
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.
(1)这三个分数从形式上看不同,但是它们实质上又都相等.
(教师板书: )
(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?
三、抽象概括出分数的基本性质.
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
(板书:“基本性质”)
4.谁再说一遍什么叫分数的基本性质?
教师板书字母公式:
四、应用分数基本性质解决实际问题.
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的`大小不变.)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.
2.分数基本性质的应用:
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解
决一些有关分数的问题.
3.教学例3.
例3 把 和 化成分母是12而大小不变的分数.
板书:
教师提问:
(1) ?为什么?依据什么道理?
( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )
(2)这个“6”是怎么想出来的?
(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)
(3) ?为什么?依据的什么道理?
( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )
(4)这个“2”是怎么想出来的?
(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)
五、课堂练习.
1.把下面各分数化成分母是60,而大小不变的分数.
2.把下面的分数化成分子是1,而大小不变的分数.
3.在( )里填上适当的数.
4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
5.请同学们想出与 相等的分数.
规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.
六、课堂总结.
今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.
七、课后作业.
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
分数的基本性质教案11
教学目标
(一)理解和掌握分数的基本性质。
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点
(一)理解和掌握分数的基本性质。
(二)归纳分数的基本性质,运用性质转化分数。
教学用具
教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给
学具:每位同学准备三张相同的长方形纸片。
教学过程设计
(一)复习准备
1.口答:(投影片)
根据 120÷30=4,不用计算直接说出结果:
(120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。
2.说一说依据什么可以不用计算直接得出商的?
3.说出商不变的性质。
教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。
(二)学习新课
1.分数基本性质。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:
教师:请比较这三个分数的大小?
你根据什么说这三个分数相等?
学生口答后老师用等号连结上面三个分数。
(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的',下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?
请同学观察,思考和讨论。投影出思考题:
如何?
结果如何?
变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?
学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)
的变化规律是什么?(学生小组讨论后汇报)教师板书:
教师:试说一说这时分子、分母的变化规律?
学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。
教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)
(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
学生口述分数基本性质的内容,老师把板书补充完整。
教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。
请学生打开书读两遍。
教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)
用学生自己的例题说明后,用投影片再说明:
口答填空:(投影片)
2.把一个分数化成大小相等,而分子或分母是指定数的分数。
分子应怎样变化?谁随着谁变?
化?谁随着谁变?
教师:上面两个分数的变化依据是什么?
(2)口答练习:(学生口答,老师板书。)
教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。
(三)巩固反馈
1.口答:(投影片)
2.在括号里填上“=”或“≠”。(投影)
3.在( )里填上适当的数。(投影)
4.判断正误,并说明理由。
(四)课堂总结与课后作业
1.分数基本性质。
2.把分数化成大小相同而分子或分母是指定数的分数的方法。
3.作业:课本108页练习二十三,1,2,4,5。
课堂教学设计说明
分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。
在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。
在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。
新课教学分为两部分。
第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。
第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。
板书设计
分数的基本性质教案12
教学内容:
苏教版小学数学教材第十册,第95~96页,例1、例2,分数的基本性质。
教学目标:
1、通过直观操作体会分数的基本性质的实际含义,能正确叙述分数的基本性质。
2、能正确理解分数的基本性质,能应用分数的.基本性质,把一个分数化成指定分母而大小不变的分数。
3、创设情境,让学生经历提出问题,发现规律的探究过程,培养学生的观察、比较、抽象、概括等思维能力。
教具、学具:4张同样大小的纸条/每人
教学过程:
教学环节与教学内容
学生学习活动
教师教学活动
一、
复习准备:
1、出示:
除法
分数表示
小数表示
1÷2
2÷4
3÷6
2、启思引入。
口算。
回忆、口答分数与除法的关系。
回忆并口述商不变的规律。
提出问题。
板书。谈话引导。
“用分数表示时,你是根据什么来做的?”
“观察用小数表示的结果,体现了什么规律?”
“完成上题后,你产生了哪些疑问?”
二、
进行新课:
1、直观验证
2、发现规律
(1)探索
(2)应用
==
==
==
(3)探索:分子、分母同时除以一个相同的数(“0”除外)分数的大小就不变。
(4)概括规律。
3、组织练习。
(1)判断:
=()
=()
=()
=()
(2)说一说,和有什么关系?
(3)说一说,商不变的性质和分数的基本性质有什么关系?
4、教学例2。
用纸条操作、验证,并展示。
思考、口答。
讨论、交流。
填空、交流。
交流,发现“(零除外)”。
讨论、交流。
口述。
理解、记忆。
判断、口答。
交流,
交流。
尝试解答。
集体交流。
“你能直观验证一下==吗?”
“你能从操作过程中体会到这三个分数为什么会相等吗?”
“你能再写一个统它们相等的分数吗?”“写的时候你是怎样想的?”
“你发现了什么规律?”
“怎样填才能又对又快?
总结规律。
“一定要分子、分母同时乘一个相同的数(”0“除外)分数的大小就不变吗?”
“你是怎样发现的?”
“能把它们合成一句话吗?”
揭示、板书课题。
指导。
巡视、个别辅导。
评讲。
三、
课堂小结:
反思、回顾、整理、交流。
“今天这节课,我们一起学习了什么内容?你知道了些什么?它有什么作用?”
四、
巩固练习:
练习十八1
练习十八2
练习十八3
先操作,再比较。
先判断,再说理。
指名口答。
“这题验证了什么性质?”
教后反思
分数的基本性质教案13
教学目标
进一步理解掌握分数基本性质在通分中的运用,能熟练而灵活地运用通分的方法进行分数的大小比较。
教学重难点
旋择适当的方法进行分数的大小比较。
教学准备 分数卡片
教学过程
一、基本练习
学生自由练习
互相说一个分数,再通分。
学生汇报 纠错
二、集中练习
教师出示:比较下面各组分数的大小
1、 和 和
2、 和 和
请同学评讲
课本练习68页第九题 把下面分数填入合适的圈内。
比 大的分数有:
比 小的分数有:
师生讨论:怎样快速的分类?
自由说一个比 的分数。并说出理由。
三、解决实际问题的练习
小明:我10步走了6米,
小红:我7步走了4米。
问:谁的平均步长长一些?
小组讨论,明确解题步骤。
小明:6÷10= =
小红:4÷7=
因为 = = >
所以 >
答:小明的'平均步长长一些。
四、拓展练习:
下面3名小棋手某一天训练的成绩统计
总盘数赢的盘数赢的盘数占总数的几分之几
张129
李107
赵138
谁的成绩最好?
小组合作集体解决题型。
三个分数的大小比较,怎样比较较好?
五、课堂作业
68页第11题
分数的基本性质教案14
教学目的:
理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好实现知识教育与思想教育的有效结合。
教学难点:
分数是数学中的一个重要概念,它表示一个整体被分成若干个相等部分中的一部分。分数有许多基本性质,包括分数的大小比较、分数的加减乘除运算等。通过掌握分数的基本性质,我们可以更好地理解和运用分数,解决各种数学问题。除此之外,分数与除法之间有着密切的关系。分数除法是指一个分数除以另一个分数的运算,可以通过将分数除法转化为乘法来简化计算。通过理解分数的基本性质和分数与除法的关系,我们可以更灵活地运用分数进行计算,解决实际生活中的问题。
教学准备:
板书有关习题的'幻灯片。
教学过程:
一、复习
1.出示
在括号里填上适当的数:
指名说一说结果,并说一说你是根据什么填的?
二、课堂练习:
1.自主练习第4题。
学生先独立做,教师巡视,并个别指导,集体订正。
教师板书题目中的线段,指名让学生板演。
在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)
怎样找出相等的分数?
让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?
然后要求学生在书上把这几个相应的。点找出来。指名板演。
2.自主练习第5题。
先让学生独立做,教师巡视。个别指导。
好的,我会为学生提供指导。
教师根据学生的回答选择几个题目进行板书。
3.自主练习第6题。
先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。
集体订正。指名说一说自己的计算过程和结果。
教师根据学生的回答选择几个题目进行板书。
4.自主练习第7题。
学生独立做。教师要求有困难的学生分组讨论,教师个别指导。
集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。
5.自主练习第8题。
学生先独立做。
集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?
分数的基本性质教案15
本单元教学分数的基本性质,约分、通分,比较分数的大小等知识,让学生进一步理解分数的意义,并为分数四则计算作必要的准备。分数的基本性质是约分和通分的依据,比较几个异分母分数的大小往往先通分。根据知识间的联系,全单元内容分三部分编排。
第60~64页分数的基本性质,约分。
第65~68页通分,比较分数的大小。
第69~73页全单元内容的整理与练习,实践与综合应用。
1、 精心安排探索分数基本性质的教学活动。
例1和例2教学分数的基本性质,按“呈现现象——发现规律——联系相关知识”的线索组织教学活动。
例1的图形是四个大小相等的圆,各个圆平均分的份数不同。用分数表示每个圆里的涂色部分,分别写出13、12、26、39四个分子、分母都不相同的分数。比较各个圆里的涂色部分,能够看到从左往右第1、3、4个圆的涂色部分大小相等,由此得到写出的分数大小相等,即13=26=39。这道例题让学生初步感受分子、分母都不相同的分数中,有些分数的大小相等,有些分数的大小不等。并对分子、分母不等,但分数大小相等的现象产生兴趣。
例2承接例1,在对折正方形纸的活动中又得出一些与12大小相等的分数,分别写成等式12=24、12=48、12=816,再次让学生感受分子、分母不同的分数,大小可以相等。写出的三个等式,是研究分数基本性质的素材。
教材分三步引导学生发现分数的基本性质。第一步研究例2每个等式中的两个分数,它们的分子、分母是怎样变化的,感受变化是有规律的。在记录变化的方式时,教材写出了乘号或除号,启示学生从分子、分母乘或除以一个数的角度去观察。让学生在括号里填数,体验分子、分母乘或除以的是相同的数,有助于发现规律。对每个等式的研究,既从左往右观察,也从右往左观察,充分利用了素材,从中获得尽量多的感性知识。填写连等式12=()()=()()=()(),把12、24、48、816有序地排列起来,能从中得到许多感受。如,12的分子、分母都乘2得到24,24的分子、分母都乘2得到48,48的分子、分母乘2得到816,照这样还能写出1632、3264……这些分数的大小都相等。又如,与12大小相等的分数有无数多个,每个分数的分子、分母除以相同的数都能得到12。
第二步利用例2的经验观察例1等式中的三个分数的分子、分母是怎样变化的,体会这些分数相等的原因和例2一样。而且分子、分母乘或除以的数,除了2、4、8,还可以是3和其他的数。这样,对分数基本性质的感受就更丰富了。
第三步概括两道例题中分子、分母变化但分数大小不变的规律。在充分交流之后,阅读教材里的叙述,理解“同时”乘或除以“相同”的数这些规范的语言,知道这个规律叫做分数的基本性质。联系除数不能是0,明白分数的分子、分母同时乘或除以的数不能是0,使得到的规律更严密。
在得出分数的基本性质后,教材还安排了两项活动: 一是根据分数的基本性质写出一组分数,要先任意写一个分数,再把它的分子、分母同时乘或除以相同的数,得到大小不变的分数。写出的一组分数,可以是两个分数,也可以是几个分数。这项活动起巩固分数基本性质的作用,还渗透了通分、约分所需要的思想。二是用整数除法中商不变的规律说明分数的基本性质,由于除法里的被除数和除数分别相当于分数的分子和分母,所以除法中商不变的规律和分数的基本性质是一致的。沟通这两个知识,有助于学生建立新的认知结构,进一步理解分数的基本性质。
练习十一第1~3题配合分数基本性质的教学。第1题继续体验分数基本性质的内容,在方格纸上涂色表示1224,再说出涂色部分还表示612、48、36、24、12等分数,还要从不同角度说明这些分数的大小相等。如,因为这些分数是用同一个涂色部分表示的,所以大小相等;又如,这些分数可以把1224的分子、分母同时除以2、3、4、6或12得出,所以大小相等。第2题应用分数的基本性质判断同组的两个分数是不是相等,其中两组分数的分子、分母没有除以相同的数,是学生初学分数的基本性质时容易出现的错误。这些反例能加强对分数基本性质的理解。第3题运用分数的基本性质对分数进行等值变化,是通分、约分需要的基本功。
2、让学生把分数等值改写,理解约分和通分。
例3教学约分,分三步安排。首先看图写出和1218相等,而分子、分母都比较小的分数,为理解约分的含义搭建认知平台。教学分数基本性质的时候,曾经用几个分子、分母不同,但大小相等的.分数表示同一个图形里的涂色部分。现在联系这个经验教学约分,写出的分数分子、分母都应该比1218的分子、分母小,体会大小相等的分数中,分子、分母小的分数比较简单。这种体会在说说写分数时的思考能够获得,如长方形里的涂色部分,可以看作长方形的1218,也可以看作长方形的69、46或23。显然,这个涂色部分用23表示最简便。然后教学什么是约分和怎样约分,是例题的主要内容。关于约分的含义,联系1218与69、46、23的关系,突出了两点: 与原来的分数大小相等,分子、分母都比原来的分数小。关于约分的方法,示范了分步约分,也示范了一次约分,让学生从自己的实际出发,选择适宜自己的约分方法。教学约分的意义和方法,都是学生有意义地接受新知识。要充分体验约分是应用分数的基本性质化简分数,不改变分数的大小。还要注意约分的书写格式,分子和分母分别除以它们的公因数,得到的商(即新的分子和分母)应该写在适当的位置上。最后以23为例教学最简分数,指出约分通常要约成最简分数。
练习十一第4~7题配合例3的教学。正确约分需要两个能力: 一是看出分子与分母的公因数,第4题为此而安排。把分数的分子、分母同时除以2、5或3,是最常用的约分方法,学生对2、5、3的倍数的特征比较熟悉,因此先观察分子、分母有没有公因数2、5、3。至于分子与分母同时除以7、11、13等数的约分,稍后再作安排。二是识别一个分数是不是最简分数。如果不是最简分数则需要约分,如果是最简分数则不能约分,第5题进行这方面的判断。这两个能力是相互依存、相互影响的。判断一个分数不是最简分数,一定发现了分子、分母除1以外的公因数。反之,分子与分母除1以外,找不到其他公因数,就判断这个分数是最简分数。约分的时候,必须把分子、分母除以相同的数,学生往往在这一点上发生错误,第6题能给学生这方面的体会。
第8~15题是分数的意义、基本性质的综合练习。第8、9题在分数与除法相互改写时,还要应用分数的基本性质。第10题把最简分数与真分数两个概念联系起来,才能理解最简真分数。第11题先约分,再比较大小就非常容易。第12~15题的分数加、减计算,计量单位改写,小数化成分数,解决求一个数是另一个数的几分之几的实际问题,都提出把结果约成最简分数的要求。增加习题的知识容量,把新旧知识结合应用,能帮助学生温故知新,不断提高能力。
例4教学通分,重点放在通分的含义和方法上。把34和56改写成分母相同而大小不变的分数,是一个具有挑战性的问题。学生对分数改写成大小不变的另一个分数并不陌生,在学习分数的基本性质的时候,曾经多次进行过这样的改写。把两个分母不同的分数改写成分母相同的分数,是首次遇到的新问题。思考的焦点是改写成分母是几的分数,只要确定新的分母,分别改写两个分数就容易了。教材让学生凭数感,主动联系公倍数的知识和分数的基本性质,独立进行改写分数的活动。把两个分数改写成分母相同、大小不变的分数就是通分。可见,这道例题未教通分之前就让学生尝试通分,先积累把34和56都化成分母是12或分母是24的分数的切身体验,为理解通分的含义,有意义地接受教材关于通分的讲述作了充分的准备。
公分母是通分的关键。例题有层次地教学公分母的知识: 首先联系34和56的改写,让学生知道12、24是公分母,是34和56的分母的公倍数;然后比较34和56以12为公分母和以24为公分母的改写,体会什么数作公分母比较简便,得出一般用两个分母的最小公倍数作公分母。
例4只教学通分的含义和关于公分母的知识,不再另行教学怎样通分。这是因为34和56改写成分母是12与24的分数就是通分,不需要再重复。学生经过“试一试”,应用通分的知识,能够掌握通分的步骤与方法。同时又考虑到“试一试”毕竟是学生第一次进行通分,所以在怎样表达两个分数的公分母、怎样应用分数的基本性质以及书写通分的过程和结果的一般格式等方面,都给予较具体的指导。
练习十二第1~4题配合例4的教学。第1题两个长方形里的涂色部分分别用12和23表示,这两个分数通分后分别化成36和46。在两个长方形里表示出通分的结果,让学生联系直观图形体会通分的意义,感受异分母分数化成同分母分数,便于比较和计算。第2题是寻找公分母的基础练习,进一步明白两个异分母分数的公分母,是它们分母的最小公倍数。把求最小公倍数的经验应用到求公分母上来。第3题让学生深刻体会两点: 一是通分不能改变分数的大小,通分后的分数必须与原来分数的大小相等,否则会发生类似第(1)小题的错误;二是通分时的公分母要用两个分数分母的最小公倍数,像第(2)小题那样的通分不够简单。
3、 比较分数的大小,体验策略与方法的多样性。
在三年级的教材里,已经教学借助图形比较同分母分数的大小和分子是1的异分母分数的大小。在本册教材“认识分数”时,比较了一个分数与一个小数的大小。所以说,学生已经有一些比较分数大小的经验。在此基础上,例5教学比较两个分数的大小,有两个显著的特点: 一是在现实情境中收集数学信息,把实际问题抽象成数学问题。看同一本故事书,小芳看了这本书的35,小明看了这本书的49。这两个分数都把一本故事书看作单位“1”,分别平均分成5份和9份,看了其中的3份和4份。因此,比谁看的页数多,只要比较35和49这两个分数的大小。例题非常重视这些思考活动,提示学生想到“比较这两个分数的大小”,用数学的方法解决实际问题。在这样的过程中,能回忆起有联系的知识,激活相关的技能。二是先让学生独立解决问题,再交流方法,鼓励策略、方法多样化。35与49是分子、分母都不相同的分数,比较它们的大小对学生来说是新的问题。联系分数的意义、通分和分数化成小数等知识,能够找到许多解决问题的方法。让学生独立解决新颖的问题,有利于创新精神和实践能力的发展。各种方法都很有特色,第一种方法数形结合,在相同的长方形里分别表示两个分数,直观看出哪个分数比较大。第二种方法及时应用学到的通分知识,把异分母分数化成同分母分数进行比较,运用了转化的策略。第三种方法以12为中介,把两个分数分别与12比较大小,间接得到35和49的大小关系,思维灵活、快捷,策略巧妙。学生中还会有其他的方法,组织充分的交流,相互理解和借鉴,能体验解决问题策略的多样性。
比较分数大小的练习,安排很有层次。在巩固基础知识、掌握基本技能的基础上灵活运用知识,发展数感。“练一练”紧接例题,要求先通分,再比较分数的大小。这样安排有两个原因: 一是能巩固通分的知识,形成通分技能,把分数加、减计算需要的基础练扎实。二是这种策略、方法适用于比较分数大小的通常情况,用得比较多。练习十二第5~11题都配合例5的教学,第5题写出的三组分数比较大小各有特点,35和58通分或化成小数都很方便;16和49通分比较方便;114和1310如果写成带分数,分别是2和真分数、1和真分数的合并。第6题根据分数的意义比较分子相同、分母不同的分数的大小,能进一步体验分数的分子、分母及分数单位的含义,还能从中概括出分子相同,分母大的分数比较小的结论。第8题在使用常规比较方法的同时,留出了创新的空间。如比较23和78的大小,从13>18得到23<78;比较134与103的大小,如果把它们都化成带分数,就只要比较14与13的大小。教师对这些有创意的方法要给予鼓励,但不作为基本方法要求全体学生都掌握。第9题通过8个分数与12比较大小,能够发现一些规律: 如分子乘2的积仍小于分母的分数比12小,分母除以2的商小于分子的分数比12大……这对发展数感很有好处。
【分数的基本性质教案】相关文章:
分数的基本性质的教案02-26
分数的基本性质教案03-21
《分数的基本性质》教案范文08-26
《分数的基本性质》说课稿05-15
分数的基本性质教案模板10篇10-26
分数的基本性质教案合集8篇10-29
关于分数的基本性质教案3篇10-29
分数的基本性质教案范文五篇10-12
【精品】分数的基本性质教案4篇10-16