集合数学教案
作为一名默默奉献的教育工作者,常常需要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的集合数学教案,欢迎阅读与收藏。

集合数学教案1
1.1 集合含义及其表示
教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。
教学过程:
一、阅读下列语句:
1) 全体自然数0,1,2,3,4,5,
2) 代数式 .
3) 抛物线 上所有的点
4) 今年本校高一(1)(或(2))班的全体学生
5) 本校实验室的所有天平
6) 本班级全体高个子同学
7) 著名的科学家
上述每组语句所描述的对象是否是确定的?
二、1)集合:
2)集合的元素:
3)集合按元素的个数分,可分为1)__________2)_________
三、集合中元素的三个性质:
1)___________2)___________3)_____________
四、元素与集合的关系:1)____________2)____________
五、特殊数集专用记号:
1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______
4)有理数集______5)实数集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例题讲解:
例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )
A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形
例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?
1)地球上的四大洋构成的集合;
2)函数 的全体 值的集合;
3)函数 的全体自变量 的集合;
4)方程组 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇数组成的集合;
8)所有正偶数组成的集合;
例3、用符号 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)设 , , 则
例4、用列举法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的数
2.图中阴影部分点(含边界)的.坐标的集合
课堂练习:
例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________
例7、已知: ,若 中元素至多只有一个,求 的取值范围。
思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。
小结:
作业 班级 姓名 学号
1. 下列集合中,表示同一个集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .则 ( )
A . B. C. D.
3. 方程组 的解集是____________________.
4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.
5. 设集合 A= , B= ,
C= , D= ,E= 。
其中有限集的个数是____________.
6. 设 ,则集合 中所有元素的和为
7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,试用列举法表示集合B=
9. 把下列集合用另一种方法表示出来:
(1) (2)
(3) (4)
10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。
11. 已知集合A=
(1) 若A中只有一个元素,求a的值,并求出这个元素;
(2) 若A中至多只有一个元素,求a的取值集合。
12.若-3 ,求实数a的值。
【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!
集合数学教案2
[三维目标]
一、知识与技能:
1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系
2、了解集合的运算包含了集合表示法之间的转化及数学解题的`一般思想
3、了解集合元素个数问题的讨论说明
二、过程与方法
通过提问汇总练习提炼的形式来发掘学生学习方法
三、情感态度与价值观
培养学生系统化及创造性的思维
[教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
集合数学教案3
教学目标:
1.理解集合圈里各部分的意义。
2、会读集合圈中的信息,会按条件填写集合圈。
3、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。 教学重难点:
1、会读集合圈中的信息,会按条件填写集合圈。
2、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教具准备:
课件、活动卡 教学方法:探究法
教学课时:
1课时
教学过程:
一、帮小动物回家
1、创设情境,引入课题
(1)小动物在讨论在陆地上生活还是在水里生活好。一共来了10种动物,有6种动物可以在陆地上生活的,有6种动物可以在水里生活。这里面有几种动物既可以在陆地上生活也可以在水里生活?
引导学生质疑:
①来了10种小动物,为什么有6种生活在水里,6种生活在陆地?6+6=12(种)啊?
②有的既可以生活在陆地,又可以生活在水里。(适当给学生介绍“两栖动物”的常识,扩展学生知识面。)
(2)出示:蚂蚱 章鱼 虾 青蛙 蜗牛 鲤鱼 兔子 乌龟 海鱼 瓢虫
①这些动物和昆虫,你知道它们都是生活在哪里吗?(它们有的生活在陆地上,有的生活在水里)你能把它们分类一下吗?
②完成活动卡活动一,指名分类。
③全班一起分类。
④发现问题:乌龟和青蛙有时生活在水里,有时生活在陆地上。
2、图示方法,加深理解
(1)(课件出示)先是两个小组的集合圈。
(2)引导发现青蛙和乌龟两个圈里都有,如果只有一只小青蛙和一只小乌龟能分开站吗?
(3)出示合并隆的空集合圈,引导观察这个集合圈和分开的`两个圈有什么不同。(有一块公共区域,这块公共区域可以表示什么?)
(4)全班交流,说说想法。
(5)师根据课堂实际情况适当小结。
(6)填写合并拢的集合圈。
(7)让学生说一说图中不同位置所表示的不同意义。
二、奇怪的报名表
1、出示:三(1)班参加语文、数学课外小组学生名单
(1)引导得到:
①参加语文小组的有(8)人 ②参加数学小组的有(9)人 (2)小猪的疑问
①小猪也有一个问题。是什么为题呢?出示:
这两个小组一共有( )人?(学生小组合作讨论答案,后指名回答,要说出思路)
②课件演示
a、找到即参加语文组又参加数学组的人(3人:杨明、李芳、刘红);
b、出示空集合圈,指名说说各个位置所表示的意义;
c、填写集合圈;(先填写公共部分)
d、出示各部分人数,引导计算两个小组一共有多少人?(让学生自己去找到答案,以得到多种解法)
解法一:5+3+6=14(人) 解法二:8+9-3=14(人)
三、巩固练习
1、活动卡-巩固练习
(1)只喜欢篮球的有( )人,只喜欢足球的有( )人。两种球都喜欢的有( )人。
2、教材p110——第1、2题。 板书设计:
数学广角
三(1)班参加语文、数学课外小组学生名单
解法一:5+3+6=14(人) 解法二:8+9-3=14(人)
集合数学教案4
教材分析:
“数学广角——集合”是教材专门安排来向学生介绍一种重要的数学思想方法的,即“集合”。教材例1通过统计表的方式列出参加语文小组和数学小组的学生名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突。这时,教材利用直观图(即韦恩图)把这两个课外小组的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
?教学目标:?
1、学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。
2、能利用集合的思想方法来解决简单的实际问题。?
3、学生在探究、应用知识中体验数学的价值,渗透多种方法解决问题的意识。?
教学重点:学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。
教学重点:经历集合图的产生过程,理解集合图的意义,使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教学难点:经历集合图的产生过程,理解集合图的意义。
教学过程:
一、巧用对比,初悟“重复”
1.观察与比较(课件出示图片)父与子
2、提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
二、初步探究,感知重叠
1、查看原始数据,引出重复。
师:我们来看看三(1)班是被老师选上的幸运之星。(课件出示)
书法比赛
小丁
李方
小明
小伟
东东
绘画比赛
小明
东东
丹丹
张华
王军
刘红
师:从这张表格中你了解到了哪些信息?
(2)师:一共有多少名同学参加比赛?
师:怎么会错了呢?再仔细看看,谁来说说?
(3)师:那到底是多少人呢?我们来数数看。
重复什么意思?指着第二个小明:“他算吗?”为什么不算?
(4)师:刚才你们算出来是11人,可现在我们数出来的怎么只有9人呢?、
2、揭示课题。(板书课题:重叠问题)。
三、经历过程,建立模型
1、激发欲望,明确要求。
师:刚才,我们通过仔细地查看三(1)班参赛的学生名单,发现有2个同学重复了,但是从这份名单中你能一下子就看出是哪2个人重复了吗?有难度是吧?
师:看来我这样记录不够清楚,大家想想办法,怎样重新设计一下这份名单能让我们看得更清楚一些?(课件出示要求:既要能让人很清楚地看出参加书法比赛的是哪5个人,参加绘画比赛的是哪6个人,又要能让人很明显地看出两项比赛都参加的是哪两个人。)
请同学们思考一下,大家现在有办法了吗?先不急着说,请把你想到的方法在练习纸上表示出来,行吗?你可以自己画,如果感觉有些困难也可以和你小组内的同学合作完成。
2、独立探究,创生维恩图
学生探究画法,师巡视,从中找出有代表性的作品准备交流。
3、展示交流,感知维恩图
师:我发现咱们班同学的画法很有创意,我从中选了几份,咱们共同来分享一下。我们不让画图的同学自己介绍,只把他们画的图让大家看,我觉得,不用自己介绍就能让别人看懂的方法那才是好方法。
预设:
第一种情况:做记号
师:你是怎么想的?
第二种情况:写在最前面;写在前面并圈出来
师:你是怎么想的?这样整理有什么好处?
师:(1)哪些同学是两项都参加的?你能上来指一指吗?我们可以给他们圈一圈。
引导:重复出现的同学用两个名字,我们容易看错。要是用一个名字,也能表示出他们既参加了书法比赛,又参加了绘画比赛,那该多好啊。
第三种情况:两项都参加的同学用一个名字表示(不是写在最前面的)
出示:他把这两个名字写在这合适吗?应该写在哪?
第四种情况:在前面并一个名字来表示
师:你是怎么想的?这样整理有什么好处?
师:哪一部分是参加书法的,你能用手指一下吗?要不用笔来圈一圈,参加绘画比赛的同学该怎么圈?
师:圈的时候,你们有什么发现?为什么?
师:看来,这样调整能清楚地表示重复和不重复的部分。
4、整理画法,理解维恩图
(1)动态演示维恩图产生过程
师:下面我们把同学们创造出来的韦恩图让电脑再演示一次吧。用一个圈来表示参加书法比赛的同学,再用一个圈来表示参加绘画比赛的同学(师边说边用红色和蓝色画了两个交叉的椭圆),演示形成过程。还是两个圈,不同的是这两个圈不是分开的,而是有一部分重叠在一块的,利用两个圈重叠的这一部分我们恰好可以用来表示什么?
(2)介绍维恩图的历史
师:这种图最早是英国的数学家韦恩提出的,后人就用他的名字来命名,称之为韦恩图。同学真了不起,你们和伟大的数学家韦恩想到一块去了。
(3)理解维恩图各部分意义
(课件出示用不同颜色,直观理解各部分意义)
师:仔细观察,你知道韦恩图的各部分表示什么意思吗?
师:a.红色圈内表示的是什么?
b.蓝色圈里表示什么?
c.中间部分的两个表示什么?
d.左边的“紫色部分”表示什么?
e.右边的“绿色部分”表示什么?
师:对于韦恩图各部分表示的意思你都明白吗?请同位两个同学互相说一说。(学生同伴互说)
(4)比较突出维恩图的优势
我们把这个韦恩图和刚才的表格比较一下,哪个更好一些?好在哪?
(5)、数形结合,运用维恩图。
师:现在,你能不能根据韦恩图列算式来解决三(1)班一共有多少人参加了这两项比赛?教师巡视,找不同方法的学生进行板演
预设整理算法:
生1:5+6-2=9(人)
生2:3+2+4=9(人)
生3:5-2+6=9(人)
生4:6-2+5=9(人)
①看算式提问题:看第一位学生算式‘就图看算式,你有什么新启发?师:谁给他提问题?(生:你为什么减2?(课件动态演示)5在哪里?圈一圈。)
重点理解为什么-2。课件动态演示
②比较:
3+2+4=9(人)
5+6-2=9(人)
a.两道算式中都有个2,这个2表示什么呢?
圈出+2和-2,为什么(1)中是+2,(2)中是-2?
b、你能在第一个算式里找到5?6?
c. 3+2表示什么意思?2+4表示什么意思?这就是(1)算式中隐藏着的信息,你也能在(2)中找到隐藏着的信息吗?(课件演示)
师:现在我们能用这么多的'方法算出三(1)班参加比赛的一共是9个人,是谁帮了我们的大忙啊?(韦恩图。)
四、解决问题,运用模型
1、创设情境,生活应用(课件演示)
这样的韦恩图除了能表示刚才的比赛问题,还能表示生活中的什么?
展示生活问题
(1)这是我们科学书中的重叠问题,找到重叠部分了吗?
(2)这是我们数学书中的重叠问题,谁重叠了?
(3)这是自然界的动物,它们之间存在重叠问题吗?
(4)这是鸡毛掸,找到重叠部分了吗?在哪里?看来,将木条重叠起来,可以增加长度,解决我们生活中的问题呢!
(5)、文具店的问题。
出示下题:
2、运用新知解决问题。
这些问题你们都能解决吗?(完成练习纸)
反馈:
第1题:(生活问题第5题文具店问题)你能把这些信息在韦恩图中表示出来吗?生填写韦恩图,并解决一共进了多少种货?
展示:5+5-3=7(种)
2+3+2=7(种)
师:这里的3表示什么?
为什么一个+3,一个-3呢?
师:比较一下这两个韦恩图(刚才的比赛问题和现在的进货问题),它们有什么相同的地方?
第2题:(生活问题第3题自然界的动物)对比正确和错误的。这两个小朋友填的不一样,你赞同谁的?填的时候有什么好方法?
第3题:(生活问题第4题鸡毛掸)一共有多长?要提醒大家的是什么?
五、展开变式,深化模型
师:下面我们再回过头来,看看那份学校的通知和我们已经解决的那个问题:每班一共要选多少人参加这两项比赛?我们一开始脱口而出的答案是5+6=11人,后来看到三(1)的参赛名单,发现有2人重复了,实际只有9个人。
我们现在再来思考这个问题,三(1)班是9人,其它班级呢?如三(2)班一定是9人吗?
老师可能派了几个同学?一共有几种可能?你能画图把自己的猜想表示出来吗?
反馈:5人。6人。7人。8人。9人。
课件动态演示:
师:仔细观察你有什么发现?
同学们,这样一个我们本来觉得很简单的问题,经过我们深入地思考,原来还有这么多的学问
六、回顾总结,延伸模型。
这节课你有什么收获?你还想知道什么?
集合数学教案5
[课程目标]1.掌握集合的两种表示方法(列举法和描述法);2.掌握用区间表示数集;3.能够运用集合的两种表示方法表示一些简单集合,正确运用区间表示一些数集.
知识点一 列举法表示集合
[填一填]
列举法
把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法叫做列举法.
[答一答]
1.什么类型的集合适合用列举法表示?
提示:当集合中的元素较少时,用列举法表示方便.
2.用列举法表示集合的优点与缺点是什么?
提示:用列举法表示集合的优点是元素清晰明确、一目了然;缺点是不易看出元素所具有的'属性.
知识点二 描述法表示集合
[填一填]
描述法
(1)集合的特征性质:
一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有这个性质,则性质p(x)叫做集合A的一个特征性质.
(2)特征性质描述法:
集合A可以用它的特征性质p(x)描述为{x|p(x)},这种表示集合的方法,叫做特征性质描述法,简称描述法.
[答一答]
3.什么类型的集合适合用描述法表示?
提示:描述法多用于集合中的元素有无限多个的无限集或元素个数较多的有限集.
4.集合{x|x>3}与集合{t|t>3}表示同一个集合吗?
提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.
知识点三 区间及其表示
[填一填]
研究函数常常用到区间的概念,设a、b是两个实数,且a集合数学教案6
一。教学目标:
1、知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集。
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
(3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用。
2、过程与方法
学生通过观察和类比,借助Venn图理解集合的基本运算。
3、情感。态度与价值观
(1)进一步树立数形结合的思想。
(2)进一步体会类比的作用。
(3)感受集合作为一种语言,在表示数学内容时的简洁和准确。
二。教学重点。难点
重点:交集与并集,全集与补集的概念。
难点:理解交集与并集的概念。符号之间的区别与联系.
三。学法与教学用具
1、学法:学生借助Venn图,通过观察。类比。思考。交流和讨论等,理解集合的基本运算。
2、教学用具:投影仪。
四。教学思路
(一)创设情景,揭示课题
问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?
请同学们考察下列各个集合,你能说出集合C与集合A.B之间的关系吗?
引导学生通过观察,类比。思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。
(二)研探新知
l.并集
—般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。
记作:A∪B.
读作:A并B.
其含义用符号表示为:
用Venn图表示如下:
请同学们用并集运算符号表示问题1中A,B,C三者之间的关系。
练习。检查和反馈
(1)设A={4,5,6,8),B={3,5,7,8),求A∪B.
(2)设集合
让学生独立完成后,教师通过检查,进行反馈,并强调:
(1)在求两个集合的.并集时,它们的公共元素在并集中只能出现一次。
(2)对于表示不等式解集的集合的运算,可借助数轴解题。
2、交集
(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A.B与集合C之间有什么关系?
②B={|是新华中学20xx年9月入学的高一年级同学},C={|是新华中学20xx年9月入学的高一年级女同学}。
教师组织学生思考。讨论和交流,得出结论,从而得出交集的定义;
一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集。
记作:A∩B.
读作:A交B
其含义用符号表示为:
接着教师要求学生用Venn图表示交集运算。
(2)练习。检查和反馈
①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系。
②学校里开运动会,设A={|是参加一百米跑的同学},B={|是参加二百米跑的同学},C={|是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A∩B与A∩C的含义。
学生独立练习,教师检查,作个别指导。并对学生中存在的问题进行反馈和纠正。
(三)学生自主学习,阅读理解
1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:
(1)什么叫全集?
(2)补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?
(3)已知集合。
(4)设S={|是至少有一组对边平行的四边形},A={|是平行四边形},B={|是菱形},C={|是矩形},求。
在学生阅读。思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价。
(四)归纳整理,整体认识
1.通过对集合的学习,同学对集合这种语言有什么感受?
2.并集。交集和补集这三种集合运算有什么区别?
(五)作业
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集。交集和补集的现实含义。
3.书面作业:教材第12页习题1.1A组第7题和B组第4题。
集合数学教案7
【教材分析】
1、知识内容与结构分析
集合论是现代数学的一个重要的基础。在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。
2、知识学习意义分析
通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。
3、教学建议与学法指导
由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。
【学情分析】
在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的`点的集合(线段的垂直平分线)。这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。学习集合,可以发展同学们用数学语言进行交流的能力。
【教学目标】
1、知识与技能
(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;
(2)掌握集合的常用表示法——列举法和描述法。
2、过程与方法
通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。
3、情态与价值
在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。
【重点难点】
1、教学重点:集合的基本概念与表示方法。
2、教学难点:选择合适的方法正确表示集合。
【教学思路】
通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排。
【教学过程】
课前准备:
提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。
导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-7<3的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对初中知识的预习和对本节课的预习我相信你们能够很大一部分已经掌握了本节知识的主要问题,对不对?(同学们会高兴地说:对!)
下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好?(同学们在被调动起情绪的时候应该说:好!)
教与学的过程:
预设问题 设计意图 师生活动 教师活动
一组二组三组活动 同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗? 提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。 教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。)
学生三个组分组轮流回答。 你能说出他们有什么共同的特征吗? 为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。 引导学生共同得出正确的结论。最后给出准确的定义:我们把研究的对象称为元素(element);把一些元素组成的总体叫做集合(set)(简称集)。 学生讨论,分组轮流回答。 你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊? 通过学生自己总结,对元素与集合的关系记忆更深刻。 教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就说a属于A集合A,记做a∈A,如果a不是集合A中的元素,就说a不属于集合A,记做 A) 学生讨论,分组轮流回答。可以互相挑出对方回答问题的错误来比赛。 我们描述集合常用哪些方法呢?怎么表示? 引导学生认识集合的两种常见表示方法。 教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法。 描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 同学们上黑板边回答边演练。 谁能试着说说集合中的元素有什么特点啊? 拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。 教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。即(1) 确定性: 对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。(2) 互异性: 同一个集合中的元素是互不相同的。(3) 无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。) 学生探究讨论,回答。 什么叫两个集合相等呢? 深刻理解集合。 教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。) 学生探讨回答。 典型例题
【题型一】 元素与集合的关系
1、设集合A={1,a,b},B={a,a2,ab},且A=B,求实数a,b.
2、已知集合A={a+2,(a+1)2,a2+3a+3}若1∈A,求实数a的值。
【题型二】 元素的特征
⑴已知集合M={x∈N∣ ∈Z},求M
集合数学教案8
一、教材分析
集合的基本运算是高中新课标A版实验教材第一册第一章第一节第三课时的内容,在此之前,学生已学习了集合的概念和基本关系,这为过渡到本节的学习起着铺垫的作用,本节内容在近年的高考中主要考核集合的基本运算,在整个教材中存在着基础的地位,为今后学习函数及不等式的解集奠定了基础数形结合的思想方法对学生今后的学习中有着铺垫的作用。
根据教材结构及内容以及教材地位和作用,考虑到学生已有的认知结构和心理特征,依据新课标制定以下教学目标:
二、教学目标
1,知识与技能目标:根据集合的图形表示,理解并集与交集的概念,掌握并集和交集
的表示法以及求解两个集合并集与交集的方法。
2,过程与方法目标:通过复习旧知,引入并集与交集的概念,培养学生观察、比较、分析、概括的能力,使学生的认知由具体到抽象的过程。
3,情感态度与价值观:积极引导学生主动参与学习的过程,激发他们用数学解决实际问题的兴趣,形成主动学习的态度,培养学生自主探究的数学精神以及合作交流的意识。
根据上述地位与作用的分析及教学目标,我确定了本节课的教学重点及难点, 三,教学重点与难点
重点:并集与交集的概念的理解,以及并集与交集的求解。
难点:并集与交集的概念的掌握以及并集与交集的求解各自的区别于联系。
为了突出重点和难点,结合学生的实际情况,接下来谈谈本节课的教法及学法;
四、教学方法与学法
本节课采用学生广泛参与,师生共同探讨的教学模式,对集合的基本关系适当的复习回顾以作铺垫,对交集与并集采用文字语言,数学语言,图形语言的分析,以突出重点,分散难点,通过启发式,观察的方法与数学结合的思想指导学生学习。
那么在本节课中我的教学过程是这样设计的。
五、教学过程
1复习旧知、引入主题
问题1、实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?
由此引入了本节课的课;集合的基本运算,并让学生观察这样三个集合
集合A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}并让学生思考集合A、集合B并与集合C之间有什么关系?
通过对以上集合的观察、比较、分析、学生容易得出集合C里面的元素由集合A或B里边得元素组成,像这样的关系我们把它叫做并集,得出并集的概念后我会引导学生发现并集里边的关键词“或”字,(为了使学生加深对“或”字的理解,我会举出生活中的例子,书记或主任去开会,这里有三层意思:(1)书记去开会,(2)主任去开会,(3)书记和主任都去开会类比这个例子让学生自己归纳出并集中“或”的三层意思)
引入并集的符号“”,并用数学语言描述A与B的并集:或}介绍Veen图
通过对书上例4的讲解,让学生了解当求解并集时出现相同的元素我们只能算一次,这是由集合的互易性确定的,由此复习了集合的互易性,再对例5的'讲解,让学生会用数轴来求解并集,学生学习了并集含义之后,我会让学生思考这样一个问题, 问题2:除了并集之外,集合还有其他的运算吗?并让他们观以下的集合:
A={1,2,3}B={3,,4,5}C={3}让学生类比并集的方式归纳出它们之间的关系:集合C里面的元素在集合A且在集合B里面,像这样的关系我们把它叫做交集,引导学生发现交集里面的关键词“且”,介绍交集的符号“”用数学语言表示交集:且};介绍Veen图
对书上例6的讲解让学生了解集合与我们的生活息息相关,从而激发他们学习是学的兴趣,并学会用自然语言来描述两个集合的交集,例7:让学生了解当两条直线没有交点即两个集合没有公共部分的时候,他们的交集不是不存在,而是他们的交集为空集,由此复习了空集的概念,让学生完成书上的练习, 1、课堂练习,反馈信息。(P11,1、2题)
在以上的环节中,老师只起了引导的作用,而学生是主体,充分的调动学生的积极性与主动性,让学生的学习过程在老师的引导下的知识在创造。
2、课堂小结,自我评价。
通过提问,引导学生对所学的知识、思想方法进行小结,形成知识系统,用激励性的语言加以点评,让学生思想尽量发挥完善。
3、作业布置,反馈矫正。(P12,6、7)
集合数学教案9
第二教时教材:
1、复习
2、《课课练》及《教学与测试》中的有关内容目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:
一、 复习:(结合提问)
1.集合的概念 含集合三要素
2.集合的表示、符号、常用数集、列举法、描述法
3.集合的`分类:有限集、无限集、空集、单元集、二元集
4.关于“属于”的概念
二、 例一 用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-6<0的整数解集解:{xZ| x2-x-6<0}={xZ| -2 三、 处理苏大《教学与测试》第一课 含思考题、备用题 四、 处理《课课练》 五、 作业 《教学与测试》 第一课 练习题 教学目标: 1.让学生经历韦恩图的产生过程,能借助直观图,利用集合的思想方法解决简单的实际问题。 2.培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题,体验解决问题策略的多样性。 教学重点:让学生感知集合的思想,并利用集合的思想方法解决简单的实际问题。 教学难点:学生对重叠部分的理解。 教学准备:多媒体课件、姓名卡片等。 教学过程: (一)创设情境,引出新知 1.出示信息。 出示教科书例1,只出示统计表,不出示问题。让学生说一说从中获得了哪些信息。 2.提出问题,激发“冲突” 让学生自由提出想要解决的问题,重点关注“参加这两项比赛的共有多少人”这个问题,让学生解答。关注不同的答案,抓住“冲突”,激发学生探究的欲望。 (二)自主探究,学习新知 1.独立思考表达方式,经历知识形成过程。 师:大家对这个问题产生了不同的意见。你能不能借助图、表或其他方式,让其他人清楚地看出结果呢? 学生独立思考,并尝试解决。 2.汇报交流,初步感知集合概念。 (1)小组交流,互相介绍自己的作品。 (2)选择有代表性的方案全班交流。 请每幅作品的创作者上台介绍自己的思考过程,注意追问“如何表示出两项比赛都参加的学生”,体会两个集合中的公共元素构成的交集。 预设1:把参加两项比赛的学生姓名分别列出,把相同的名字连起,就找到两项比赛都参加的学生了,有3人。这样参加跳绳比赛的9人,加上参加踢毽比赛的8人,再去掉3个重复的,应该是14人。 预设2:先写出所有参加跳绳比赛同学的姓名,再写参加踢毽比赛的。如果与前面的'相同就不重复写了,连线就能表示了。一共写出了14个不同的姓名,说明参加比赛的有14人。从姓名上如果引出两条线,就说明他两项比赛都参加了。 预设3:把参加两项比赛学生的姓名分别放到两个长方形里,再把两项比赛都参加的学生的名字移到一边,两个长方形里都有这三个名字,把这两个长方形的这部分重叠起来,名字只出一次就可以了。可以看出只参加跳绳比赛的有6人,两项比赛都参加的有3人,只参加踢毽比赛的有5人,一共有14人。 3.对比分析,介绍韦恩图。 (1)对比、分析,提示课题。 师:同学们解决问题的能力真强,而且画出了这么多不同的图示表示。上面的三幅图中,你更喜欢哪一幅?为什么? 预设1:喜欢第三幅,去掉了重复的学生的姓名,更清楚,很容易看出参加这两项比赛的学生情况。 预设2:喜欢第三幅,用两个长方形的重叠部分表示两项比赛都参加的学生,很直观。 师:在数学上,我们把参加跳绳比赛的学生看作一个整体,叫做一个集合;把参加踢毽比赛的学生看作一个整体,也是一个集合。今天我们就研究集合。(板书课题:集合。) (2)介绍用韦恩图表示集合。 师:第三幅图先把参加跳绳的和踢毽的学生的姓名分别放在了长方形里,很直观。回忆一下,在认识百以内数的时候,按要求写数时,就把提供的数和按要求写出的数都用类似长方形的圈圈了起,每个圈都分别表示一个集合。 师:在数学上我们常用这样的方法,直观地把集合中的具体事物表示出来。(多媒体课件出示左下图,或在黑板上将姓名卡片圈起。) 师:这个图表示什么? 预设:参加跳绳比赛的学生的集合。 出示右上图,随学生回答将参加踢毽比赛的学生姓名填入圈中。 在填入姓名时,引导学生发现,每个圈中的姓名不能重复、不能遗漏,体会集合元素的互异性;每个圈中姓名的摆放次序可以多样,体会集合元素的无序性。 (3)介绍用韦恩图表示集合的运算。 提问:利用这两个图怎样才能让他人直观地看出“参加这两项比赛的人员情况”呢? 通过多媒体课件,动态展示将左右两个图部分重叠的过程,或操作姓名卡片,去掉重复的姓名卡片,帮助学生理解姓名出现两次的学生是这两个集合的公共元素,可以用两个图的重叠部分表示它们的交集。 提问:中间重叠的部分表示的是什么? 预设:两项比赛都参加的学生;既参加跳绳比赛又参加踢毽比赛的学生。 提问:整个图表示的是什么? 预设:参加这两项比赛的学生;参加跳绳比赛或参加踢毽比赛的学生。 4.列式解答,加深对集合运算的认识。 (1)尝试独立解决。 (2)汇报交流,体会解决问题的多种方法。 预设:9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。 让学生通过图示与算式结合进行表达,感悟多种集合知识。可以让学生在韦恩图上指一指它们求出的是哪一部分,体会并集;指一指算式中每一步表达的是哪一部分,如“8-3”和“9-3”,体会差集。 (3)比较辨析,体会基本方法。 通过对各种计算方法的比较,发现虽然具体列式方法不同,但都解决了问题,即求出了两个集合的并集的元素个数。重点让学生说一说9+8-3=14这一算式表达的含义,“参加跳绳比赛的人数加上参加踢毽比赛的人数再减去两项比赛都参加的人数”,体会“求两个集合的并集的元素个数,就是用两个集合的元素个数的和减去它们的交集的元素个数”这一基本方法。 (三)联系生活,巩固练习 1.完成“做一做”第1题。 先独立完成,再汇报交流。 可先分别出示两个集合圈,让学生填入相应的序号,再利用多媒体课件动态展示将两个集合并的过程。 2.完成“做一做”第2题。 学生先独立完成,再汇报交流。 提问1:你是用什么方法解答第(1)题的?要注意什么? 预设:圈出重复的姓名,再数出。要认真仔细找,不要漏掉。 提问2:第(2)题是求什么?你是用什么方法解答的? 预设:第(2)题求的是获得“语文之星”或“数学之星”的一共有多少人,只要获得了任何一个奖都要计算进去。先数出获得“语文之星”的集合的人数,再数出获得“数学之星”的集合的人数,相加后,再去掉既获得“语文之星”又获得“数学之星”的人数。如果学生理解题意有困难,可以借助韦恩图帮助学生理解。 (四)全课小结 师:今天我们学习了集合的知识,还会运用集合知识解决生活中的问题。说一说今天你有什么收获。 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课型:新授课 教学目标: (1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程: 一、引入课题 军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本P2-P3内容 二、新课教学 (一)集合的有关概念 1.集合理论创始人康托尔称集合为一些确定的、不同的东西的'全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。 3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。 4.关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)集合相等:构成两个集合的元素完全一样 5.元素与集合的关系; (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)(举例) 6.常用数集及其记法 非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R (二)集合的表示方法 我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。 (1)列举法:把集合中的元素一一列举出来,写在大括号内。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 例1.(课本例1) 思考2,引入描述法 说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。 (2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…; 例2.(课本例2) 说明:(课本P5最后一段) 思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素 {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。 辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。 说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (三)课堂练习(课本P6练习) 三、归纳小结 本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。 四、作业布置 书面作业:习题1.1,第1-4题 五、板书设计(略 一、知识结构 本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子. 二、重点难点分析 这一节的重点是集合的基本概念和表示方法,难点是运用集合的三种常用表示方法正确表示一些简单的集合.这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键.为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解集合的概念和表示方法. 1.关于牵头图和引言分析 章头图是一组跳伞队员编成的图案,引言给出了一个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到集合和逻辑的知识,也就是把它数学化.一方面提高用数学的意识,一方面说明集合和简易逻辑知识是高中数学重要的基础. 2.关于集合的概念分析 点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念. 初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明. 我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界. 3.关于自然数集的分析 教科书中给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意. 新的国家标准定义自然数集N含元素0,这样做一方面是为了推行国际标准化组织(ISO)制定的国际标准,以便早日与之接轨,另一方面,0还是十进位数{0,1,2,…,9}中最小的数,有了0,减法运算仍属于自然数,其中.因此要注意几下几点: (1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0; (2)自然数集内排除0的集,表示成或,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示,,; (3)原教科书或根据原教科书编写的教辅用书中出现的符号如,,…不再适用. 4.关于集合中的元素的三个特性分析 集合中的每个对象叫做这个集合的元素.例如“中国的直辖市”这一集合的元素是:北京、上海、天津、重庆。 集合中的元素常用小写的拉丁字母,…表示.如果 a 是集合A的元素,就说 a 属于集合A,记作;否则,就说 a 不属于A,记作 要正确认识集合中元素的特性: (l)确定性:和,二者必居其一. 集合中的元素必须是确定的.这就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其他对象都不用于这个集合.如果说“由接近的数组成的集合”,这里“接近的数”是没有严格标准、比较模糊的概念,它不能构成集合. (2)互异性:若,,则 集合中的元素是互异的.这就是说,集合中的元素是不能重复的,集合中相同的元素只能算是一个.例如方程有两个重根,其解集只能记为{1},而不能记为{1,1}. (3)无序性:{ a , b }和{ b , a }表示同一个集合. 集合中的元素是不分顺序的.集合和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而集合{1,0}和{0,1}表示同一个集合. 5.要辩证理解集合和元素这两个概念 (1)集合和元素是两个不同的概念,符号和是表示元素和集合之间关系的,不能用来表示集合之间的关系.例如的写法就是错误的,而的写法就是正确的. (2)一些对象一旦组成了集合,那么这个集合的元素就是这些对象的全体,而非个别现象.例如对于集合,就是指所有不小于0的实数,而不是指“可以在不小于0的实数范围内取值”,不是指“是不小于0的一个实数或某些实数,”也不是指“是不小于0的任一实数值”…… (3)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件. 6.表示集合的方法所依据的国家标准 本小节列举法与描述法所使用的集合的记法,依据的是新国家标准如下的规定. 符号 应用 意义或读法 备注及示例 诸元素构成的集 也可用,这里的I表示指标集 使命题为真的A中诸元素之集 例:,如果从前后关系来看,集A已很明确,则可使用来表示,例如 此外,有时也可写成或 7.集合的表示方法分析 集合有三种表示方法:列举法、描述法、图示法.它们各有优点.用什么方法来表示集合,要具体问题具体分析. (l)有的集合可以分别用三种方法表示.例如“小于的自然数组成的集合”就可以表为: ①列举法:; ②描述法:; ③图示法:如图1。 (2)有的集合不宜用列举法表示.例如“由小于的正实数组成的集合”就不宜用列举法表示,因为不能将这个集合中的元素?一列举出来,但这个集合可以这样表示: ①描述法:; ②图示法:如图2. (3)用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例如: ①集合中的元素是,它表示函数中自变量的取值范围,即; ②集合中的元素是,它表示函数值。的取值范围,即; ③集合中的元素是点,它表示方程的解组成的集合,或者理解为表示曲线上的点组成的集合; ④集合中的元素只有一个,就是方程,它是用列举法表示的单元素集合. 实际上,这是四个完全不同的集合. 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素?一列举出来,而没有列举出来的元素往往难以确定. 8.集合的分类 含有有限个元素的集合叫做有限集,如图1所示. 含有无限个元素的集合叫做无限集,如图2所示. 9.关于空集分析 不含任何元素的集合叫做空集,记作.空集是个特殊的集合,除了它本身的实际意义外,在研究集合、集合的运算时,必须予以单独考虑. 教学设计方案 集合 知识目标: (1)使学生初步理解集合的概念,知道常用数集的概念及其记法 (2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义 能力目标: (1)重视基础知识的教学、基本技能的训练和能力的培养; (2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题; (3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力; 德育目标: 激发学生学习 数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。 教学重点:集合的基本概念及表示方法 教学难点:运用集合的两种常用表示方法??列举法与描述法,正确表示一些简单的集合 授课类型:新授课 课时安排:2课时 教???具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2.教材中的章头引言; 3.集合论的创始人??康托尔(德国数学家); 4.“物以类聚”,“人以群分”; 5.教材中例子(P 4)。 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念(例子见书): 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合。 (2)元素:集合中每个对象叫做这个集合的元素。 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合。记作N (2)正整数集:非负整数集内排除0的集。记作N *或N + (3)整数集:全体整数的集合。记作Z (4)有理数集:全体有理数的集合。记作Q (5)实数集:全体实数的集合。记作R 注: (1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N *或N + 、Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的'集,表示成Z * 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A; (2)不属于:如果a不是集合A的元素,就说a不属于A,记作. 4、集合中元素的特性 (1)确定性: 按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。 (2)互异性: 集合中的元素没有重复。 (3)无序性: 集合中的元素没有一定的顺序(通常用正常的顺序写出) 注: 1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q…… 2、“∈”的开口方向,不能把a∈A颠倒过来写。 练习题 1、教材P 5练习 2、下列各组对象能确定一个集合吗? (1)所有很大的实数。(不确定) (2)好心的人。??????(不确定) (3)1,2,2,3,4,5.(有重复) 阅读教材第二部分,问题如下: 1.集合的表示方法有几种?分别是如何定义的? 2.有限集、无限集、空集的概念是什么?试各举一例。 (二)集合的表示方法 1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。 例如,由方程的所有解组成的集合,可以表示为{-1,1}. 注:(1)有些集合亦可如下表示: 从51到100的所有整数组成的集合:{51,52,53,…,100} 所有正奇数组成的集合:{1,3,5,7,…} (2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。 描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。 格式:{x∈A| P(x)} 含义:在集合A中满足条件P(x)的x的集合。 例如,不等式的解集可以表示为:或 所有直角三角形的集合可以表示为: 注:(1)在不致混淆的情况下,可以省去竖线及左边部分。 如:{直角三角形};{大于10 4的实数} (2)错误表示法:{实数集};{全体实数} 3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。 注:何时用列举法?何时用描述法? (1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。 如:集合 (2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。 如:集合;集合{1000以内的质数} 注:集合与集合是同一个集合吗? 答:不是。 集合是点集,集合=是数集。 (三)有限集与无限集 1、?有限集:含有有限个元素的集合。 2、?无限集:含有无限个元素的集合。 3、?空集:不含任何元素的集合。记作Φ,如: 练习题: 1、P 6练习 2、用描述法表示下列集合 ①{1,4,7,10,13} ②{-2,-4,-6,-8,-10} 3、用列举法表示下列集合 ①{x∈N|x是15的约数}??????????? {1,3,5,15} ②{(x,y)|x∈{1,2},y∈{1,2}}? {(1,1),(1,2),(2,1)(2,2)} 注:防止把{(1,2)}写成{1,2}或{x=1,y=2} ③ ④ {-1,1} ⑤ {(0,8)(2,5),(4,2)} ⑥ {(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)} 三、小???结: 本节课学习了以下内容: 1.集合的有关概念:(集合、元素、属于、不属于、有限集、无限集、空集) 2.集合的表示方法:(列举法、描述法、文氏图共3种) 3.常用数集的定义及记法 四、课后作业:教材P 7习题1.1 【设计意图】 本教学从绘本故事入手,为孩子创设了一个游戏情境,让幼儿在游戏中开展分类教学中,激发幼儿主动参与教学。在教具设计方面,教师采取了现代与传统相结合的方式,一方面利用PPT,发挥绘本中动物形象的优点,营造良好的游戏情境;另一方面利用传统教具,从集体操作到分组操作再到集体操作,给予幼儿更多实践操作的机会。 【教学目标】 1、能正确说出物体的颜色、形状,能按物体的一个特征分类。 2、对操作教学感兴趣,初步学习按照规则操作。 3、喜欢数学教学,乐意参与各种操作游戏,培养思维的逆反性。 4、有兴趣参加数学教学。 【教学准备】 1、“爱吃糖的大狮子”课件。 2、教具:红、蓝、黄、绿颜色标记,大盘子三个,大糖果若干。 3、幼儿操作材料:有形状标记盘子的操作板、“糖果”若干。 【教学过程】 一、故事导入 森林里住着一只大狮子,它肚子饿了,想要吃小动物。聪明的小狐狸想了个好主意,看一看,谁能看懂小狐狸的主意? 二、集体教学 1、第二天小猴子送来好多糖,大狮子说“我想要吃红色的`糖!”,将红色糖果找出来。 2、大狮子又说“我还要吃蓝色的糖!”小猴子很害怕,谁来帮帮它? 3、还剩下一些糖果,谁能把它们分到一样颜色的盘子里? 三、小组操作 1、这次换小乌龟来送糖果了,大狮子说“我要吃圆形的糖!”小乌龟太害怕了,谁来帮助它把糖果按照形状分一分呢? 2、每个小朋友都有一份糖果,每人都有三个盘子,盘子上有标记,请你们帮助小乌龟把糖果放到一样形状标记的盘子里,好吗? 3、幼儿操作,教师指导。 4、集体讲评:看看有没有都分对呢?逐一检查。 四、故事收尾 大狮子吃了很多糖果,牙齿真的疼起来了,小狐狸的主意成功啦,我们一起去庆祝下吧! 教学反思: 幼儿园的数学教学相对于其他教学枯燥、单调,容易使幼儿失去学习兴趣。因为这个时期的幼儿年龄小,逻辑思维尚未发展,所以本次教学中我为幼儿创设了一个可操作的丰富材料的环境,为幼儿创设了一个可选择性、可操作性的空间。使幼儿能独立的操作材料,并大胆的表达自己的想法。幼儿的自主性,选择性,独立性得到了充分的体现。通过一系列的游戏教学,达到了主题总目标预设的要求。 内容分析: 1、 集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。 把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。 本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。 这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念。 集合是集合论中的.原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。 教学过程: 一、复习引入: 1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2.教材中的章头引言; 3.集合论的创始人——康托尔(德国数学家)(见附录); 4.“物以类聚”,“人以群分”; 5.教材中例子(P4)。 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素. 定义:一般地,某些指定的对象集在一起就成为一个集合. 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…} (2)正整数集:非负整数集内排除0的集,记作N*或N+,N*={1,2,3,…} (3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…} (4)有理数集:全体有理数的集合,记作Q,Q={整数与分数} (5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数} 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集,记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向,不能把a∈A颠倒过来写。 目标 1、通过观察粘贴活动,寻找两个集合交集、差集中元素,依据特征进行尝试摆放;发展幼儿多纬度的思维能力。 2、培养幼儿的尝试精神,发展幼儿思维的敏捷性、逻辑性。 3、有兴趣参加数学活动。 准备 《水果找家》、《图形组合物》幻灯片个1张(NO.86—87),幼儿每人相同内容练习纸2张(见练习册NO.4—5),如图(1)和图(2)。 过程 (一)观察 1、出示《水果》幻灯片,引导幼儿思考: (1)两个圈内分别有什么?各有几个? (2)左圈内的水果么特征?(有叶子) (3)右圈内的水果么特征?(有梗子) (4)两圈相交部分中的水果么特征?(有叶子且有梗子) 2、出示《图形组合物》幻灯片,引导幼儿思考: (1)两个圈内分别有什么特征?各有一个? (2)左圈内的东西有什么特征?(红色) (3)右圈内的东西有什么特征?(个数是5个) (4)两圈相交部分中的东西有什么特征?(红色且个数是5个) (二)区分 让幼儿思考:依据特征,如把右边的`水果或左边的娃娃脸摆放到圈内,该分别放在哪里? 个别幼儿口述位置和理由,如图(1)中的桃子该放在左圈但不在右圈中,因为桃子有叶无梗;图(2)中的圆脸娃娃该放在两圈相交部分,因为她是红色且组成的圆形个数是5个。 (三)粘贴 幼儿在练习纸上将左(右)边的各图示物一一撕下,分别粘贴在两个圈中的相对位置。 (教师巡回指导,帮助幼儿正确粘贴) 建议 (一)本活动设计内容亦可分两次进行。 (二)亦可用实物材料在集合摆放圈中进行分类摆放,见《儿童数形宝盒》说明图29。观察记录与评估。 【数学教案】相关文章: 小学数学教案11-11 比的应用数学教案11-20 小学数学教案(精选)08-25 优秀数学教案11-22 小学数学教案【精选】07-24 分类的数学教案11-16 小学数学教案11-06 初中数学教案11-04 趣味的数学教案02-25 幼儿的数学教案03-01集合数学教案10
集合数学教案11
集合数学教案12
集合数学教案13
集合数学教案14
集合数学教案15