当前位置:好文网>实用文>教案>八年级数学上册教案

八年级数学上册教案

时间:2025-10-31 10:54:12 教案

八年级数学上册教案

  作为一名为他人授业解惑的教育工作者,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。快来参考教案是怎么写的吧!以下是小编精心整理的八年级数学上册教案,仅供参考,希望能够帮助到大家。

八年级数学上册教案

八年级数学上册教案1

  教学目标:

  1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

  2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

  重点难点:

  重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

  难点:勾股定理的发现

  教学过程

  一、创设问题的情境,激发学生的学习热情,导入课题

  出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

  出示投影2(书中的P2图1—2)并回答:

  1、观察图

  1—2,正方形A中有_______个小方格,即A的面积为______个单位。

  正方形B中有_______个小方格,即A的面积为______个单位。

  正方形C中有_______个小方格,即A的面积为______个单位。

  2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

  3、图

  1—2中,A,B,C之间的面积之间有什么关系?

  学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A。B,C的关系呢?

  二、做一做

  出示投影3(书中P3图1—4)提问:

  1、图

  1—3中,A,B,C之间有什么关系?

  2、图

  1—4中,A,B,C之间有什么关系?

  3、从图

  1—1,1—2,1—3,1|—4中你发现什么?

  学生讨论、交流形成共识后,教师总结:

  以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

  三、议一议

  1、图

  1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

  2、你能发现直角三角形三边长度之间的关系吗?

  在同学的交流基础上,老师板书:

  直角三角形边的`两直角边的平方和等于斜边的平方。这就是的“勾股定理”

  也就是说:如果直角三角形的两直角边为a,b,斜边为c

  那么

  我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  3、分别以

  5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

  四、想一想

  这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

  五、巩固练习

  1、错例辨析:

  △ABC的两边为3和4,求第三边

  解:由于三角形的两边为3、4

  所以它的第三边的c应满足=25

  即:c=5

  辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

  △ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

  (2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

  综上所述这个题目条件不足,第三边无法求得。

  2、练习P

  7 §1.1 1

  六、作业

  课本P7 §1.1 2、3、4

八年级数学上册教案2

  教学目标:

  1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

  2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

  3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

  重点与难点:

  重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

  难点:分析典型图案的设计意图。

  疑点:在设计的图案中清晰地表现自己的设计意图

  教具学具准备:

  提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

  教学过程设计:

  1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

  明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

  2、课本

  1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。

  评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的`关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

  评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

  (二)课内练习

  (1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

  (2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

  (三)议一议

  生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

  (四)课时小结

  本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

  通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

  八年级数学上册教案(五)延伸拓展

  进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学上册教案3

  一、创设情景,明确目标

  多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

  二、自主学习,指向目标

  学习至此:请完成《学生用书》相应部分。

  三、合作探究,达成目标

  多边形的定义及有关概念

  活动一:阅读教材P19。

  展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?

  小组讨论:结合具体图形说出多边形的边、内角、外角?

  反思小结:多边形的定义及相关概念。

  针对训练:见《学生用书》相应部分

  多边形的对角线

  活动二:(1)十边形的对角线有35条。

  (2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

  展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?

  反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

  小组讨论:如何灵活运用多边形对角线条数的规律解题?

  针对训练:见《学生用书》相应部分

  正多边形的有关概念

  活动二:阅读教材P20。

  展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?

  小组讨论:判断一个多边形是否是正多边形的条件?

  反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

  针对训练:见《学生用书》相应部分

  四、总结梳理,内化目标

  本节学习的数学知识是:

  1、多边形、多边形的外角,多边形的对角线。

  2、凸凹多边形的概念。

  五、达标检测,反思目标

  1、下列叙述正确的.是(D)

  A、每条边都相等的多边形是正多边形

  B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形

  C、每个角都相等的多边形叫正多边形

  D、每条边、每个角都相等的多边形叫正多边形

  2、小学学过的下列图形中不可能是正多边形的是(D)

  A、三角形B。正方形C。四边形D。梯形

  3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

  4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

八年级数学上册教案4

  第二环节:探索发现勾股定理

  1、探究活动一

  内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:

  问:你能发现各图中三个正方形的面积之间有何关系吗?

  学生通过观察,归纳发现:

  结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

  意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边。通过对特殊情形的探究得到结论1,为探究活动二作铺垫。

  效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;

  2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。

  2、探究活动二

  内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

  (1)观察下面两幅图:

  (2)填表:

  A的面积

  (单位面积)B的面积

  (单位面积)C的面积

  (单位面积)

  左图

  右图

  (3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。

  学生的方法可能有:

  方法一:

  如图1,将正方形C分割为四个全等的直角三角形和一个小正方形。

  方法二:

  如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积。

  方法三:

  如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。

  (4)分析填表的数据,你发现了什么?

  学生通过分析数据,归纳出:

  结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

  意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质。由于正方形C的.面积计算是一个难点,为此设计了一个交流环节。

  效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.

  3、议一议

  内容:(1)你能用直角三角形的边长,来表示上图中正方形的面积吗?

  (2)你能发现直角三角形三边长度之间存在什么关系吗?

  (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。2中发现的规律对这个三角形仍然成立吗?

  勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用,分别表示直角三角形的两直角边和斜边,那么。

  数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)。

  意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理。

  效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;

  2.通过作图培养学生的动手实践能力。

八年级数学上册教案5

  学习目标:

  1.了解方差的定义和计算公式。

  2.理解方差概念的产生和形成的过程。

  3.会用方差计算公式来比较两组数据的波动大小。

  重点、难点:

  1.重点:方差产生的必要性和应用方差公式解决实际问题。

  2.难点:理解方差公式

  一.学前准备:

  问题农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如表所示。

  甲7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41

  乙7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49

  根据这些数据估计,农科院应该选择哪种甜玉米种子呢?

  来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。

  意义:用来衡量一批数据的波动大小。

  在样本容量相同的情况下,方差越大,说明数据的`波动越大,越不稳定。

  二、归纳:

  (1)研究离散程度可用

  (2)方差应用更广泛衡量一组数据的波动大小

  (3)方差主要应用在平均数相等或接近时

  (4)方差大波动大,方差小波动小,一般选波动小的

  例题:在一次芭蕾舞比赛中,甲乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是:

  甲163 164 164 165 165 166 166 167

  乙163 165 165 166 166 167 168 168

  哪个芭蕾舞团的女演员的身高比较整齐?

  三.自我检查:

  1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

  2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  经过计算,两人射击环数的平均数相同,但S,所以确定去参加比赛。

  3.甲、乙两台机床生产同种零件,10天出的次品分别是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

八年级数学上册教案6

  【教学目标】

  1、了解分式概念。

  2、理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

  【教学重难点】

  重点:理解分式有意义的条件,分式的值为零的条件。

  难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

  【教学过程】

  一、课堂导入

  1、让学生填写[思考],学生自己依次填出:

  2、问题:一艘轮船在静水中的.最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  设江水的流速为x千米/时。

  轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=。

  3、以上的式子有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。

  [思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。

  二、例题讲解

  例1:当x为何值时,分式有意义。

  【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围。

  (补充)例2:当m为何值时,分式的值为0?

  (1);(2);(3)。

  【分析】分式的值为0时,必须同时满足两个条件:

  ①分母不能为零;

  ②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解。

  三、随堂练习

  1、判断下列各式哪些是整式,哪些是分式?

  9x+4

  2、当x取何值时,下列分式有意义?

  3、当x为何值时,分式的值为0?

  四、小结

  谈谈你的收获。

  五、布置作业

  课本128~129页练习。

八年级数学上册教案7

  一、创设情境

  在学习与生活中,经常要研究一些数量关系,先看下面的问题。

  问题1如图是某地一天内的气温变化图。

  看图回答:

  (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温。

  (2)这一天中,最高气温是多少?最低气温是多少?

  (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?

  解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;

  (2)这一天中,最高气温是5℃。最低气温是-4℃;

  (3)这一天中,3时~14时的气温在逐渐升高。0时~3时和14时~24时的气温在逐渐降低。

  从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化。那么在生活中是否还有其它类似的数量关系呢?

  二、探究归纳

  问题2银行对各种不同的存款方式都规定了相应的利率,下表是20xx年7月中国工商银行为“整存整取”的存款方式规定的年利率:

  观察上表,说说随着存期x的增长,相应的年利率y是如何变化的。

  解随着存期x的增长,相应的年利率y也随着增长。

  问题3收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的。下面是一些对应的数值:

  观察上表回答:

  (1)波长l和频率f数值之间有什么关系?

  (2)波长l越大,频率f就________。

  解(1)l与f的乘积是一个定值,即

  lf=300000,或者说。

  (2)波长l越大,频率f就 越小 。

  问题4圆的面积随着半径的增大而增大。如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________。

  利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的`面积,并将结果填入下表:

  由此可以看出,圆的半径越大,它的面积就_________。

  解S=πr2。

  圆的半径越大,它的面积就越大。

  在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律。这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量。例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值。像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable)。

  上面各个问题中,都出现了两个变量,它们互相依赖,密切相关。一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值

八年级数学上册教案8

  【教学目标】

  知识与技能

  会推导平方差公式,并且懂得运用平方差公式进行简单计算。

  过程与方法

  经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

  情感、态度与价值观

  通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

  【教学重难点】

  重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

  难点:平方差公式的应用。

  关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

  【教学过程】

  一、创设情境,故事引入

  【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事

  【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

  【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?

  【学生回答】多项式乘以多项式。

  【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

  【问题牵引】计算:

  (1)(x+2)(x—2);(2)(1+3a)(1—3a);

  (3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

  做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

  【学生活动】分四人小组,合作学习,获得以下结果:

  (1)(x+2)(x—2)=x2—4;

  (2)(1+3a)(1—3a)=1—9a2;

  (3)(x+5y)(x—5y)=x2—25y2;

  (4)(y+3z)(y—3z)=y2—9z2。

  【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

  【学生活动】讨论

  【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?

  【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

  用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。

  【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的'字母含义。

  二、范例学习,应用所学

  【教师讲述】

  平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。

  例1:运用平方差公式计算:

  (1)(2x+3)(2x—3);

  (2)(b+3a)(3a—b);

  (3)(—m+n)(—m—n)。

  《乘法公式》同步练习

  二、填空题

  5、幂的乘方,底数______,指数______,用字母表示这个性质是______。

  6、若32×83=2n,则n=______。

  《乘法公式》同步测试题

  25、利用正方形的面积公式和梯形的面积公式即可求解;

  根据所得的两个式子相等即可得到。

  此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。

  26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;

  等式左边减数的底数与序号相同,由此得出第n个式子;

八年级数学上册教案9

  一、创设情景,明确目标

  多媒体展示:内角三兄弟之争

  在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷。同学们,你们知道其中的道理吗?

  二、自主学习,指向目标

  学习至此:请完成《学生用书》相应部分。

  三、合作探究,达成目标

  三角形的内角和

  活动一:见教材P11“探究”。

  展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理。

  小组讨论:有没有不同的证明方法?

  反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程。三角形三个内角的`和等于180°.

  针对训练:见《学生用书》相应部分

  三角形内角和定理的应用

  活动二:见教材P12例1

  展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?

  小组讨论:三角形的内角和在解题时,如何灵活应用?

  反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决。

  针对训练:见《学生用书》相应部分

  四、总结梳理,内化目标

  1.本节学习的数学知识是:三角形的内角和是180°.

  2.三角形内角和定理的证明思路是什么?

  3.数学思想是转化、数形结合。

  《三角形综合应用》精讲精练

  1.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )

  A.1个B.2个C.3个D.4个

  2.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )

  A.5 B.6 C.7 D.10

  3.下列五种说法:①三角形的三个内角中至少有两个锐角;

  ②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余。其中正确的说法有________(填序号).

  《11.2与三角形有关的角》同步测试

  4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?

  (2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状。为什么?

  (3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?

八年级数学上册教案10

  一、内容和内容解析

  1.内容

  变量与常量的概念。

  2.内容解析

  本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础。

  本课从四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,而且问题中变量的单值对应关系也为学习函数的定义作了铺垫。

  基于以上分析,确定本节课的教学重点是:能找出一个变化过程中的变量与常量。

  二、目标和目标解析

  1.教学目标

  (1)了解常量、变量的意义;

  (2)充分体会运动变化过程中量的变化。

  2.目标解析

  (1)知道在一个变化过程中,数值发生变化的量为变量,数值始终不变的量为常量;

  (2)体会在一个变化过程中,一个量随着另一个量的变化而变化,初步体会两个变量之间的单值对应关系。

  三、教学问题诊断分析

  变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系,类似于二元一次方程,没有用运动与变化的观点去体会两个变量之间相互依赖的变化。

  基于以上分析,确定本节课的教学难点为:体会运动变化过程中量的变化。

  四、教学过程设计

  1.创设情境,观察思考

  引言

  我们生活在一个变化的世界,行星在宇宙中的位置随时间而变化,气温随海拔而变化,树高随树龄而变化…所谓“万物皆变”.唯一不变的就是变化本身.我们发现,在各种各样的变化过程中往往蕴含着量的变化,研究这些量之间的依赖关系是我们把握变化规律的关键。

  【设计意图】通过引言教学,提出本节课需要研究的问题,合理地引起学生注意。

  2.合作探究,形成概念

  问题1有如下几个变化过程,请找出各变化过程中的量,并分类:

  (1)汽车以60 km/h的速度匀速行驶.行驶路程为s km/h,行驶时间为t h.填写下表,s的值随t的值的变化而变化吗?

  ---------------------------------------------------------

  t/h 1 2 3 4 5

  ---------------------------------------------------------

  s/km

  ---------------------------------------------------------

  (2)电影票的售价为10元/张.第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各多少元?

  (3)用10m长的绳子围一个矩形.当矩形的一边长分别为3m,3.5m,4m,4.5m时,它的邻边分别为多少?

  (4)美丽的水中涟漪图中,圆形水波纹慢慢地扩大.在这一过程中,当圆的半径r分别为10cm,20cm,30cm时,圆的面积S分别为多少?

  师生活动1教师与学生一起通过计算填表,并分析问题(1)中出现的三个量,发现其中有些量的数值是变化的,如时间t,路程s;有些量的数值是始终不变的,如速度60km/h.

  【设计意图】在常见的“行程问题”中,引导学生从“变与不变”的角度观察速度、时间、路程三个量,可以较为自然地引导学生对三个量进行分类.

  师生活动2学生继续分析问题(2)(3)(4)中的量并分类,领会“变量”、“常量”的含义.发现在同一个变化过程中,始终保持不变的量为常量,而数值发生变化的量为变量.

  【设计意图】有前述的示范引导,让学生自主探究“销售问题”、“几何问题”中的常量与变量,通过探索简单实例中的的数量关系和变化规律,深刻体会变量与常量的含义.

  问题2在上述问题1的四个变化过程中,请思考:

  (1)汽车以60 km/h的速度匀速行驶.行驶路程为s km/h,行驶时间为t h. s的值随t的值的变化而变化吗?

  (2)电影票的售价为10元/张.设一场电影售出x张票,票房收入为y元,y的值随x的值的.变化而变化吗?

  (3)美丽的水中涟漪图中,圆形水波纹慢慢地扩大.在这一过程中,设圆的半径为r,圆的面积S,S的值随r的值的变化而变化吗?

  (4)用10m长的绳子围一个矩形.设矩形的一边长为x,邻边长为y,y的值随x的值的变化而变化吗?

  师生活动学生思考并回答.

  【设计意图】从实际问题中抽象出变量,进一步体会常量与变量之间、变量与变量之间的关系,初步体会同一个变化过程中两个变量之间的依赖关系和对应关系.

  3.初步辨析,强化认识

  问题3指出下列问题中的变量和常量:

  (1)某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为x t,月应交水费为y元.

  (2)某地手机通话费为0.2元/min.李明在手机话费卡中存入30?,记此后他的手机通话时间为t min,话费卡中的余额为w元.

  师生活动学生通过独立思考和合作交流,解决问题.

  【设计意图】教师引导学生在2个常见的简单的实际问题中,通过合理、正确的

  19.1.1变量与函数:同步练习

  1.(6分)以21m/s的速度向上抛一个小球,小球的高度h(m)与小球运动的时间t(s)之间的关系是h=21t﹣4.9t2.下列说法正确的是(  )

  A.4.9是常量,21,t,h是变量B.21,4.9是常量,t,h是变量

  C.t,h是常量,21,4.9是变量D.t,h是常量,4.9是变量

  【答案】B

  【解析】解:A、21是常量,故A错误;

  B、21,4.9是常量,t,h是变量,故B是正确;

  C、D、t、h是变量,21,4.9是常量,故C、D错误;

  故选:B

  《19.1函数》同步练习题

  15.李老师骑自行车到离家10千米的学校上班,6:00出发,最初以某一速度匀速行进,走了一半在6:20由于自行车发生故障,停下修车耽误了8分钟,为了能按时(6:45)到校,李老师加快了速度,仍保持匀速行进,结果准时到校.请你画出他行进的路程y(千米)与行进时间t(分钟)的函数图象的示意图。

八年级数学上册教案11

  教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.

  教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.

  教学过程:

  一、提出问题,学生自学

  问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?

  (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

  (2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

  学生讨论,教师归纳,得出结果:

  (1)(p+1)2=(p+1)(p+1)=p2+2p+1

  (m+2)2=(m+2)(m+2)=m2+4m+4

  (2)(p1)2=(p1)(p1)=p22p+1

  (m2)2=(m2)(m2)=m24m+4

  分析推广:结果中有两个数的平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.

  推广:计算(a+b)2=__________;(ab)2=__________.

  得到公式,分析公式

  结论:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

  即:两数和(或差)的.平方,等于它们的平方和,加(或减)它们的积的2倍.

  二、几何分析

  你能根据图(1)和图(2)的面积说明完全平方公式吗?

  图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2=a2+2ab+b2,即说明(a+b)2=a2+2ab+b2. 请点击下载Word版完整教案:新人教版八年级数学上册《完全平方公式》教案教案《新人教版八年级数学上册《完全平方公式》教案》,来自网!

八年级数学上册教案12

  【教学目标】

  知识目标:

  解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

  能力目标:

  (1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

  (2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

  情感目标:

  充分调动学生学习的积极性、主动性

  【教学重点】

  单项式与多项式的乘法运算

  【教学难点】

  推测整式乘法的运算法则。

  【教学过程】

  一、复习引入

  通过对已学知识的复习引入课题(学生作答)

  1.请说出单项式与单项式相乘的.法则:

  单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

  (系数×系数)×(同字母幂相乘)×单独的幂

  例如:( 2a2b3c) (-3ab)

  解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

  = -6a3b4c

  2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

  问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

  这便是我们今天要研究的问题。

  二、新知探究

  已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

  现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

  上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

  结论单项式与多项式相乘的运算法则:

  用单项式分别去乘多项式的每一项,再把所得的积相加。

  用字母表示为:m(a+b+c)=ma+mb+mc

  运算思路:单×多

  转化

  分配律

  单×单

  三、例题讲解

  例计算:(1)(-2a2)· (3ab2– 5ab3)

  (2)(- 4x) ·(2x2+3x-1)

  解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

  (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

八年级数学上册教案13

  一、 教学目标

  1.了解分式、有理式的概念.

  2.理解分式有意义的条件,能熟练地求出分式有意义的条件.

  二、重点、难点

  1.重点:理解分式有意义的条件.

  2.难点:能熟练地求出分式有意义的条件.

  三、课堂引入

  1.让学生填写P127[思考],学生自己依次填出:,,,.

  2.学生看问题:一艘轮船在静水中的最大航速为30 /h,它沿江以最大航速顺流航行90 所用时间,与以最大航速逆流航行60 所用时间相等,江水的.流速为多少?

  请同学们跟着教师一起设未知数,列方程.

  设江水的流速为v /h.

  轮船顺流航行90 所用的时间为小时,逆流航行60 所用时间小时,所以=.

  3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?

  四、例题讲解

  P128例1. 当下列分式中的字母为何值时,分式有意义.

  [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

  出字母的取值范围.

  [补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

  (补充)例2. 当为何值时,分式的值为0?

  (1) (2) (3)

  [分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解.

  [答案] (1)=0 (2)=2 (3)=1

  五、随堂练习

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 当x取何值时,下列分式有意义?

  (1) (2) (3)

  3. 当x为何值时,分式的值为0?

  (1) (2) (3)

  六、课后练习

  1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

  (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

  (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

  (3)x与的差于4的商是 .

  2.当x取何值时,分式 无意义?

  3. 当x为何值时,分式 的值为0?

八年级数学上册教案14

  教学目标

  一、教学知识点:

  1、旋转的定义

  2、旋转的基本性质

  二、能力训练要求:

  1.通过具体实例认识旋转,理解旋转的基本涵义。

  2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质

  三、情感与价值观要求

  1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识

  2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观

  教学重点:

  旋转的基本性质

  教学难点:

  探索旋转的基本性质

  教学方法:

  1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。

  2、采用多媒体课件辅助教学。

  教学过程:

  一。巧设情景问题,引入课题

  日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景)。

  (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?

  1.在这些转动的现象中,它们都是绕着一个点转动的

  2.每个物体的转动都是向同一个方向转动

  3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变

  4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化。同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转。

  二。讲授新课

  在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate)。这个定点称为旋转中心,转动的角称为旋转角。注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度。在物体绕着一个定点转动时,它的形状和大小不变。因此,旋转具有不改变图形的大小和形状的特征。

  议一议:(课本67页)答:

  (1)旋转中心是O点,旋转角是∠AOD。旋转角还可以是∠BOE。

  (2)四边形AOBC绕O点旋转到四边形DOEF的位置。这时点A旋转到点D的位置,点B旋转到点E的位置。

  (3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的。同样,线段OB与OE是相等的。

  (4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的。

  (4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的。

  看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点。从刚才大家得出的结论中,能否总结出旋转的'性质呢?

  答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的。

  因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的。

  由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等对应点到旋转中心的距离相等。

  [例1](课本68页例1)

  [师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出。

  解:(见课本68页)

  书上68页做一做

  三。课堂练习

  课本P69随堂练习

  1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°

  四。课时小结

  五。课后作业:课本P69习题3.4 1、2、3

  六。活动与探究

  1、分析图中的旋转现象过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律

  结果:旋转现象为:

  整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的

  整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的

  整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的

  2、图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?

  过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系

  结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的

  整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°前后的图形共同组成的

  整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的

八年级数学上册教案15

  一、内容和内容解析

  1.内容

  三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

  2.内容解析

  本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

  理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

  本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

  二、目标和目标解析

  1.教学目标

  (1)理解三角形的高、中线与角平分线等概念;

  (2)会用工具画三角形的高、中线与角平分线;

  2.教学目标解析

  (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

  (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

  (3)掌握三角形的高、中线与角平分线的`画法.

  (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

  三、教学问题诊断分析

  三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

  三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

  三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

【八年级数学上册教案】相关文章:

八年级数学上册教案06-08

初二数学上册教案07-24

生物八年级上册教案06-08

初一数学上册的教案06-10

初一数学上册教案08-27

初一数学上册教案08-27

八年级上册数学教学反思05-27

八年级上册数学教学反思09-26

八年级上册《长征》教案范文10-21