当前位置:好文网>实用文>教案>一元二次方程教案

一元二次方程教案

时间:2024-08-13 17:03:05 教案

一元二次方程教案

  作为一名专为他人授业解惑的人民教师,时常会需要准备好教案,教案是教学活动的依据,有着重要的地位。教案应该怎么写呢?以下是小编整理的一元二次方程教案,希望能够帮助到大家。

一元二次方程教案

一元二次方程教案1

  一、教学目标

  (一)知识目标

  1、理解求解一元二次方程的实质。

  2、掌握解一元二次方程的配方法。

  (二)能力目标

  1、体会数学的转化思想。

  2、能根据配方法解一元二次方程的一般步骤解一元二次方程。

  (三)情感态度及价值观

  通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。

  二、教学重点

  配方法解一元二次方程的一般步骤

  三、教学难点

  具体用配方法的一般步骤解一元二次方程。

  四、知识考点

  运用配方法解一元二次方程。

  五、教学过程

  (一)复习引入

  1、复习:

  解一元一次方程的一般步骤:

  (1)去分母;

  (2)去括号;

  (3)移项;

  (4)合并同类项;

  (5)系数化为1。

  2、引入:

  二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。

  (二)新课探究

  通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注意力,引发学生思考。

  问题1:

  一桶某种油漆可刷的面积为1500dm李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?

  问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm

  列出方程:60x2=1500

  x2=25

  x=±5

  因为x为棱长不能为负值,所以x=5

  即:正方体的棱长为5dm。

  1、用直接开平方法解一元二次方程

  (1)定义:运用平方根的定义直接开方求出一元二次方程解。

  (2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。

  问题2:

  要使一块矩形场地的'长比宽多6cm,并且面积为16O,场地的长和宽应各为多少?

  问题2重在引出用配方法解一元二次方程。而问题2应该大部分同学都不会,所以由我来具体的讲解。主要通过与完全平方式对比逐步解这个方程。再由这个方程的求解过程师生共同总结出配方法解一元二次方程的一般步骤。让学生加深映像。

  具体解题步骤:

  解:设场地宽x m,长(x +6)m。

  列方程:x(x +6)=16

  即:x2+6x-16=0

  x2+6x=16

  x2+6x+9=16+9

  (x+3)2=25

  x+3=±5

  x+3=5x+3=-5

  x1=2,x2=-8

  2、配方法解一元二次方程

  (1)定义:通过配成完全平方的形式来解一元二次方程的方法。

  (2)配方法解一元二次方程一般步骤:

  一化:先将常数移到方程右边,后将二次项系数化为1

  二配:方程左右两端都加上一次项系数一半的平方

  三成式:将方程左边化为一个含有未知数的完全平方式

  四开:直接开平方

  五写:写出方程的解

  (三)应用举例

  针对每个知识点各举了一个例子,每个例子有两个方程,逐渐加深。让学生更易接受。让学生在例题中进行思考和总结。具体的例1链接知识点1,例2链接知识点2。

  例1解方程

  (1)9x2-1=0;

  (2)x2+2x+1=16。

  解:(1)原方程变形为:9x2=1

  x2=1/9

  x=±1/3

  即x1=1/3,x2=-1/3

  (2)原方程变形为:(x+1)=16

  x+1=±4

  x1=3,x2=-5

  2例1讲解完之后,我会让学生思考:形如(ax +b) =c(a≠0;cR0)的一元二次方程的解。让学生能够从特殊的到一般的题目。

  例2用配方法解下列方程:

  (1)x2-3x-2=0(2)2x2-3x-6=0

  解:(1)移项x2-3x=2

  配方x2-3x+(3/2)2=2+(3/2)2

  (x-3/2)2=17/4

  x-3/2=±√17/2

  x1= 3/2+√17/2,x2=3/2-√17/2

  (2)将二次项系数化为1

  x2-3/2x-3=0

  x2-3/2x=3

  x2-3/2x+(3/4)2=3+(3/4)2

  (x-3/4)2=57/16

  x-3/4=±√57/4

  x1= 3/4+√57/4,x2=3/4-√57/4

  (四)反馈练习

  了解学生知识的掌握程度,即时发现问题。而这道题目重在学生自己去发现错误,加深配方法解一元二次方程的一般步骤。从而突破这一重难点。练习:

  观察下列用配方法解方程2x2-4x+1=0的两种解答是否正确,若不正确请你写出正确的解答。

  解:(1)配方2x2-4x+4-4=1,即(2x-2)2=5

  所以,2x-2= √5或2x-2= -√5

  所以,x1= 1+ √5 /2,x2=1- √5 /2

  (2)系数化为1 x2-2x=1/2

  配方x2-2x+1=1/2即(x-1)2=1/2

  所以x-1=√2 /2或x-1=-√2 /2

  所以x1= 1+ √2 /2,x2=1- √2/2。

  六、课堂小结

  对本堂课的内容进行巩固和反思。主要由学生归纳,老师补充总结。

  小结:1、本节课主要学习了用配方法解一元二次方程,其中运用到了解一元一次方程,二次根式等方面的知识。

  2、重点理解和掌握配方法解一元二次方程一般步骤并会运用配方法解一元二次方程。

  七、布置作业

  对本堂课的知识进行巩固和提高。根据新课程标准“人人学习不同的数学”的理念,把作业分为必做题和选作题,给学生更大的空间。

一元二次方程教案2

  教学目标:

  (1)理解一元二次方程的概念

  (2)掌握一元二次方程的一般形式,会判断一元二次方程的'二次项系数、一次项系数和常数项。

  (2)会用因式分解法解一元二次方程

  教学重点:

  一元二次方程的概念、一元二次方程的一般形式

  教学难点:

  因式分解法解一元二次方程

  教学过程:

  (一)创设情景,引入新课

  实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

  由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

  (二)新授

  1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

  练习

  2:一元二次方程的一般形式(形如aX+bX+c=0)

  任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

  3:讲解例子

  4:利用因式分解法解一元二次方程

  5:讲解例子

  6:一般步骤

  练习

  (三)小结

  (四)布置作业

  板书设计

一元二次方程教案3

  教学目标:

  1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型

  2、理解什么是一元二次方程及一元二次方程的一般形式。

  3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  教学重点

  1、一元二次方程及其它有关的概念。

  2、利用实际问题建立一元二次方程的数学模型。

  教学难点

  1、建立一元二次方程实际问题的数学模型.

  2、把一元二次方程化为一般形式

  教学方法:

  指导自学,自主探究

  课时:

  第一课时

  教学过程:

  (学生通过导学提纲,了解本节课自己应该掌握的内容)

  一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)

  1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

  2、你发现上述三个方程有什么共同特点?

  你能把这些特点用一个方程概括出来吗?

  3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念

  你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?

  二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)

  1、下列哪些是一元二次方程?哪些不是?

  ①②③

  ④x2+2x-3=1+x2 ⑤ax2+bx+c=0

  2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

  (1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

  3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?

  4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?

  5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?

  三、反思:(学生,进一步加深本节课所学内容)

  这节课你学到了什么?

  四、自查自省:(通过当堂小测,及时发现问题,及时应对)

  1、下列方程中是一元二次方程的有()A、1个B、2个C、3个D、4个

  (1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

  3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.

  作业:必做题:习题7.1

  选做题:(挑战自我)p41随堂练习

  1、已知关于的方程是一元二次方程,则为何值?

  2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?

  3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?

  4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?

  (1)(2)

  板书设计:一元二次方程

  定义:一个未知数整式方程可以化为

  一般形式ax2+bx+c=0(a、b、c为常数,a≠0)

  二次项一次项常数项

  系数为a系数为b

  教学反思

  这次我参加了区里组织的优质

  课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。

  首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间

  其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的'激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。

  再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。

  我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。

一元二次方程教案4

  学习目标:

  1、使学生会用列一元二次方程的方法解决有关增长率的应用题;

  2、进一步培养学生分析问题、解决问题的能力。

  学习重点:

  会列一元二次方程解关于增长率问题的应用题。

  学习难点:

  如何分析题意,找出等量关系,列方程。

  学习过程:

  一、复习提问:

  列一元二次方程解应用题的一般步骤是什么?

  二、探索新知

  1.情境导入

  问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范。20xx年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,20xx年村长完成了36.3亩坡耕地还林还草任务,求增长率x是多少?该村有50户人家,每户均地村长20xx年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?

  2.合作探究、师生互动

  教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即20xx年实际完成的亩数是30(1+x),第二次增长后,即20xx年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩。

  教师引导学生运用方程解决问题:

  ①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%

  ②全村坡耕地还林还草为50×36.3=1815(亩),国家将补助粮食1815×500=907500(斤)=90.75(万斤)

  三、例题学习

  说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。

  例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?

  (小组合作交流教师点拨)

  时间基数降价降价后价钱

  第一次600600x600(1-x)

  第二次600(1-x)600(1-x)x600(1-x)2

  (由学生写出解答过程)

  四、巩固练习

  一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的`利润平均增长的百分率是多少(精确到0.1%)?

  五、课堂总结:

  1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。

  2、注意解方程中的巧算和方程两个根的取舍问题。

  六、反馈练习:

  1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()

  A.x+(1+x)x=20%B.(1+x)2=20%

  C.(1+x)2=1.2D.(1+x%)2=1+20%

  2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()

  3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几?

一元二次方程教案5

  教学内容

  一元二次方程概念及一元二次方程一般式及有关概念.

  教学目标

  了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

  1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

  2.一元二次方程的一般形式及其有关概念.

  3.解决一些概念性的题目.

  4.态度、情感、价值观

  4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

  重难点关键

  1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

  2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

  教学过程

  一、复习引入

  学生活动:列方程.

  问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”

  大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

  如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

  整理、化简,得:__________.

  问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.

  如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

  整理,得:________.

  老师点评并分析如何建立一元二次方程的数学模型,并整理.

  二、探索新知

  学生活动:请口答下面问题.

  (1)上面三个方程整理后含有几个未知数?

  (2)按照整式中的多项式的规定,它们最高次数是几次?

  (3)有等号吗?或与以前多项式一样只有式子?

  老师点评:(1)都只含一个未知数x;(2)它们的'最高次数都是2次的;(3)都有等号,是方程.

  因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

  一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

  一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

  分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

  解:去括号,得:

  40-16x-10x+4x2=18

  移项,得:4x2-26x+22=0

  其中二次项系数为4,一次项系数为-26,常数项为22.

  例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

  分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

  解:去括号,得:

  x2+2x+1+x2-4=1

  移项,合并得:2x2+2x-4=0

  其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

  三、巩固练习

  教材P32 练习1、2

  四、应用拓展

  例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.

  分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.

  证明:2-8+17=(-4)2+1

  ∵(-4)2≥0

  ∴(-4)2+1>0,即(-4)2+1≠0

  ∴不论取何值,该方程都是一元二次方程.

  五、归纳小结(学生总结,老师点评)

  本节课要掌握:

  (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

  六、布置作业

一元二次方程教案6

  3、方程(2a—4)x

  —2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程

  ※4、已知关于x的一元二次方程(m-1)x

  +3x-5m+4=0有一根为2,求m。

  设计意图:分层次布置作业,尊重学生的个体差异,激发学生学习积极性。

  【课程资源】

  一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二次的整式方程。

  在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。

  埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。

  希腊的丢番图(246-330)却只取二次方程的`一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。

  公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。

  在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令a、b、c为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。

  韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。

  我国《九章算术.勾股》章中的第二十题是通过求相当于的正根而解决的。我国数学家还在方程的研究中应用了内插法。

一元二次方程教案7

  教材分析

  本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。

  学情分析

  1、由于我们的学生对列方程解应用题有畏惧的.心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。

  2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。

  3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的探究方式。

  教学目标

  知识与技能:

  1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。

  2、能根据具体问题的实际意义,检验结果是否合理。

  过程与方法:

  1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

  2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。

  情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。

  教学重点和难点

  重点:利用增长率问题中的数量关系,列出方程解决问题

  难点:理清增长率问题中的数量关系

一元二次方程教案8

  教学内容

  根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.

  教学目标

  掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.

  利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.

  重难点关键

  1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.

  2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.

  教学过程

  一、复习引入

  1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?

  2.正方形的面积公式是什么呢?长方形的面积公式又是什么?

  3.梯形的面积公式是什么?

  4.菱形的面积公式是什么?

  5.平行四边形的面积公式是什么?

  6.圆的面积公式是什么?

  二、探索新知

  现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.

  例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.

  (1)渠道的上口宽与渠底宽各是多少?

  (2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?

  分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模.

  :(1)设渠深为xm

  则渠底为(x+0.4)m,上口宽为(x+2)m

  依题意,得: (x+2+x+0.4)x=1.6

  整理,得:5x2+6x-8=0

  解得:x1= =0.8m,x2=-2(舍)

  ∴上口宽为2.8m,渠底为1.2m.

  (2) =25天

  答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.

  例2.如图,要设计一本书的`封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?

  老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.

一元二次方程教案9

  教材分析

  1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

  2.书中的定义是以未知数的`个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

  3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

  学情分析

  1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

  2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。

  3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

  教学目标

  1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

  2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

  教学重点和难点

  1、重点:概念的形成及一般形式。

  2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

一元二次方程教案10

  教学目标

  1.了解整式方程和一元二次方程的概念;

  2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

  3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

  教学重点和难点:

  重点:一元二次方程的概念和它的一般形式。

  难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

  教学建议:

  1.教材分析:

  1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

  2)重点、难点分析

  理解一元二次方程的定义:

  是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

  (1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

  (2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

  (3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

  教学目的

  1.了解整式方程和一元二次方程的概念;

  2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

  3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

  教学难点和难点:

  重点:

  1.一元二次方程的有关概念

  2.会把一元二次方程化成一般形式

  难点:一元二次方程的含义

  教学过程设计

  一、引入新课

  引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

  分析:

  1.要解决这个问题,就要求出铁片的长和宽。

  2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

  3.让学生自己列出方程(x(x十5)=150)

  深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

  二、新课

  1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

  2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

  3.强化一元二次方程的概念

  下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

  (1)3x十2=5x—3:

  (2)x2=4

  (3)(x十3)(3x·4)=(x十2)2;

  (4)(x—1)(x—2)=x2十8

  从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

  4.一元二次方程概念的延伸

  提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

  引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

  ax2+bx+c=0(a≠0)

  1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

  2).讲解方程中ax2、bx、c各项的名称及a、b的.系数名称

  3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

  强化概念(课本P6)

  1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

  (1)x2十3x十2=O(2)x2—3x十4=0;(3)3x2-5=0

  (4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。

  2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

  (1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

  课堂小节

  (1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

  (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

  (3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数

  课外作业:略

一元二次方程教案11

  【教材分析】

  一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

  【教学目标】

  1、理解一元二次方程的概念,能熟练地把一元二次方程整理成一般形式(≠0)并知道各项及其系数。

  2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的进一步认识。

  【教学重点与难点】

  理解一元二次方程的概念及一般形式,会正确识别一般式中的“项”及“系数”。

  【教法、学法】

  因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景---数学模型-----概念归纳”的模式。本节课借助多媒体辅助教学,指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

  【教学过程】

  一、复习旧知,类比新知

  1、一元一次方程的概念

  像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程

  2、一般形式:

  是常数且

  设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念。

  二、生活情境,自主学习

  (1)正方形桌面的面积是2m

  ,设正方形桌面的边长是x m,可得方程

  (2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,设花圃的宽是x m则花圃的长是m,可得方程

  (3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程

  (4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的'距离多1m,设梯子的底端到墙面的距离是x m,可得方程

  设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。

  三、探究学习:

  1、概念得出

  讨论交流:以上所列方程有哪些共同特征?

  设计意图:英国一位著名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的。

  2、巩固概念

  下列方程中那些是一元二次方程。

  设计意图:

  这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解,题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式,提高学生学习数学的兴趣和积极性。

  3、一元二次方程的一般形式:

  设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的

  4.典型例题

  例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项

  设计意图:此题设置的目的在于加深学生对一般形式的理解。

  5.巩固练习

  把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项

  设计意图:此题设置的目的在于加深学生对一般形式的理解

  6、拓展应用

  (1)、若是关于x的一元二次方程,则()

  A、p为任意实数B、p=0 C、p≠0 D、p=0或1

  (2)、若关于x的方程mx

  -2x+1=2x(x-1)是一元二次方程,那么m的取值范围是

  (3)、若方程是关于x的一元二次方程,则m的值为

  设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。

  7.课堂小结

  设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。

  【课后作业】

  1、下列方程中哪些是一元二次方程?试说明理由。

  2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:

一元二次方程教案12

  一、教学目标

  【知识与技能】

  理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。

  【过程与方法】

  经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。

  【情感、态度与价值观】

  通过公式法解一元二次方程,感受解法的`多样性,在学习活动中获取成功的体验。

  二、教学重难点

  【教学重点】

  用公式法解一元二次方程。

  【教学难点】

  一元二次方程求根公式的推导。

  三、教学过程

  (一)引入新课

  复习回顾:用配方法解一元二次方程。

  配方,得

  (四)小结作业

  小结:引导学生做知识总结:本节课学习了什么叫公式法,怎样运用公式法解一元二次方程。如何判断一个方程是否有实数根?

  作业:课后练习题,试着用多种方法解答。

  四、板书设计

  略

一元二次方程教案13

  知识目标

  了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

  能力目标

  通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

  情感目标

  通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

  教学重点

  二元一次方程组的含义

  教学难点

  判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

  教学过程

  一、引入、实物投影

  1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:累死我了,小马说:你还累,这么大的个,才比我多驮2个老牛气不过地说:哼,我从你背上拿来一个,我的包裹就是你的2倍!,小马天真而不信地说:真的?!同学们,你们能否用数学知识帮助小马解决问题呢?

  2、请每个学习小组讨论(讨论2分钟,然后发言)

  这个问题由于涉及到老牛和小马的驮包裹的'两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)

  师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的。项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)

  师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程

  注意:这个定义有两个地方要注意①、含有两个未知数,②、含的次数是一次

  练习

  下列方程有哪些是+2y=1xy+x=13x-=5x2-2=3x

  xy=12x(y+1)=c2x-y=1x+y=0

  二、议一议、

  师:上面的方程中x-y=2的x含义相同吗?

一元二次方程教案14

  教学目标:

  知识与技能目标:

  经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

  过程与方法目标:

  经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提高数学的应用能力。

  情感态度与价值观目标:

  培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学生学习数学的信心。

  教学重点:

  理解一元二次方程的概念及其形式。

  教学难点:

  一元二次方程概念的探索

  教学过程

  一、情境引入

  今天我们学习一元二次方程,温故而知新,我们都学过什么方程?(一元一次方程,分式方程,方程组)同桌两人说说学过这些方程的定义都是什么。你觉得学过这些方程难吗?只要你拿出你的学习热情来,就会感觉这节课的内容,也很简单。请你打开课本39页,从39页到40页议一议以上的内容,希望你准确而又迅速的在课本上列出方程,不用求解。列出方程后组内对一下答案,如有错误,出错的原因。(3’)

  二、探索新知

  列方程正确率百分之百的请举手。祝贺你们,没举手的同学加油!(列对的同学多就问,否则问现在会列这些方程的请举手)

  请你将上述三个方程,化简成等号右边等于0的形式。完成后组内对一下答案,先完成的小组把你们的成果写在黑板上,其余组跟黑板上的答案对一下,有不同意见的把你们组的答案也写上去。(黑板上的答案对吗?如有没约分的,问哪个更好?)

  观察、思考刚才这3个方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的这两个方程x2+3x=0,4x2-5=0是一元一次方程吗?你猜这些方程叫什么方程?对,这样的方程就是我们今天学习的一元二次方程。

  请大家先思考然后小组讨论导学案中探究一中的问题2到6,组长找好本题发言人,最后全班交流你们组对问题5和6的看法。

  2、以上方程与一元一次方程有什么相同与不同之处?

  3、你能说说什么样的方程是一元二次方程吗?

  4、如果我们借助字母系数来表示,那么以上方程能都化成一个方程--------------------------,用字母表示系数时,要注意什么吗?

  5、你们组归纳的一元二次方程的概念与课本40页的定义有区别吗?谁的更好?好在哪?

  6、你认为一元二次方程的概念中重点要强调的是什么?为什么?

  请3组同学交流一下你们讨论的问题5、6的结果。老师根据学生的回答,有针对性的提出为什么这样想?你的理由是什么?以强调a≠0。并板书(1)含一个未知数(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、为常数a≠0)有没有要补充或者要发表不同看法的小组?

  请你抢答问题7。

  7、判断下列方程是不是一元二次方程,若不是请说明理由。

  同桌两人能举出几个一元二次方程的例子吗?

  探索二

  先自学课本40最后一段话,然后同桌两人说出黑板上3个方程的二次项、二次项系数、一次项、一次项系数、常数项。

  找一元二次方程各项及其各项系数时,需要注意什么吗?(先要是一般形式,系数带符号)请你完成探究二中问题1,请2组、4组选派一名同学分别上黑板(10、(2)两题。完成后对照课本41页例1自己检查对错,有困难的同学找组长和我。

  1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

  (1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

  问题3做对了的同学请举手?祝贺你们。出错的同学能不能把你的宝贵经验告诉我们,我们下次也好注意一下,别再出错?请你说说,谢谢你对我们的提醒。

  三、巩固练习

  请看问题2,

  2、已知关于x的方程(1)k为何值时,此方程为一元二次方程?(2)k为何值时,此方程为一元一次方程?谁能回答?为什么这样想?

  四、课堂:

  先小组内说出本节课你的收获,然后全班交流你们组的收获。大家看看哪个小组的收获多。

  五、自我检测:

  看看我们的收获是不是真的

  硕果累累,请你完成自我检测给你5分钟时间,做完的给我和组长检查。老师和小组长当堂批改

  1、三个连续整数两两相乘,所得积的和为242,这三个数分别是多少?

  根据题意,列出方程为------------------------------------。

  2.把下列方程化为一元二次方程的形式,并写出它的二次项系数、常数项:

  方程

  一般形式

  二次项系数

  常数项

  3x2=5x-1

  (x+2)(x-1)=6

  3、关于x的方程(k-2)x2+2(k+9)x+2k-1=0

  (1)k为何值时,是一元二次方程?k--------------是一元二次方程。

  (2)k为何值时,是一元一次方程?k-------------是一元一次方程。

  六、小组

  请小组长本小组今天大家的`表现。

  七、作业

  课本42页1(2),2(1)(2)(3)

  能力挑战:

  已知关于x的方程(k2-1)x2+(k+1)x-2=0

  (1)k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。(2)k为何值时,此方程为一元一次方程?

  板书设计:一元二次方程

  (1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

  2x2-13x+11=0(1)含一个未知数(2)2次

  x2-8x-20=0(3)整式方程

  x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、为常数a≠0)

  二次项一次项常数项

  二次项系数一次项系数常数项系数

  参加区优质课评比反思:

  这次有幸参加我区优质课评比,感受颇多。

  一、对三分之一课堂模式有了更深的理解。数学课的三分之一模式不是简单的把课堂分成三大块,也不是自主探索、小组合作、教师引导,一定是严格的都是15分钟,这要根据课程的内容,灵活的把握。我讲的《一元二次方程》这一节中,简单问题我就让大家自主探索,对于难度大的问题,自主探索后先小组合作,最后师生一起进行归纳。

  二、台上一分钟,台下十年功。通过参加这次活动,我想,我在今后的课堂教学中,就要用优质课的进行教学,如果平时的授课方式和优质课的方式差别很大的话,虽然是经过加工了的课,但最后一定会带有很多平时上课的影子,很多不规范的方面还是难以改正的。

  三、集体的智慧很重要。一个人的力量是有限的,但集体的力量是无限的。我很感谢我们数学组的各位老师对我的大力支持,他们一遍一遍的给提出修改建议,一次一次的跟我去听课,尤其是李老师、战老师、林老师,她们给了我教学理念上的很多建议,让我的教学理念有了很大的提升。

一元二次方程教案15

  教学设计

  一 教学设计思路

  通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。

  二 教学目标

  1 知识与技能

  (1).经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.

  (2).会利用图象法求一元二次方程的近似解。

  2 过程与方法

  经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  三 情感态度价值观

  通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想.

  四 教学重点和难点

  重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。

  难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  五 教学方法

  讨论探索法

  六 教学过程设计

  (一)问题的提出与解决

  问题 如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系

  h=20t5t2。

  考虑以下问题

  (1)球的飞行高度能否达到15m?如能,需要多少飞行时间?

  (2)球的飞行高度能否达到20m?如能,需要多少飞行时间?

  (3)球的飞行高度能否达到20.5m?为什么?

  (4)球从飞出到落地要用多少时间?

  分析:由于球的飞行高度h与飞行时间t的关系是二次函数

  h=20t-5t2。

  所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。

  解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。

  当球飞行1s和3s时,它的高度为15m。

  (2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。

  当球飞行2s时,它的高度为20m。

  (3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。

  因为(-4)2-44.10。所以方程无解。球的飞行高度达不到20.5m。

  (4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。

  当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。

  由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

  例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。

  分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值。

  一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。

  (二)问题的讨论

  二次函数(1)y=x2+x-2;

  (2) y=x2-6x+9;

  (3) y=x2-x+0。

  的图象如图26.2-2所示。

  (1)以上二次函数的图象与x轴有公共点吗?如果有,有多少个交点,公共点的横坐标是多少?

  (2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?

  先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。

  可以看出:

  (1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。

  (2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。

  (3)抛物线y=x2-x+1与x轴没有公共点, 由此可知,方程x2-x+1=0没有实数根。

  总结:一般地,如果二次函数y= 的`图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

  (三)归纳

  一般地,从二次函数y=ax2+bx+c的图象可知,

  (1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。

  (2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

  由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。

  (四)例题

  例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)。

  解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-0.7,2.7。

  所以方程x2-2x-2=0的实数根为x1-0.7,x22.7。

  七 小结

  二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

  。

  八 板书设计

  用函数观点看一元二次方程

  抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系

  例题

【一元二次方程教案】相关文章:

一元二次方程教案01-15

一元二次方程教案06-14

一元二次方程复习教案03-12

初中数学一元二次方程教案09-01

二次函数与一元二次方程教案02-02

《一元二次方程》的优秀教案(通用5篇)01-15

一元二次方程教学反思05-17

《一元二次方程》教学反思03-30

一元二次方程教学反思04-04

一元二次方程的解法教学反思02-23