当前位置:好文网>实用文>教学反思>一元二次方程的教学反思

一元二次方程的教学反思

时间:2025-09-12 09:38:17 教学反思

一元二次方程的教学反思

  身为一名人民教师,课堂教学是我们的任务之一,借助教学反思我们可以学习到很多讲课技巧,那么优秀的教学反思是什么样的呢?以下是小编收集整理的一元二次方程的教学反思,仅供参考,大家一起来看看吧。

一元二次方程的教学反思

一元二次方程的教学反思1

  一元二次方程的应用是在学习了前面的一元二次方程的解法的基础上,结合实际问题,讨论了如何分析数量关系,利用相等关系来列方程,以及如何解答。

  列方程解决实际问题,最重要的是审题,审题是列方程的`基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

  在本章教学中我注意分散教学难点,比如说,在学习增长率问题时,我先设计了这样一组练习:(1)一个车间二月份生产零件500个,三月份比二月份增产10%,三月份生产-----------个零件,如果四月份想再增产10%,四月份生产零件-----------个。如果增产的百分率是x,那三月份和四月份各能生产零件多少个?通过分散教学难点,引导学生理解题意,从而达到满意的教学效果。

  在本章教学中我还注意对学生进行学法的指导。比如说,在做习题7.12第2题时,有的同学想象不出图形,就应引导他们画出示意图;在比如学习最后一个例题时,面对那么多的量,并且是运动中的量,许多学生无从下手,此时就要引导学生把量在图形中先标示出来,在慢慢分析题中的数量关系。在分析问题时,要强调当设完未知数,那它就是已知数,参与量的标示。

  总之,在教学中通过学生的自主探究、小组间的合作交流、教师的及时点拨,进一步提高学生分析问题、解决问题的。

一元二次方程的教学反思2

  本节共分3课时,第一课时引导学生通过转化得到解一元二次方程的配方法,第二课时利用配方法解数字系数的一般一元二次方程,第3课时通过实际问题的解决,培养学生数学应用的意识和能力,同时又进一步训练用配方法解题的技能。

  在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:

  1、在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。

  2、在开平方这一步骤中,学生要么只有正、没有负的',要么右边忘了开方。

  3、当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。

  因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。

一元二次方程的教学反思3

  反思这节课的教学过程,我始终把分析问题、寻找等量关系作为重点进行教学,不断对学生引导、启发,努力使学生掌握解题思路和方法,却忽视了和学生的沟通和交流,学生活动较少,没有放手让学生自己去探索、去发现,哪怕是错误的,也是学生思考的结果,大不了再纠正,学生也会更加牢固的掌握。比如探究2:学生在我的引导下能准确地列出方程,在进行小结公式a(1±x)2=b之后,在做后面的巩固练习和应用拓展时就应该让学生自己去分析解决问题,而我看学生分析困难,忍不住加以提示。虽然学生很快列出方程了,但我一点都没有成就感。以后的教学中一定要培养学生自主探索的思维习惯,不能越俎代庖。

  学生要理解题意,分析条件与条件之间,条件与问题之间的各种数量关系,要通过分析、综合,找到解题的途径和方法。弄清楚什么是变化前的量,什么是变化后的.量,增长或降低了几次。为此,我准备设计一些教学方法,有计划有步骤地训练学生的解题思路。

  增长率问题是一元二次方程中的重点问题,本节课设计的优点是不同问题中反应不同的增长率,有利于学生更合的掌握增长率问题。

一元二次方程的教学反思4

  不足的是:1、对于字母系数的方程,因为比较抽象,学生在用配方法解比较陌生,需要过多的时间,使得本节课未能完全按计划完成任务。

  2、学生在用公式法解题时主要存在如下问题: (1)a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号 。

  (2)当b的值是负数时,在代入公式时,往往漏掉公式中b前面的“-”号。

  (3)部分学生在实际运用中,没有先计算b

  a,b,c的相应的数值代入公式求根。

  其实在做题过程中提醒学生先确认a,b,c的相应的数值准确后,再检验一下判别式,这是很关键的两步,不要过于着急待入求值,在教学中,这一点还是需要进一步强调的。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果

  回想本课的`教学,虽然存在一些问题,但整节课的实施过程还算顺利,学生对本课的知识掌握程度还不错,基本上达到本课的教学目的。

一元二次方程的教学反思5

  通过本节课的教学发现也存在着一些问题:其一,完全平方式写错。把两数差的平方写成了两数和得平方。其二,非负数的平方根求错,或二次根式未化成最简二次根式。其三,一项未变号。其四,少数同学配方时左边加了一次项系数一半的平方,但右边忘记加。针对上面各种情况教师利用课余时间对存在问题的'学生逐个讲解。

  教师方面也存在着要加强的地方:

  1、教师普通话有待提高;

  2、讲授有时语速过快,声音较大;

  3、有的知识重复次数太多;

  4、学生自己动手练习时间偏少。

一元二次方程的教学反思6

  一、一元二次方程的解法之间的比较:

  1.直接开平方法应用简单,但受形式限制;开平方的时候要注意正负。

  2.配方法较麻烦,用公式法更方便,故一般不采用。但配方法是一种较重要的数学方法,公式法就是由它推导出来的,而且在后面的函数中还要用到配方法,所以要掌握好。它的重要性,不仅仅表现在一元二次方程的解法中,在今后学习二次函数,到高中学习二次曲线时还将经常用到。配方的时候,要注意二次项系数应先化为1,再把常数项移到式子的右边,然后把方程两边都加上一次项系数一半的平方;左边就变成了一个平方的形式,再运用直接开平方的方法求出方程的.解。

  3.公式法是一元二次方程的基本解法,对所有的一元二次方程都适用;用公式法的时候要先把方程变为一般形式,在求出方程的判别式,最后用公式求出方程的解。

  4.因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三项式都能很方便地进行因式分解。应用时要注意,等号的右边一定要为0,然后再把方程的左边进行因式分解,将方程左边分解成两个一次因式的乘积的形式,令每个因式分别为零,得到两个一元一次方程,解每个方程就求出了原方程的解。

  二、一元二次方程的解法选用:

  1.先观察能否用直接开平方法,能用就优先采用;

  2.再观察能否用因式分解法;

  3.用公式法。

  注意:一般不采用配方法。

一元二次方程的教学反思7

  这一章节是对一元二次方程在实际应用中的深入探讨与拓展,通常,那些能够通过基本算术解决的问题,往往可以通过一元二次方程的解法找到更为简洁、高效的方法。而那些需要借助一元二次方程求解的应用题,往往不适用于传统的算术技巧。因此,通过学习这一章节,学生能够深刻理解并体会到使用代数方法解决实际问题的优势和必要性。

  一元二次方程的应用场景极其广泛,涵盖了从几何学、物理学到更广泛的科学领域。与一元一次方程相比,一元二次方程处理的问题通常涉及更为复杂的关系和动态变化,这使得它们成为中学数学教育中的核心知识点之一,同时也被公认为是难度较高的部分。因此,这部分的学习内容不仅对中学数学学生来说至关重要,而且对于深入理解数学与其他科学领域之间的联系也具有重要意义。通过掌握一元二次方程的理论与应用,学生们能够更全面地理解数学在实际问题解决中的作用,为日后的`学术研究或专业学习打下坚实的基础。

  在教育实践中,采用构建一元二次方程解决实际问题的方法,旨在培养学生的逻辑推理能力与分析、解决问题的技巧。通过这种方式,学生不仅能够掌握数学知识,还能提升其在复杂情境下运用数学工具的能力。

一元二次方程的教学反思8

  问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:

  1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?

  (学生很自然列方程解决)

  改换题目条件和问题:

  2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

  分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。

  于是学生很容易完成下列求解。

  解:设该商品定价为x元时,可获得利润为y元

  依题意得:y=(x-40)?〔300-10(x-60)〕

  =-10x2+1300x-36000

  =-10(x-65)2+6250300-10(x-60)≥0

  当x=65时,函数有最大值。得x≤90

  (40≤x≤90)

  即该商品定价65元时,可获得最大利润。

  增加难度,即原例题

  3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的'更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。

一元二次方程的教学反思9

  通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。下面我就谈谈自己对这节课的反思。这节课是一元二次方程解法的复习课,复习的思路是概念的梳理(方法的回忆)__实践(方法的选择)__应用(方法的融合)。由于课前我做了精心准备,所以整个课堂流畅、紧凑容量大。整节课充满着”自主、合作、探究,交流“的教学理念,使学生在主动思考探究的过程中自然的获得新的知识。

  需要改进的方面:

  1、设计的问题太多,学生在课堂上没有办法消化。

  2、学生的`积极性没有调动起来。

  通过本节课的教学,我觉得课堂就应该交给学生,而不是一味的填鸭式灌输给学生,这样反而达不到预期的效果。

一元二次方程的教学反思10

  一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于它的概念,学生很容易理解。通过这节课的教学我有如下几点感想:

  一、引导学生观察、类比、联想已学的一元一次方程、二元一次方程,归纳、总结出一元二次方程,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出觉得意外,让学生跳一跳就可以摘到桃子。

  二、合理选材,优化教学,在教学中,忠实于教材,要研究的基础上使用教材。教学方法合理化,不拘于形式,通过一系列的'活动来展开教学,发展了学生的思维能力,增强了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。

  三、整节课的设计以落实双基为起点,培养学生独立思考的能力,重视知识和产生过程,关注人的发展。无论是教学环节设计,还是作业的布置上,我注意分层次教学,让每一个学生都得到不同的发展

  四、为了真正做到有效的合作学习,我在活动中大胆地让学生自主完成。先让学生把问题提出来,然后让学生带着问题去讨论,这样学生在讨论时就有目的,就会事半功倍。也让不同层次的学生得到不同的发展。也符合新课程的教学理念。

  不足之处:引入方面有待加强,不够激发学生的学习兴趣;板书还有待加强,应给学生做出示范;给学生思考的时间还不够。

一元二次方程的教学反思11

  方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:

  本节课的整体过程是这样的,通过三个例题让学生掌握一元二次方程根的判别式及根与系数关系的应用,总的'来说,虽然课堂上同学们总结错误不少,总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了。学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

  另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

一元二次方程的教学反思12

  一元二次方程进行了单元测试,虽然是下午第四节自习时间作业”加班加点直到晚上10:30,没有耽误第二天的第一节测试的,但是为了能给学生及时地反馈,我也做起了“家庭课讲评。

  五班优秀人数25人,而六班只有12人,及格率也相差很大。分析其中原因,近段时间以来六班纪律涣散占很大比重。自分班以来,我深感肩上的担子重,责任大,但我坚信勤能补拙,所以我比以往更用心更努力,可以说用上了十二分的力气和心劲。但是学生的.表现却令我失望,态度不端正不拿学习当回事,我行我素,精神麻木。其次,学习不扎实,思维方法不严密。反复强调的知识点也丢三落四,漏洞百出。

  痛定思痛,只有老师的努力只能成功了一半,下一步的任务是强抓学生,端正他们的态度,稳定课堂秩序。

  铁的纪律才能出铁的成绩,要提高六班成绩,必须整顿班风,严明纪律,创造一个良好的学习环境。

一元二次方程的教学反思13

  配方法不仅是解一元二次方程的方法之一既是对前面知识的复习也是其它许多数学问题的一种数学思想方法,其发挥的作用和意义十分重要。原以为学生不容易掌握。谁知从学生的学习情况来看,效果普遍良好。从本节课的具体教学过程来分析,我有以下几点体会。

  1、善于引导学生发现规律,注重培养学生的观察分析归纳问题的能力。首先复习完全平方公式及有关计算,让学生进行一些完形填空。然后让学生注意观察总结规律,然后小组总结交流得出结论。即配方法的具体步骤:

  ①当二次项系数为1时将移常数项到方程右边。

  ②方程两边同时加上一次项系数一半的平方。

  ③化方程左边为完全平方式。

  ④(若方程右边为非负数)利用直接开平方法解得方程的根。这样一来学生就很容易掌握了配方法,理解起来也很容易,运用起来也很方便。

  2、习题设计由易到难,符合学生的认知规律。在掌握了二次项系数为一的后。提出问题:当二次项系数不为一时你会用配方法解决吗?不少学生立即答道把系数化为一不就够了吗。于是学生很快总结出 用配方法解一元二次方程的一般步骤:

  ①化二次项系数为1。

  ②移常数项到方程右边。

  ③方程两边同时加上一次项系数一半的平方。

  ④化方程左边为完全平方式。

  ⑤(若方程右边为非负数)利用直接开平方法解得方程的根。

  3、恰到好处的设置悬念,为下节课做铺垫。我问学生配方法是不是可以解决“任何一个”一元二次方程?若不能,如何来确定它的“适用范围”?多数学生迅速开动脑筋并发现“配方法”能简便解决一部分“特殊方程”,而例如x+2x=0,4x+4x+1=0,2y-3y+3=0这些方程用“配方法”的话就相当麻烦,不如用“求根公式”或“因式分解”来解简单,这些方法后面我们将要进一步学习。由此,我抓住这个契机向学生引申:解决一个问题的.途径可能有多种思路,但为了提高学习效率,我们尽量选择一个简便易行的方案,这也是解决数学问题的一种必备思想。

  4、在我本节课的教学当中,也有如下不妥之处:

  ①对不同层次的学生要求程度不适当。

  ②在提示和启发上有些过度。

  ③为学生提供的思考问题时间较少,导致少数学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。

一元二次方程的教学反思14

  一元二次方程是学生学习了一元一次方程和二元一次方程组之后所接触的第三类方程,所以对于的它的概念,学生很容易理解。这里我通过两个实际问题,一个是求长方形的面积问题,另一个增长率问题,让学生经历了二次项的产生过程,之后让学生来归纳出一元二次方程的三个特点①只有一个未知数;②未知数的最高次数是2次③方程两边都是整式。那么针对一元二次方程概念的练习,如若关于x的方程(m+1)x|m|+1-2x+3m=0是一元二次方程,求m的值,学生的出错率也不低;如果再问m为何值时这个方程是一元一次方程,正确率就会很低,所以可以说学生对此类考察方程概念的题型掌握得还不是很好。本节的第二个知识点就是一元二次方程的一般形式,学生在理解起来是比较容易的,但在练习中也会有不少学生会把二次项和一次项位置写反掉,或是在写系数时没有带上符号。本节的第三个知识点就是一元二次方程根的概念,课件上关于这个知识点设置了两个练习:

  练习1:判断未知数的值x=-1,x=0,x=2是不是方程x2-2=x的根?

  练习2:已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的'值。

  对于这两个练习学生在课堂上都回答得很快,但在课后的作业中发现了一个非常严重的问题,就是学生他知道要用“代入检验法”来判断一个值是不是方程的根,但对于如何书写这个判断过程却没有任何思绪,以致于在作业中很多的同学或是直接下结论或是在判断时都没有分开“左边=”“右边=”,这块书写的过程是我教学的一个疏忽,所以很多学生没有掌握。此外,对于“一元二次方程的根”这个知识还有一类这样的提高题,如:已知一元二次方程ax2+bx+c=0,若满足a+b+c=0,4a-2b+c=0你能通过观察知道这个方程的根吗?实际上这类题目中有着一种逆向的思维,所以学生不是很容易理解和掌握。

一元二次方程的教学反思15

  闪光之处:

  以回顾上节所学的配方法解一元二次方程的步骤,自然而然的引入如何利用配方法解一元二次方程一般式,从而产生一元二次方程根的几种情况,并在不同情况下求出相应的根。学生很容易投入到新课的探究中来,课堂整体非常流畅,绝大部分学生接受效果非常好!

  本节公式法主要就是要掌握公式,所以在讲解例题时,特别注重书写格式,要求做每道题时都要把公式书写一遍,用以加强对公式的记忆。实质上,公式熟练以后,完全可以直接将a,b,c的值代入公式,但是对初学者来说,公式还记不熟,而有些学生就会自己编公式,这样就没有达到教学的目的,所以应硬性要求学生每次在解题过程中都把公式写一遍,以加强记忆,避免代入公式出错。从课后作业和试卷中可以看到,在公式记忆上,的确起到了非常好的效果。

  败笔之处:练习时间短,学生做题速度慢,没能将课后6道计算题都展现出来并讲评改错,只能在课后和后面的习题联系中来补充提高了。

  再教设计:在做练习时,控制好时间,先给学生一点时间独立完成,在整体完成一多半的时候,再找个别同学板书展示自己的.解题过程,这样既避免有个别同学偷懒等别人答案的情况,又节省了不必要的时间,不要等大家都做完了再叫学生板书,这样可以节约点时间,最后老师和学生给出评价,利于同学们改错完善自己的过程,争取课堂的有效环节!

  

【一元二次方程的教学反思】相关文章:

《一元二次方程》教学反思07-09

一元二次方程教学反思05-17

一元二次方程教学反思08-29

一元二次方程的概念教学反思06-17

《一元二次方程》教学反思(通用21篇)03-29

实际问题与一元二次方程教学反思09-19

一元二次方程的解法教学反思9篇10-31

实际问题与一元二次方程教学反思 9篇08-02

一元二次方程教案08-13

一元二次方程高中教案01-14