关于可能性教案范文合集六篇
作为一位无私奉献的人民教师,总归要编写教案,教案是备课向课堂教学转化的关节点。那么大家知道正规的教案是怎么写的吗?下面是小编收集整理的可能性教案6篇,仅供参考,欢迎大家阅读。
可能性教案 篇1
教学内容:
人教版小学数学教材五年级上册第44页主题图、例1、第45页“做一做”及相关练习,第49页“生活中的数学”。
教学目标:
1、初步体验事件发生的确定性和不确定性,能列出简单的随机现象中所有可能发生的结果。能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。
2、借助猜测、实验、交流等活动,培养学生的逻辑思维能力和口头表达能力。
3、通过学生对确定现象和不确定现象的体验,体会数学和日常生活的密切联系。
教学重点:
通过活动,使学生体验事件发生的确定性与不确定性。
教学难点:
使学生能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。
教学准备:
课件、节目卡片、抽奖盒。
教学过程:
一、游戏导入,激活经验
(一)游戏1:猜猜硬币在哪只手里。
1、教师将枚硬币握在手中,并在背后交换位置,让学生猜一猜硬币在哪只手里。说一说你能确定吗?
2、教师打开没有硬币的手,再让学生猜一猜硬币在哪只手里。说一说你能确定吗?为什么?
(二)游戏2:猜猜抛出的硬币是正面朝上还是反面朝上。
1、教师将这枚硬币抛出,让学生说出可能是哪个面朝上,要求说出所有可能。
2、让学生猜一猜是哪个面朝上。
3、教师揭示结果。
(三)揭示课题。在生活中有些事件的发生是确定的,有些是不确定的。今天我们一起来探究事件发生的.可能性。
【设计意图】通过游戏激活学生的生活经验,初步感知事件发生的确定性和不确定性,为学生进一步探究奠定坚实的基础。
可能性教案 篇2
一、教学目标
1通过摸球等活动,初步体验有些事件的发生是确定的,有些事件的发生是不确定的,并能用“一定”,“可能”,“不可能”等词语来描述事件发生的可能性,获得概率的思想。
2 培养初步的判断和推理能力。
3培养学习数学的兴趣,形成良好的合作学习的态度。
二、教学重难点:
重点:感受体验有些事件发生的确定性和不确定性
难点:理解,辨析“可能”,“一定”,“不可能”发生的事件
三、教学过程:
(一)玩游戏,引入新课
师:我知道小朋友们都特别喜欢做游戏,是吗?那么在今天上课前,我和大家一起先来玩一个石头、剪子、布的游戏,这个游戏大家都会玩,是吧?可别小看这个小游戏,它里面还藏着数学知识呢,不信我们玩玩看!我说石头剪子布之后,大家同时出手势,不许变哦,我们一起看看有多少个小朋友能赢老师。(师生共玩)
谁赢了老师?谁输了?(学生举手表示)怎么还有几个小朋友没举手呢?有输,有赢,还有平的,你们在玩游戏之前想赢老师吗?那为什么想赢,有的小朋友没有赢呢?(引导学生说出可能赢,可能输,可能平)
现在我们再玩一次,这次我告诉你们我要出剪刀,(再玩一次师出剪刀),这次结果怎么样?(引导生说出出石头一定赢老师,出布一定输,出剪刀一定打平)
师小结:我们在玩石头、剪子、布的时候,如果我不告诉你们我出什么,可能是老师赢,也可能是小朋友赢,我们双方都有赢的可能性,但当我告诉你们我出剪刀,小朋友们就一定会赢了,这里面藏的数学知识,就是今天我们要研究的——事情发生的可能性。
(板书:可能性)
(二)实践体验,探索新知
1、可能性
过渡:嗯,小朋友们做游戏都特别厉害,下面我要考考你们的`眼力了。
师:(出示一只盒子)瞧,我手里拿的是什么?(盒子)老师往袋子里放3个白球和3个黄球。(现场放)接着,我从这个盒里任意摸一个,请小朋友们先猜一猜,老师能摸到什么?(可能是白球,可能是黄球。)
师:对不对呢,我们一起来验证一下。摸之前,我先用手在里面搅几下,闭上眼睛,然后任意摸一个。(师摸)是什么?(白球)好。我再来摸一个,小朋友先猜猜,会是什么?瞧,是什么?(黄球)我再摸一次,会是什么呢?(黄球)那么通过你的观察,老师摸出的球,出现了什么情况?(可能是白球,也可能是黄球。)
(板书:可能)
师:你能说说为什么吗?
⒉、不可能与一定
师:现在我要拿走一个白球,任意摸一个球,肯定摸到白球吗?(不一定,是可能是白球)为什么呢?
(里面有2个白球还有3个黄球,所以任意摸一个,可能是白、黄球其中的一种。) 师再拿走一个白球,任意摸一个,能摸到白球吗?(能)为什么?(白球还有一个)
师再拿走一个白球,现在可能会摸到白球吗?
生:不可能。
(板书:不可能)
师:你们为什么这么确定?(里面没有白球了。)
师:对了,我们现在摸到的不可能是白球。那你们认为会摸到什么球呢?(黄球)你们也是那么确定,说说道理。
(板书:一定。)
3、小结
师:通过刚才的摸球游戏,我们发现了一件事情的发生通常有可能发生、不可能发生、一定发生这三种情况。有些事情发生的结果不可以确定,这时就该用“可能”;有些事情是不会发生的,这时就用上“不可能”。还有些事情结果是可以确定的,这时我们就会用上“一定”。
(三)举球游戏,巩固新知
师:还想玩游戏吗?现在老师要加大难度,看ppt,上面有4个小箱子,里面装着不同颜色的小球,现在我们从每个箱子中抽,与结果连线。
(四)探究生活中存在的可能性
1、寻找生活中存在的可能性
大家看下面三个地方的小学情况,我们应该用那个词来说呢?小组讨论,老师请同学来回答。(根据海南,哈尔滨,还有武汉的天气情况来分析)
2、学习例二
生活中处处都有可能性,数学就在我们身边,那么,你能用“一定”,“可能”和“不可能”对这几个与我们生活紧密相关的现象进行判断吗?
(ppt出示生活中的现象,生判断并说理由)
(五)谈收获与总结
师:今天,我们一起学习了“可能性”的知识,小朋友们,你们有什么收获?课后找一些生活中具有可能性的事情说给爸爸、妈妈,好朋友们听听,好吗? 总结:像这样存在“可能性”的问题,是数学课里面的知识,它包含“一定”、“不可能”和“可能”三种情况,它跟我们的生活是紧密相关的,请同学们回去留意一下,在我们身边还有哪些类似的数学问题,看看谁最有侦探头脑,善于发现和分析问题。
四、板书设计
可能性
一定
确定事件不确定事件: 可能
不可能
可能性教案 篇3
教学目标:
1、通过“猜测—实践—验证”,让学生经历事件发生的可能性大、小的探索过程,感受某些事件发生的可能性是不确定的,理解并掌握事件发生的可能性的大小规律。
2、能对一些事件发生的可能性大小进行描述,结合具体情境,能对某些事件进行推理,知道其结果可能性的大小。
3、获得一些初步为数学实践活动经验,并在和同伴的合作与交流的过程中培养学生的合作学习的意识和能力。
教学重点:
感受某些事件发生的可能性大、小,理解并掌握事件发生的可能性的大小规律。
教学难点:
通过动手操作,分析推理,得出事件发生的可能性的大小规律。
教学过程:
一、游戏激趣,谈话引入(飞镖)
1、引出“可能”
今天老师要请大家一起玩个游戏,你们喜欢吗?(出示转盘)
请两个学生上来比赛,猜猜谁会赢?
教师小结:刚才这两位同学在没有比赛之前,我们是不能确定他们的输赢情况,在这种不确定的情况下,可以用“可能”来描述。(板书:可能—不确定)
现在谁能用可能一次来说说他们两个的输赢情况。(XX可能会赢,XX可能会输,从不同角度说说)
2、引出“不可能”、一定
比赛开始,规则每人投5次,等到第一位同学投完第5次,随机再让学生猜猜他们的输赢情况,并说说理由。从而引出“一定”、“不可能”
(板书:(一定--确定)
(不可能--确定)
3、小结:刚才我们所讲到的“可能、不可能、一定”它是判断一件事情会不会发生的三种情况。其实像这样的'例子在我们生活中还有许多,有些事情它可能发生,有些事情它不可能发生,而有些事情则一定发生,下面的事情请你用“可能、不可能、一定”来说一说。
4、练习(课件出示)
(1)小红说:“出生到现在我没有吃过一点东西。”
(2)太阳从西边出来。
(3)吃饭时,有人用左手拿筷子。
(4)世界上每天都有人出生。
5、教师说学生用手势进行判断。
(1)两个因数相乘,积是两位数。
(2)三位数除以两位数的商是两位数。
(3)一个人身高10米。
(4)角有一个顶点两条边。
二、操作活动探索规律
1、出示活动要求
(1)每人摸3次,摸的时候要按顺序,不能抢。
(2)摸之前将棋子摇一摇,任意摸出一个,小组长记录是什么颜色,然后把棋放回袋子再摸。
(3)小组长统计一共摸了几次,白棋几次,黑棋几次。
2、小组活动,教师巡视指导
2、汇报摸球情况
请各组的组长汇报你们组的摸球情况。(师将学生的摸球的情况统计在记录表中)仔细地观察这个表格,你发现了什么?
3、猜猜袋子里装有什么颜色的棋子,以及两种棋子数量的多少。
4、验证猜测结果
5、师小结:通过再一次的实验证明,可能性的大小与什么有关?(数量)数量
多的可能性就大,数量少可能性就少。那么两者的数量相等或差不多时,它们的
可能性就差不多了。
三、生活应用
我们掌握了可能性大小的规律,利用它可以解决生活中的很多问题。
1、现在我们再来玩玩这个飞镖游戏吧(请两位学生上来)
(1)猜猜他们两个投在那个地方的可能性大一些
(2)学生投了几次之后,猜猜谁赢的可能性大一些(随机察看情况)
2、定分
老师这儿有一个没有定分的飞镖,请你运用今天所学的知识,你觉得如何定分最合理?
3、摸奖
瞧,元旦马上到了,一百商店举行摸奖活动,规定凡是摸到白球均可获得价值100元的精美礼品。你会选择那一只摸奖工具箱。(说说你的理由)
可能性教案 篇4
教学目标:
1、学生能够列出简单试验所有可能发生的结果,知道事件 发生的可能性是有大小的。
2、使学生能够对一些问题简单事件发生的可能性作出描述。
3、培养学生分析问题,解决问题的能力。
4、在引导学生探索新知的过程中,培养学生合作学习的意 识以及养成良好的学习习惯。
教学重、难点:
1、使学生能够列出简单试验所有可能发生的结果,知道事 件发可能性是有大小的。
2、能够对一些简单事件发生的可能性作出描述。 教具准备 电脑课件、转盘、纸杯、白球、黄球、红球、盒子。
教学过程:
一、激情导入,提示课题
同学们,你们课间喜欢做游戏吗?在游戏前怎样决定谁先玩 的呢?石头、剪刀、布这三种手式哪种最厉害呢?想和老师 比试比试吗?如果老师和人们一起玩,你们认为有什么结 果?学生发言(可能赢、可能输、也可能平)师生共同班几 次,充分体验。 今天这节课我们就继续研究有关可能性的问题。(板书课题)
二、实验探索,学习新知
活动一:摸名片
学生制作自己的名片,注意写清姓名、性别、属相、班级、爱好、电话号码。 学生以小组为单位开始摸名片游戏,游戏后各组组长做好记录并统计结果。 集体交流:汇总每小组的`实验数据。引导学生:通过观察这些数据,你发现了什么?为什么摸出属牛的同学比较 多,而摸出属鼠的同学比较少呢? 结论:有的小组属牛可能性大,有的小组属鼠可能性小。有的小组 属牛和属鼠的可能性一样大。 学生举例:生活中哪些事情存在可能性的现象?
活动二:抛纸杯
1、猜想: 纸杯抛向空中落地时有几种可能。学生独立思考后回答。到 底谁说得对呢?我们一起来做个试验。
2、实验: 每个人重复抛5 次,并把实验结果记录下来。
3、与同伴说一说,可能出现哪几种结果并写下来。
4、结论: 纸杯抛向空中落到地面后可能出现三种情况:杯口朝上、杯 口朝下、躺在地面上。
活动三:摸球
1、出示盒子(里面两个黄球,一个白球) 任意摸一个球,摸哪种颜色球的可能性大。 分组实验加以证明。 小结:任意摸一个球,有2 种结果,摸到黄球的可能性大, 白球的可能性小。
2、再放入 个红球,会出现哪种结果?摸到哪种球的可能性大,哪种球的可能性小,能摸出黑球吗? 实验验证。 小结。
3、出示盒子(2 师:一次摸出两个球,可能出现哪些结果?小组讨论并填表。
4、扩展练习: 前几天老师在一个商场门口发现了这样一种情况:一个人 手里拿着一个布袋,布袋里红、绿两种玻璃球各5 个,只需 元钱,如果你在场你会不会去玩?为什么?学生模拟摸球游戏。
小结:在布袋中能够摸出5 个绿球可能性非常小,这只是生活中最简单的骗术,在生活中还有许多形形色 色的陷井,我们识破这些陷井的办法就是学好科学知识,用 知识武装我们的头脑。
三、总结
这节课你有哪些收获?
可能性教案 篇5
教学内容:
教材P107—109
教学目的:
4、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
5、通过实际操作活动,培养学生的.动手实践能力。
6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
知道事件发生的可能性是有大小的。
教学过程:
一、引入
出示小盒子,展出其中的小球色彩、数量,
如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?
二、探究新知
1、教学例5
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
记录次数
黄
红
活动汇报、小结
(2)袋子里的红球多还是黄球多?为什么这样猜?
小组内说一说
总数量有10个球,你估计有几个红,几个黄?
(3)开袋子验证
让学生初步感受到实验结果与理论概率之间的关系。
2、练习
P107“做一做”
3、小结
三、巩固练习
P1096
学生说说掷出后可能出现的结果有哪些
猜测实验后结果会有什么特点
实践、记录、统计
[4]说说从统计数据中发现什么?
[5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。
P1097
学生讨论完成
教学反思:
可能性教案 篇6
本单元共安排了5个例题。主题图、例1、例2体验事件发生的确定性和不确定性。例3、例4、例5及相关内容能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
1.体验事件发生的确定性和不确定性。
对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。
教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的
(1)主题图的教学。
教科书第104页呈现了学生熟悉的“新年联欢会上抽签表演节目”的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在“抽签表演节目”时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,“表演某种节目”这样的事件的发生是不确定性的。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。
需要注意的是,只要学生能够结合具体的问题情境,用“可能”等词语来描述就可以了,如“我可能要表演唱歌”。不必要求学生一定要说出“我表演唱歌这件事情的发生是不确定的”。
(2)例1的教学。
教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。
教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。
①教学第一个问题“哪个盒子里肯定能摸出红棋子”。教师可以先提问“左边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,“在左边的盒子里摸出红棋子”这个事件的发生是确定的。教师再提问“在右边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,“在右边的盒子摸出红棋子”这个事件的发生是不确定的。
②②第二个问题“哪个盒子里不可能摸出绿棋子”和第三个问题“哪个盒子里可能摸出绿棋子”可一同教学。教师可以先引导学生猜测“左边的盒子里可能摸出绿棋子吗?”“右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?”,同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的`盒子里没有绿棋子,所以不可能摸出绿棋子,“在左边的盒子里不能摸出绿棋子”这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,“在右边的盒子里摸出绿棋子”这个事件的发生是不确定的。
③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教
科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。
④另外,在汇报时只要学生能够结合具体的问题情境,用“在左边的盒子里一定能摸出红棋子”“在右边的盒子里可能摸出红棋子”等描述进行表达就可以了,不必要求学生一定要说出“在左边的盒子里摸出红棋子这个事件的发生是确定的”,“在右边的盒子摸出红棋子这个事件的发生是不确定的”。
⑤(3)例2的教学。
⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。
⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用“一定”“不可能”“可能”等词语来表述就可以了,如“地球一定每天都在转动”“三天后可能下雨”“太阳不可能从西边升起”等。不必要求学生一定要说出“我从出生到现在没吃过一点东西这件事的发生是确定的”“吃饭时,人用左手拿筷子这件事情的发生是不确定的”“每天都有人出生这件事情的发生是确定的”。
⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如“明天的拔河比赛我们班会赢”。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。
⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。
为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对“掷一枚硬币,出现正面”这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。
一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。
由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。
【可能性教案】相关文章:
可能性教案02-17
《可能性》教案01-31
可能性教案范文07-19
有关可能性教案10-09
可能性教案模板04-17
可能性教案设计08-26
可能性教案(15篇)02-28
《可能性》教案15篇03-08
《可能性》教案(20篇)11-03
可能性教案15篇02-18