当前位置:好文网>实用文>教案>小学数学教案

小学数学教案

时间:2024-06-23 22:45:28 教案

【精选】小学数学教案集锦9篇

  作为一名教学工作者,编写教案是必不可少的,教案是教学蓝图,可以有效提高教学效率。那么教案应该怎么写才合适呢?以下是小编为大家收集的小学数学教案9篇,欢迎大家分享。

【精选】小学数学教案集锦9篇

小学数学教案 篇1

  课文原文

  教学设计

  教学目标

  1、知识与技能目标:掌握通分的方法,能比较熟练地进行通分。

  2、过程与方法目标:教学中渗透转化的数学思想,培养学生的自学能力。

  3、情感态度与价值观目标:理解通分的意义及在实践中的应用。

  教学重点:

  通分的一般方法。

  教学难点:

  确定公分母。

  教学过程:

  (一)复习导入

  1.(投影片)请说出下面各组数有什么特点?说出每组数的最小公倍数?并说出用什么方法求出的最小公倍数?

  8和9 9和27

  5和6 6和8

  12和18 10和15

  (二)讲授新课

  1.认识公分母和通分的意义。

  教师:我们在把异分母分数转化为同分母分数时,首先选定的“相同分母”我们称为公分母。一般我们选已知分数分母的最小公倍数作它们的`公分母。

  教师:(指板书)把异分母分数分别化成和原来分数相等的同分母分数,叫通分。板书补出“→”。这就是我们这节课的内容,(板书课题:通分)

  (2)我们从下面的图中看一看,通分前后的两个分数,什么发生变化了?什么没有发生变化?

  学生口答。

  教师:由图上可以清楚地看出,通分并没有改变分数的大小,把异分母分数转化为和原来分数相等的同分母分数,使它们的分数单位相同了,这样就可以比较它们的大小了。(指原题)

  学生口答,教师板书:

  子分母不用扩大?

  学生讨论后汇报。

  请几位同学写投影片,其余同学写本上。集体订正。

  教师:请再说一说通分过程分几步?每步做什么?

  (三)巩固反馈

  (四)课堂总结与课后作业

  1.什么叫通分?通分的一般方法?

  2.作业:课本116页,练习二十五1,2,4。

  板书设计

  看完之后记得自己尝试着写一篇哦~

小学数学教案 篇2

  教学目标:

  1、结合具体情境,体会生活中存在着大量互相依赖的变量;

  2、在具体情境中,尝试用自己的语言描述两个量之间的关系。

  教学过程:

  一、创设情境、导入新课

  1、师:生活中有哪些变化的现象?这些现象可以用数学的方法表示吗?

  (学生已经完成“课前准备”,选择几个学生回答)

  2、师:在生活中,很多事物在发生变化。如:人的年龄、身高、体重在变,我国的人均收入、生产总值等等都在变化,象这样的会变化的量,我们都称为变量。

  3、师:象这样的例子很多,今天我们就来学习“变化的量”。

  设计意图:学生预习后直接导入新课,加深对“变化的量”的认识,寻找生活中的量的认识,引起新课的学习积极性。本环节的课前准备是要学生独立完成。

  二、进行新课,掌握变量。

  1、请独立完成导学案的“学一学”。

  2、师:小组交流刚才的自主学习的内容。并确定中心发言人。

  3、小组进行自我展示。

  (1)小明的体重变化情况表。

  学生谈群学体会:人的年龄和体重是相关联的两个量,人的体重随着年龄的变化而变化。

  教师小结。我发现(体重)随(年龄)的增加而增加。

  设计意图:课本呈现出第一幅情景图,表格的形式让学生更加清晰的了解年龄与体重的变化,能够回答问题,发现年龄与体重的变化情况,小明的体重随年龄的变化,学生先观察然后回答问题。

  (2)沙漠之舟

  师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。(课件出示:出示骆驼体温随时间的变化统计图。)

  A、从图中你知道了什么信息?

  B、一天中,骆驼体温是多少?最低是多少?

  C、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

  D、第二天8时骆驼的体温与前一天8时的体温有什么关系?

  E、每天骆驼的体温总是怎样变化的?

  教学意图:通过教学第二幅情景图,认识有关沙漠之舟的基本知识,拓宽学生的课外知识面。读懂统计图,回答问题,通过问题,发现规律。这是本环节的教学目标,学生对于折线统计图的认识已有基础。

  3、蟋蟀与气温的关系

  A、出示蟋蟀叫的次数与气温之间关系的情境图。

  B、你能用式子表示这个近似关系吗?

  生:气温h=t÷7+3。

  C、理解式子中量的变化。

  师:如果蟋蟀叫了7次,这时的'气温大约是多少?

  如果蟋蟀叫了14次,这时的气温大约是多少?

  如果蟋蟀叫了28次呢?

  你能发现蟋蟀叫的次数与气温之间是怎样变化的?

  小结:通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。

  教学意图:这环节学生理解蟋蟀的叫声用关系式表示,大多学生通过书上的文字提示,都可以完成关系式,个别不行的,就个别辅导。

  三、课堂巩固,加深理解。

  1.说一说,一个量怎样随另一个量变化。

  (1)一种故事书每本3元,买书的总价与书的本数。

  (2)一个长方形的面积是24平方厘米,长方形的长与宽。

  2、小明到商店买练习簿,每本单价2元,购买的总数x(本)与总金额y(元)的关系式,可以表示为: 。

  设计意图:我在这一课的练习设计上,没有太多的练习量,反而注重巩固课本上的练习。由难到易,重质不重量,希望通过补充练习提高后进生的课堂参与度,帮助部分学生的梳理知识。

  四、全课小结,谈谈收获。

小学数学教案 篇3

  教学目标

  1.了解什么是应用题的已知条件和问题,初步理解一步应用题的结构.

  2.会联系加减法的含义解答有图有文字的一步计算应用题.

  3.培养初步的分析、判断和推理能力.

  教学重点

  有图有文字应用题的解答.

  教学难点

  解答有图有文字的减法应用题.

  教具学具准备

  教师准备教科书第88页例5的两幅图的图画,独立作业的投影片.

  学生准备教科书第88页数学游戏的口算卡片和得数卡片.

  教学步骤

  一、铺垫孕伏.

  6+2= 9+4= 9+9=

  9+3= 3+5= 4+6=

  9+7= 9+6= 9+5=

  2+7= 9+2= 9+8=

  统计2分钟以内做完的人数及正确率.指名说一说计算9+3和9+7应该怎样想.

  二、探究新知.

  1.导入.

  (1)教师出示例5的左图(小鸟图),3只小鸟落在树枝上,再出示一幅图,上面画有6只小鸟.

  师:图中先告诉我们什么?又告诉我们什么?

  引导学生回答:图中先告诉我们树上有3只鸟,又告诉我们又飞来6只.

  师:求一共是多少只该怎样算呢?

  引导学生回答:求一共是多少只,就是把树上的3只鸟和又飞来的6只合起来,把3和6合起来是9,列式为:3+6=9.

  教师取下后贴上的第二幅图,在第一幅图的下面贴上用文字写出的条件和问题,成为例5左边的题.

  (2)揭示课题.

  像这样有图有文字的'应用题应当怎样解答呢?今天我们就学习有图有文字的应用题.板书课题:应用题.

  2.教学例5左边的加法应用题.

  (1)学生讨论:题里告诉了什么?还告诉了什么?让我们求什么?

  引导学生明确,题里告诉了树上有3只小鸟,还告诉了又飞来6只,让我们求一共是多少只?

  教师说明,已经告诉我们的树上有3只小鸟和又飞来6只都叫已知条件,让我们求的一共是几只叫做问题.在这道题中,第一个已知条件是用图画表示的,第二个已知条件是用文字表示的,问题也是用文字表示的.我们学过的应用题一般都有2个已知条件和1个问题.让学生自己小声说一说题中的两个已知条件和1个问题,指名让学生到前边指一指.

  (2)求一共是多少只怎样计算呢?

  引导学生说出,求一共是多少只,就是把树上的3只小鸟和又飞来的6只合起来,把3和6合起来是9,列式为3+6=9

  (3)让学生把教科书第88页例5左题的算式补充完整.

  (4)反馈练习.

  完成做一做左边的加法题(小兔图).

  先让学生说一说题中的条件和问题分别是什么,怎样计算,然后让学生填书上的空.

  3.教学例5右边的减法应用题.

  (1)出示例5右边的图(梨图),盘子里有10个梨,再用纸盖住其中的4个,并在原来位置用虚线画出4个形状.看图,你知道了什么?怎样计算?

  引导学生说出,盘子里有10个梨,吃了4个,求还剩几个?也就是从10个梨中去掉4个,从10中去掉4剩下6,列式为10-4=6

  (2)拿走盖着4个梨的纸,出示例5右题的用文字叙述的第二个条件和问题,成为例5右边的减法应用题.

  让学生自由读一读题,找出题中的两个已知条件和1个问题.

  引导学生说出:第一个已知条件是,盘子里有10个梨,是用图画表示的.第二个已知条件是,吃了4个梨,是用文字叙述的.问题是:还剩几个?也是用文字叙述的.

  师:求还剩几个应该怎样想,怎样列式呢?

  引导学生说出,求还剩几个,就是从盘中的10个梨里面去掉吃了的4个,也就是从10里面去掉4还剩6,列式为10-4=6

  (3)让学生把教科书第88页例5右边的减法应用题的算式补充完整.

  (4)反馈练习.

  完成做一做右边的题(汽车图).

  先让学生找出已知条件和问题,说一说怎样解答,再让学生填书上的空.订正时提问:为什么用减法算?

  4.集体讨论:我们今天学习的有图有文字的应用题和以前学习的图画应用题比较,有哪些地方相同,哪些地方不同?

  引导学生汇报:

  相同点,都有2个已知条件和1个问题,都是根据加减法的含义列式计算的.即把两个数合并在一起,求一共是多少,用加法算.从一个数里去掉另一个数,求还剩多少,用减法算.

  不同点,图画应用题的已知条件和问题都是用图画表示的,比较简单.有图有文字的应用题是画表格,表格中有图有文字来表示已知条件和问题,比图画应用题难一些.

  5.看书,质疑.

  三、课堂小结.

  今天我们学习的应用题,有一个已知条件是用图画表示的,另一个已知条件是用文字表示的,做题时,先看清已知条件和问题,再想用什么方法计算,然后再列式计算.

  四、随堂练习.

  1.练习十九第1题(图片:练习3).

  先让学生自己把算式写到练习本上,然后订正.订正时让学生说一说已知条件是什么,问题是什么,是怎样想的,怎样算的.

  2.比比看哪组先夺得红旗(图片:练习4).

  把全班同学分成男女两组,分别做红旗两边的两组题,全组同学全部完成,速度快,正确率高的获得红旗.

  3.游戏你争我抢【详见探究活动】.

  布置作业

  (投影片出示)

  让学生写到作业本上,独立完成作业后,让学有余力的学生做思考题.

  教学开始抓住图画应用题与表格应用题的内在联系,利用学生已有经验,引导学生学习,激发学生兴趣,有利于新知的学习。

  整个教学过程注意引导学生参与学习的全过程,通过师生合作学习,使学生学会学习,通过体验形成能力,有利于学生思维的发展。

小学数学教案 篇4

  教学目标:

  1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

  2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。

  3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的

  教学重点:理解、掌握梯形面积的计算公式。

  教学难点:理解梯形面积公式的推导过程

  教具准备: 各小组准备两个完全一样的梯形。

  教学过程

  一、复习并导入:

  (1)出示一个三角形,提问:这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

  (2)出示梯形,让学生说出它的上底、下底和各是多少厘米。

  (3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算。

  二、新课进行

  (一),推导公式

  ①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的`面积吗?

  ②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

  ③指名学生操作演示。

  ④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。

  (2)观察思考

  ①教师提出问题引导学生观察。

  a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

  b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?

  (3)反馈交流,推导公式。

  ①学生回答上述问题。

  ②师生共同总结梯形面积的计算公式。

  板书:梯形的面积=(上底+下底)×高÷2

  ③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

  学生回答后,教师板书:“S=(a+b)h÷2”。

  (二)深化认识。

  (1)启发学生回忆平行四边形面积公式的推导方法。

  ①提问:想一想平行四边形面积公式是怎样推导得到的?

  ②学生回答,教师在展示台再现平行四边形面积公式的推导方法。

  (2)引导操作。

  ①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?

  ②学生动手操作、探究、讨论,教师作适当指导。

  (3)信息反馈,扩展思路。

  说一说你是怎样割补的?教师展示各种割补方法。

  (三)公式应用。

  课件出示练习题请学生完成。

  三、巩固练习

  完成课后相应练习题

  四、小结

  通过这节课的学习你有哪些收获?你能详细的说说梯形面积的推导过程吗?

小学数学教案 篇5

  本册教材共安排10个单元。

  数与代数领域的内容,是本册教材的重点。教材一共安排了七个单元,大致可以分成四个部分。

  一是数的认识安排了一个单元,即第九单元认识百分数,主要教学百分数的意义,百分数和分数、小数的互相改写,以及求一个数是另一个数的百分之几、求百分率的实际问题。

  二是数的运算安排了三个单元,包括第三单元分数乘法,第四单元分数除法,第六单元分数四则混合运算。其中,第三、四单元主要教学分数乘、除法的计算法则,求一个数的几分之几是多少及其相应的分数除法实际问题;分数连乘、连除、乘除混合;同时在分数乘法单元中还安排了倒数的认识。第六单元主要教学分数四则混合运算,以及稍复杂的分数乘法实际问题。

  此外,还安排了第七单元解决问题的策略,主要教学用假设(置换)的策略分析数量关系,解决实际问题。

  三是式与方程安排了一个单元,即第一单元方程,主要教学解形如 和 的方程,以及相应的列方程解决实际问题。

  四是正比例和反比例安排了一个单元,即第五单元认识比,主要教学比的意义,比的基本性质和化简比,以及应用比的有关知识解决实际问题(主要是按比例分配的实际问题)。

  空间与图形领域安排了一个单元,即第二单元长方体和正方体,主要教学长、正方体的特征和展开图,体积、容积单位以及体积、容积单位的进率,长、正方体的表面积和体积的计算。

  统计与概率领域安排了一个单元,即第八单元可能性,主要教学怎样求事件发生的可能性。

  第十单元安排了本册教学内容的整理与复习。

  实践与综合应用领域主要是结合单元教学内容安排了3次实践活动,分别是表面积的变化、大树有多高、算出它们的普及率。

  表面积的变化是结合长方体和正方体的教学安排的,主要是通过拼长方体或正方体的活动,研究表面积变化的规律。大树有多高是结合认识比的教学安排的,主要是通过测量同一时间,同一地点竿高与影长,发现竿高与影长的比的比值相等的规律,并运用这一规律解决一些简单的实际问题。算出它们的普及率是结合认识百分数的教学安排的,主要是通过调查和统计本班同学家庭中电话和电脑的普及率,经历收集、整理数据,分析、解释数据的`过程,进一步积累统计活动的经验。这些活动,都具有小课题研究的特点,有利于学生进一步加深对所学知识的理解,积累数学活动的经验,发展数学思考和解决实际问题的能力。

  此外,教材结合教学内容,编排了5个你知道吗,介绍一些数学史知识,以及与数学知识有关的社会常识,以拓宽学生的视野,培养学生对数学的兴趣。还编排了11道思考,进一步加大教材的弹性空间,以满足部分学有余力的学生的发展需要。

小学数学教案 篇6

  教学目标

  1.使学生了解本金、利息、利率、利息税的含义.

  2.理解算理,使学生学会计算定期存款的利息.

  3.初步掌握去银行存钱的本领.

  教学重点

  1.储蓄知识相关概念的建立.

  2.一年以上定期存款利息的计算.

  教学难点

  “年利率”概念的理解.

  教学过程

  一、谈话导入

  教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?

  教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.

  二、新授教学

  (一)建立相关储蓄知识概念.

  1.建立本金、利息、利率、利息税的`概念.

  (1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.

  (2)教师板书:

  存入银行的钱叫做本金.

  取款时银行多支付的钱叫做利息.

  利息与本金的比值叫做利率.

  2.出示一年期存单.

  (1)仔细观察,从这张存单上你可以知道些什么?

  (2)我想知道到期后银行应付我多少利息?应如何计算?

  3.出示二年期存单.

  (1)这张存单和第一张有什么不同之处?

  (2)你有什么疑问?(利率为什么不一样?)

  教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.

  4.出示国家最新公布的定期存款年利率表.

  (1)你发现表头写的是什么?

  怎么理解什么是年利率呢?

  你能结合表里的数据给同学们解释一下吗?

  (2)小组汇报.

  (3)那什么是年利率呢?

  (二)相关计算

  张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?

  1.帮助张华填写存单.

  2.到期后,取钱时能都拿到吗?为什么?

  教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)

  3.算一算应缴多少税?

  4.实际,到期后可以取回多少钱?

  (三)总结

  请你说一说如何计算“利息”?

  三、课堂练习

  1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息

  捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?

  2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:

  (1)800×11.7%

  (2)800×11.7%×2

  (3)800×(1+11.7%)

  (4)800+800×11.7%×2×(1-20%)

  3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?

  四、巩固提高

  (一)填写一张存款单.

  1.预测你今年将得到多少压岁钱?你将如何处理?

  2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?

  (二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?

  五、课堂总结

  通过今天的学习,你有什么收获?

  六、布置作业

  1.小华20xx年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给“希望工程”多少元钱?

  2.六年级一班20xx年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?

  3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?

  七、板书设计

  百分数的应用

  本金 利息 利息税 利国利民

  利率:利息与本金的比值叫利率.

  利息=本金×利率×时间

  探究活动

  购物方案

  活动目的

  1.使学生理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略.

  2.通过小组合作,培养学生的合作意识及运用所学知识解决实际问题的能力.

  3.培养学生创新精神,渗透事物是对立统一的辩证唯物主义思想,使学生能够辩证、发展、全面地对待实际生活中的问题.

  活动过程

  1.教师出示价格表

  A套餐原价:16.90元 现价:10.00元

  B套餐原价:15.40元 现价:10.00元

  C套餐原价:15.00元 现价:10.00元

  D套餐原价:15.00元 现价:10.00元

  E套餐原价:18.00元 现价:10.00元

  F套餐原价:14.40元 现价:10.00元

  学生讨论:如果你买,你选哪一套?

  2.教师出示价格表

  A套餐原价:16.90元 现价:12.00元

  B套餐原价:15.40元 现价:10.78元

  C套餐原价:15.00元 现价:12.00元

  D套餐原价:15.00元 现价:12.00元

  E套餐原价:18.00元 现价:13.50元

  F套餐原价:14.40元 现价:12.24元

  学生讨论:现在买哪一套最合算呢?

  3.教师出示价格表

  每套18.00元,冰淇淋7.00元.

  第一周:每套16.20元;买一个冰淇淋回赠2元券.

  第二周:降价20%;买一个冰淇淋回赠2元券.

  第三周:买5套以上打七折;买一个冰淇淋回赠2元券.

  学生讨论:

  (1)你准备在哪一周买

  (2)你打算怎么买?

  (3)你设计方案的优点是什么?

小学数学教案 篇7

  课前准备

  教师准备PPT课件

  教学过程

  ⊙谈话导入

  同学们,在数学的学习中,我们有时会遇到很复杂的题,如何将这些题化难为易呢?这时候我们就要用到数学思想和方法。数学思想和方法可以帮助我们有条理地进行思考,简捷地解决问题。

  ⊙引发思考

  在六年的数学学习中,你们知道了哪些数学思想和方法?能举例说一说吗?

  ⊙回顾与整理数学思想和方法

  1.组织学生小组讨论学过的数学思想和方法,并巡视指导。

  2.学生汇报,并借助PPT课件将学生的汇报进行整理、展示。

  预设

  常用的数学思想和方法:

  (1)转化的思想方法:这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。如立体图形的等积变换、解方程的同解变换、公式的变形等。在计算中也常常用到转化,如甲÷乙(0除外)=甲×;除数是小数的除法可以转化成除数是整数的除法来计算。在解应用题时,常常对条件或问题进行转化,通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。

  (2)数形结合思想方法:数和形是数学研究的两个主要对象,数离不开形,形离不开数。一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面复杂的形体可以用简单的数量关系表示。在解应用题时常常借助画线段图帮助分析题中的数量关系。

  (3)对应思想方法:两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线(数轴)上的`点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。

  (4)代换思想方法:它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。

  (5)列表法:用表格的形式表示题中的已知条件和问题,使条件和条件之间,条件和问题之间的关系条理化、明朗化,有利于探求解题的思路,从而达到解决问题的目的。

  ……

  ⊙典型例题解析

  例16个点可以连多少条线段?8个点呢?找找规律,根据规律,你知道12个点、20个点能连多少条线段吗?请写出算式。想一想,n个点能连多少条线段?

  分析两点确定一条线段,即每两点之间都能连成一条线段。从2个点开始,逐渐增加点数连一连,亲自动手操作,并列成表格加以对照,从而找出规律。

  点数

  增加条数

  2

  3

  4

  5

  总条数

  1

  3

  6

  10

  15

  通过观察发现:2个点可以连成1条线段,从2个点开始,以后每增加1个点,这个点和原有的每个点都能连成1条线段,所以原来有几个点,就会相应地增加几条线段。即:

  2个点连成线段的条数:1条

  3个点连成线段的条数:1+2=3(条)

  4个点连成线段的条数:1+2+3=6(条)

  5个点连成线段的条数:1+2+3+4=10(条)

  6个点连成线段的条数:1+2+3+4+5=15(条)

  8个点连成线段的条数:1+2+3+4+5+6+7=28(条)

  推出:n个点连成线段的条数:1+2+3+4+…+(n-1)==n(n-1)(条)

  根据规律可以推出12个点、20个点能连成的线段的条数。

  解答6个点连成线段的条数:1+2+3+4+5=15(条)

  8个点连成线段的条数:1+2+3+4+5+6+7=28(条)

  12个点连成线段的条数:×12×(12-1)=66(条)

  20个点连成线段的条数:×20×(20-1)=190(条)

  n个点连成线段的条数:1+2+3+4+…+(n-1)==n(n-1)(条)

小学数学教案 篇8

  教学目标:

  1、能够辨认从正面、侧面、上面观察到的立体图形的形状,具有一定的空间观念。

  2、复习巩固长方形的周长、正方形的周长的计算办法,能够准确进行测量并求周长。

  3、利用周长的相关知识,能够解决实际的数学问题。

  4、通过动手操作,使学生进一步获得对简单几何体的直观经验。

  5、在交流的过程中回忆求周长的计算方法,感受计算方法的多样性,提高学生的认知水平。

  教学重点:激发学生学习数学的兴趣。

  教学难点:感受计算方法的多样化,提高学生的认知水平。

  教学设计:

  一、创设情境

  1、同学们,这学期我们学习了如何观察立体图形,通过我们自己亲自动手搭积木,我们学会了什么?

  2、除了学习观察立体图形,我们还学习了求什么图形的周长?

  今天这节课我们就一起来复习有关图形方面的知识。

  二、巩固探究

  1、复习观察立体图形

  每出示一个,让学生用自己的正方形积木照样子搭一搭。搭出图形之后,认真观察,说一说从正面、侧面、上面可以观察到什么样的形状?

  交流,订正。

  2、复习周长的计算方法。

  什么叫周长?怎样求长方形的周长?正方形的周长又该怎么求呢?

  自由完成第12题,汇报订正。

  3、完成第13题。请同学们拿出自己准备的20厘米长的铁丝,用它围成一个长方形,它的周长是多少?

  还是用这根铁丝围成一个正方形,这个正方形的周长是多少?

  通过刚才的操作,你发现了什么?

  4、刚才我们又是动手操作,又是测量计算,累了吧?我们一起到足球场去轻松一下吧!看!这就是我们将要去的足球场。出示第14题。

  自己看图、读题,想一想,在这道题中都告诉了我们什么信息?

  这道题一共让你求出几个问题?会不会解答?

  做完这道题,你有什么想法吗?

  三、拓展实践

  我们再独立解决几个实际问题:

  1、足球场是个长方形,长120米,宽95米。李林绕着足球场跑了3圈,跑了多少米?

  2、学校北面有一块长方形的实验园,长是30米,宽是20米,如果四周围上篱笆,篱笆长多少米?如果有正好一面靠墙,篱笆长多少米?

  3、小结:这节课,我们复习了什么内容?

  四、作业:作业本上的作业

  板书设计:

  总复习

  立体图形 求周长

  长方形的周长

  正方形的周长

  总复习(四)

  教学目标:

  1、继续复习有关年、月、日的.知识,能够正确地观察日历,回答问题。

  2、复习可能性的相关知识,进一步感受到事件发生的可能性是不确定的,事件发生的可能性有大有小。

  3、复习有关搭配的知识,能够按照题意进行正确搭配。

  4、能够根据已知信息,解决实际问题。

  教学重、难点:通过复习加强巩固,进一步训练学生解决实际问题的能力。

  教学设计:

  一、创设情境

  在以前的复习中,我们都复习了哪些知识?

  本学期我们学的内容除了刚才说到的,你认为还有哪些知识我们应该再复习整理?

  我们一起来整理回顾这些内容,看谁解决这样的实际问题最棒!最棒的同学我们可是有奖励的!

  我们一起来比一比、赛一赛好吗?

  二、巩固探究

  1、回顾整理有关年、月、日的知识。

  同学们,你还记得有关年、月、日的哪些知识?

  出示第16题:一年365天,合几个星期零几天?

  请同学们自己试着做一做。

  谁来说一说你是怎样想的?

  2、解决实际问题:

  出示92页第18题的图片及文字。

  请同学们认真看图,谁能说一说这幅图是什么意思?告诉了我们什么?

  你是怎样设计住房方案的?

  3、复习“搭配中的学问”

  出示第20题:我们刚才解决了住宿问题。现在我们在一起来解决穿衣的问题好不好?

  这是我们学过的搭配中的学问。你能不能自己试着解决呢?

  如果解决得好、搭配得棒,我们将评选它为“出色设计师”。

  自己解决,评选“出色设计师”。

  4、回顾整理“可能性”

  出示第19题,指名读题,自己解答,指名回答。

  5、整体回顾:

  在这一学期中,你学到了什么知识?

  你还有什么想知道的问题?

  三、小结:这节课,我们复习了什么知识?

  四、作业:作业本上的作业

小学数学教案 篇9

  教学内容:

  教材第61页的例5、例6,及相应的“做一做”。

  教学目标:

  1、掌握用比例知识解答含有比例关系问题的步骤和方法。

  2、熟练地判断两种相关联的量是否成正、反比例,加深对正、反比例意义的理解。

  教学重点:

  能正确地运用比例知识解决问题。

  教学难点:

  正确判断比例数量之间的关系,并能根据正、反比例的意义列出方程。

  教学过程:

  一、复习导入

  1、判断下列每题中的两个量是不是成比例,成什么比例关系?

  (1)购买课本的单价一定,总价与数量。

  (2)差一定,减数与被减数。

  (3)总路程一定,速度与时间。

  (4)零件总数一定,生产的`天数与每天生产的件数。

  2、如果用字母x和y表示两种相关联的量,用k表示定量,正比例和反比例关系可以用哪个式子来表示?(板书:正比例: =k(一定) 反比例:xy=k(一定))

  3、导入新课:今天我们就一起来研究用比例解决问题。

  二、自学互动,适时点拨

  【活动一】正比例的应用

  学习方式:小组合作、汇报交流

  学习任务

  1、出示例5主题图,阅读与理解。

  (1)阅读题目。

  (2)理解题意:已知条件是什么?所求的问题是什么?

  2、分析与解答。

  (1)提问:观察题目中的已知条件和所求的问题,大家认为这道题我们可以怎么进行思考呢?

  (2)小组交流

  ①要解决水费的问题,就要知道水价和用水量。

  ②水价虽然不知道,但它是一定的。

  ③可以先算出每吨水的价钱,再算出10吨水的价钱;也可以用比例的方法解决。

  (3)用算术方法解答: 28÷8×10

  (4)交流用比例知识解决问题的方法。

  ①问题中有哪两种量?它们对应的数据分别是什么?

  ②它们成什么比例关系?你是根据什么判断的?

  ③根据这样的比例关系,你能列出等式吗?

  (5)学生独立解答,组织交流。

  解:设李奶奶家上个月的水费是x元。

  28/8=x/10

  8x=28×10

  8x=280

  x=280÷8

  x=35

  3、回顾与反思。

  (1)28:8和x:10分别表示什么?(水费单价)

  (2)如果列出的比例是8:28和10:x可以吗?为什么?(可以,因为8:28和10:x都表示1元可以用水多少吨,是一定的。)

  (3)你有什么方法检验自己的解答是正确的呢?

  4、即时练习:王大爷家上个月的水费是42元,上个月用了多少吨水?

  【活动二】反比例的应用

  学习方式:小组合作、汇报交流

  学习任务

  1、出示例6,阅读与理解。

  (1)题目中已知条件和所求的问题分别是什么?

  (2)题目中哪个量是一定的?(总用电量)

  2、分析与解答。

  (1)题目中的两种变化的量能组成什么比例?为什么?(因为“每天用电量×天数=总用电量”,所以每天用电量和天数成反比例关系。)

  (2)学生独立用比例知识解答,组织交流

  解:设原来5天的用电量现在可以用x天。

  25x=100×5

  25x=500

  x=500÷25

  x=20

  3、回顾与反思:解决这类问题的关键是什么?(找出哪两个量的乘积一定,只要两个量的乘积一定,就可以用比例关系解答。)

  4、即时练习:现在30天的用电量原来只够用多少天?

  三、达标测评

  1、课本第62页“做一做”第1、2题。

  先用比例知识解答,再说一说两道题数量关系有什么不同,是怎样列式解答的。

  四、课堂小结

  通过这节课的学习,你有什么收获?

【小学数学教案】相关文章:

(经典)小学数学教案08-14

小学数学教案(精选)08-25

小学数学教案[精选]08-12

【经典】小学数学教案08-24

小学数学教案【精选】07-24

[经典]小学数学教案07-27

数学教案小学10-14

小学数学教案06-22

(精选)小学数学教案08-28

小学数学教案(经典)08-29