当前位置:好文网>实用文>教案>可能性教案

可能性教案

时间:2024-08-11 12:58:28 教案

可能性教案集合九篇

  作为一名教师,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。那么应当如何写教案呢?下面是小编为大家收集的可能性教案9篇,欢迎阅读与收藏。

可能性教案集合九篇

可能性教案 篇1

  一、谈话导入:

  出示扑克牌与筛子:同学们,你们知道老师要玩什么游戏?想来一起玩一玩吗?我们要玩出数学味来。

  二、开展活动:

  1、活动一、摸牌游戏。

  (1)谈话并猜测:(电脑出示)老师这儿有四种不同花色的扑克牌各2张,混放在一起并叠整齐。如果每次任意摸一张,摸40次。你猜猜,每种花色的牌可能会摸到多少次?(指名猜测)请把你估计的数字写下来。

  (2)会和你猜的情况一样吗?我们只要自己试试就可以知道了。

  (3)师宣布活动规则,多媒体演示示范摸牌一次,说明活动顺序和要求:摸牌——画“正”字——放回——洗牌……,摸牌40次后,在记录表下面的方格图里涂色,用直条表示摸牌结果。

  (4)学生同桌合作,一人摸牌,另一人在书上记录,然后将结果用条形图表示。

  (5)学生汇报摸牌结果。看看和你估计的是否差不多,并在小组内交流活动的发现和体会。(可以让猜得很接近的学生说说为什么要这样猜。)

  (6)全班交流摸牌游戏中的.体会。

  (7)谈话:如果再放进4张红桃牌,任意摸40次,结果可能会怎样?先猜一猜,再合作实验。(同桌合作,与刚才分工交换,一人摸牌、另一人记录在书上,并制成条形图)

  (8)全班交流各自的发现,分析产生不同结果的原因。

  (9)同桌合作活动,任意选择不同张数、不同花色的扑克牌,先估计像刚才一样摸40次,结果可能会怎么样,再实验。并用自己最快的方法记录在自己本子上。

  (10)谈话:如果摸到黑桃牌的可能性最大,你准备怎么样?(指名回答)根据老师的要求选取扑克牌的花色和张数。

  2、活动二:下棋游戏。

  (1)过渡:老师认为自己打牌的水平还可以,可是,有一次和别人下棋,输得很掺,到底是怎么一回事呢?

  (2)电脑边演示边解说:那天,我们是这样下棋的,用一个小正方体,5面涂红色,1面涂黑色。一人黑棋,一人拿红棋,都从“0”开始。谁走棋用抛下正方体的办法确定。两人轮流抛小正方体。不管谁抛的,只要红色朝上,红棋就走一格;黑色朝上,黑棋就走两格。谁先走到最后一格谁为胜。

  (3)你能按着老师这样的玩法,和同桌一起玩玩吗?

  (4)先制作小正方体,剪下教材附页上的棋纸。同桌合作,随意选择颜色开展活动,一局结束后,可交换棋子再下几盘,并在书上记录自己哪种颜色棋胜的盘数。

  (5)小组内交流自己获胜情况,组长统计组内红棋和黑棋获胜的盘数。

  (6)在班内交流游戏结果。各组汇报,教师记录,合计。

  (7)你猜猜那天老师拿得是什么颜色的棋子?(生说)

  师设疑:我想,黑色朝上,可以走两格,所以我选择了黑色。可为什么和我想象得不样呢?(学生讨论并交流)

  (8)如果要使两种颜色的棋获胜的次数差不多,应该怎么改?

  三、拓展思维:

  你能在日常生活中找到利用这种可能性而举行的一些活动吗?

  假如自己是某商场的经理,请你策划一个有诱惑力而又很合理的“摸奖”活动。

  板书设计:

  摸牌和下棋

  顺序:摸牌——画“正”字——放回——洗牌……

  红色:走一格

  黑色:走两格

可能性教案 篇2

  教学内容

  义务教育课程标准实验教科书《数学》三年级上册104页例1、例2及相关练习

  设计理念

  根据新课程标准和教材的要求,我利用多媒体教学以及让学生通过小组讨论、独立解决问题以及动手操作等形式让学生感受什么事件是可能发生的,什么事件是不可能发生的,什么事件是一定发生的,达到本课的教学目的。

  教学目标

  1、通过猜测和简单试验,让学生初步体验事件发生的确定性和不确定性,初步能用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性。

  2、培养学生的猜想意识、口语表达能力及合作学习的能力。

  3、培养学生初步的判断和推理能力。

  4、让学生在活动过程中懂得数学存在于现实生活中,从而使学生产生积极的情感体验;激发学生学习数学的兴趣及培养良好的合作学习态度。

  教学重点

  1、通过猜测和简单试验,初步体验事件发生的确定性和不确定性。

  2、培养学生的猜想意识、口语表达能力及合作学习能力。

  教学难点

  正确用“一定”、“可能”、“不可能”等词语描述事件发生的可能性。

  教具、学具准备

  教学光盘;每组准备A盒(里面放有6个蓝色的玻璃珠)、B盒(里面放有红、黄、绿色玻璃珠各2个)各1个;每组2个信封(内装有题卡);玻璃珠。

  教学过程

  一、游戏激趣,导入新课

  小朋友们,你们喜欢玩游戏吗?这节课老师和一们一起玩好吗?

  1、游戏活动一:“猜一猜”

  师:小朋友们,今天老师想跟你们玩的第一个游戏是“猜一猜”。老师这里有一颗漂亮的玻璃珠(举起双拳),它就在我其中的一个拳头里,你们猜猜它会在哪只手里?

  生答……

  师:看来大家的'意见不一样,老师帮帮你们吧!(教师慢慢张开空着的手,再次握紧拳头)

  生再次回答。

  师挥动拿球的一只手问:为什么你们这次那么肯定玻璃球就在这只手里呢?(指名回答)

  师:在日常生活中,有些事情我们不能肯定它发生的结果,有些事情可以肯定它发生的结果,类似的例子还有很多,大家有兴趣研究吗?这节课我们一起来研究事情发生的可能性。(板书课题:可能性)看看哪个小组研究得最好,将得到一颗“集体智慧星”。

  二、合作学习、探究新知

  (一)游戏活动二:石头剪子布

  师:小朋友们,你们会玩“石头剪子布”的游戏吗?老师跟你们一起玩好吗?(开始游戏)游戏结束后,教师问:谁赢了老师?谁输给了老师?(让学生举手表示赢和输)接着问:还有些同学没有举手,为什么?(指名回答)

  师:有输、有赢、还有平的。那么,我们再来玩一次好吗?(让几个学生回答游戏结果)

  师:你在开始游戏时想赢老师吗?结果呢?为什么想赢又赢不了?(指名回答)如果咱们再玩一次,猜一猜,结果会怎样?(引导学生说出可能输、可能赢、可能平并板书:可能)

可能性教案 篇3

  教材分析:

  本单元是在学生学习了简单的统计图表知识,初步体验了数据的收集、整理的过程,并能根据统计图表中的数据提出并回答简单的问题的基础上学习的,是进一步学习统计知识的基础。此外,对可能性知识的学习,是学生今后学习概率知识的基础。本单元教学的主要内容包括按不同的标准对事物进行分类统计;初步体验有些事件的发生是确定的,有些事件的发生是不确定的。教学重点是按不同的标准对事物进行分类统计,教学难点一是在分类统计时找到不同的分类标准,二是对事件发生可能性的理解。

  教学目标:

  1、会用不同的方法进行分类统计,完成相应的统计表,根据统计的结果提出问题、解决问题或提出建议。

  2、初步了解事件发生的'确定性和不确定性,形成实事求是的态度和爱思考、爱动脑的习惯。

  3、通过现实情境体验数据的收集、整理和分析的过程,初步了解统计的意义,发展初步的统计观念。

  4、通过学生经历统计的过程,发展学生运用数学知识解决问题的意识。

  教学重难点:

  对分类标准和对事件发生可能性的理解。

  教学准备:

  课件

  教学过程:

  一、导课

  师:同学们看这里美不美?你观察到了什么?

  河边有鸭,还有鹅!有大的、有小的;有花的、黑的,还有白的!

  河里还有好多人游泳呢!有男的、有女的;有大人、有小孩,好多人呀!

  游泳的有多少人呢?大约有30多个呢!

  二、教学统计

  师:到底有多少人呢?怎样才能知道呢?

  (1)一个一个地数,数数就知道了。

  (2)一个个地数不容易数清楚,咱们统计一下吧!

  师:好!那怎样进行统计呢?

  1、我们可以先分类再数一数进行统计。

  2、我先数男的,再数女的。

  3、按戴泳帽和不戴泳帽的进行统计。

  师:那大家就开始行动吧!

  学生自己动手活动。

  师:这就是我们今天要学习的分类统计。

  三、自主练习

  1、分类统计。

  仔细观察图片,你看到了什么?你想怎样分类?(按种类或是颜色)

  2、一共有多少块积木?

  除了按颜色进行分类还可以怎样分类?(形状)

  3、统计本班学生的情况。

  思考:我们的同学可以按什么标准分类?(年龄、性别)

  四、总结

  作业:回家统计你们书橱的种类。

  板书设计:

  统计

  (按种类或是颜色) (年龄、性别)

可能性教案 篇4

  【教材分析】

  (一)教学内容分析:

  可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。

  教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。

  (二)学情分析

  考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。

  【教学目标】

  1、 了解概率的意义

  2、 了解等可能性事件的概率公式

  3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率

  进一步认识游戏规则的公平性

  【教学重点、难点】

  重点:概率的意义及其表示

  难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。

  【教学过程】

  (一) 创设情境,引入新知:

  引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

  分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

  解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

  (这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

  (二) 师生互动,探索新知:

  从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

  ①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

  ②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

  ③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

  接着类似的可以让学生自己结合生活经验独立举一些例子。

  (这样的.安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

  然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

  如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

  强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

  例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

  (三) 讲解例题,综合运用:

  在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

  例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

  分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

  解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

  一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

  (例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

  从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

  (四) 练习反馈,巩固新知:

  做一做:

  1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

  (根据班级各小组的实际人数回答)

  2、 转盘上涂有红、蓝、绿、黄四种颜色,

  每种颜色的面积相同。自由转动一次转盘,

  指针落在红色 区域的概率是多少?

  指针落在红色或绿色 区域的概率是多少?

  (1/4,1/2)

  (五)变式练习,拓展应用:

  例2:如图所示的是一个红、黄两色各占

  一半的转盘,让转盘自由转动2次,指针2

  次都落在红色 区域的概率是多少?一次落在

  红色 区域,另一次落在黄色 区域的概率是多少?

  分析:

  (1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。

  (2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

  (3)统计所求各个事件所包含的可能结果数。

  解:根据如图的树状图,所

  有可能性相同的结果数有4种:

  黄,黄;黄,红;红,黄;红,红。

  其中2次指针都落在红色 区域的可能结

  果只有1种,所以2次都落在红色 区域

  的概率 ;

  一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

  变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

  (本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

  (五) 反思总结,布置作业:

  引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

  五、教学说明:

  本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

可能性教案 篇5

  教学目标:

  1、通过猜测、游戏活动、生活体验让学生初步体验有些事件发生是确定的,有些则是不确定的。

  2、能结合已有的经验对一些事件的可能性用一定(肯定)、可能、不可能做出合理判断,并能简单地说明理由。

  3、培养学生的表达能力和逻辑推理能力。

  4、培养学生学习数学的兴趣和良好的合作学习态度。

  教学重点:

  能对一些事件的可能性做出正确判断。

  教学准备:

  1、学具:彩色笔1盒、学习答题卡等。

  2、教具:课件、纸盒(3个)、乒乓球(白色和黄色各12个)。

  教学时间:

  1课时

  教学过程:

  一、游戏激趣,导入课题

  师:同学们,喜欢玩游戏吗?(喜欢)玩过“剪刀、石头、布”的猜拳游戏吗?

  1、先让学生以同桌的形式试一试,再请两名同学到台前玩猜拳游戏。玩之前猜一猜:谁会赢呢?举手表决,你们支持谁呢?

  2、猜拳2-4次,出现不同的结果,问:你们猜对了吗?

  3、教师小结:刚才的猜拳游戏中,有可能是自己赢,也有可能是对方赢,这就是一种可能性。(相机板书课题:可能性)

  [设计意图]通过学生熟悉的猜拳游戏活动,激发学生学习的兴趣。

  二、摸球游戏,探究新知

  师:(出示1号盒,教师摇一摇)听一听,猜到老师给大家带来了什么?(让学生猜一猜,再开始摸球游戏)

  1、初步感知确定性事件。认识“一定”、“不可能”

  (1)、出示装有8个白球的盒子,每人只能摸一次,你能猜猜你摸到的结果吗?用一句话来表示。(学生猜测,板书:一定)

  (2)、出示装有8个黄球的'盒子,每人只能摸一次,你能猜猜你摸到的结果吗?我们可能从这盒子里摸出白球吗?(板书:不可能)

  你们为什么那么肯定?(板书:确定)

  2、初步感知不确定性事件。认识“可能”

  出示装有4个黄球和4个白球的盒子,每人只能摸一次。用一句话猜猜你摸到的结果。(板书:可能)

  当事情的结果是不确定的,我们用“可能”来描述。(板书:不确定)

  [设计意图]学生通过摸球游戏活动,在猜一猜、摸一摸、说一说中,感受事件发生的可能性,能用一定、不可能、可能等词语做出合理的判断。

  三、联系生活,巩固新知(教学例2)

  师:原来,数学就在我们身边,在我们生活中处处都有“可能性”。那么,你能用“一定”、“可能”和“不可能”对下面几个与我们生活紧密相关的现象进行准确的判断和说说理由吗?

  1、观察课本第105页的例2,思考后在书上作出判断。

  2、与组内的同学交流自己的想法。

  3、汇报,小结。

  重点提示:图1教师借助视频资料帮助学生理解“地球每天都在转动”是一定的;图5通过一些图片资料展示,让学生理解“吃饭时,人用左手拿筷子”是可能的;图6借助调查资料显示让学生明白“世界上每天都有人出生”是一定的。

  [设计意图]通过教学例2,让学生体验生活中可能性的现象,感受数学与日常生活是相互联系的。

  四、巩固练习,强化新知

  1、完成练习二十四第1题。

  (1)、指明学生判断事件可能性的方法。

  (2)、重点提示:图1大王花像粪便一样臭,再列举缅桂、兰花等花是香的花,所以“花是香的”是不确定的。图2教师可播放“月球的运动”视频帮助学生理解“月球绕着地球转”事件发生的必然性。

  2、完成练习二十四第2题。(按要求涂一涂)

  (1)、要求学生读懂题意后再涂一涂。学生独立完成。

  (2)、学生汇报,教师小结。重点提示:图1的5个小方块全部涂成红色即可;图2的5个圆形只要不涂成蓝色,其它颜色和五颜六色都可以;图3的五个锥体至少有1个或2个以上黄色。

  3、完成练习二十四第3题。(结合你的生活经验,在下面的句子里用上“可能”、“一定”、“不可能”这些词。)

  [设计意图]通过涂一涂、想一想、说一说练习,培养学生的表达能力,巩固强化可能性知识。

  五、课堂小结

  这堂课,你学到了什么?(指名说,教师小结)

  板书设计:

可能性教案 篇6

  教材说明

  本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。

  1.事件发生的可能性以及游戏规则的公平性。

  关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。

  根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。

  等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的'事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。

  2.中位数的统计意义及计算方法。

  学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。

  在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。

  教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。

  教学建议

  1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。

  在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。

  在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。

  2.加强学生对中位数在统计学意义上的理解。

  中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。

  在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。

  另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。

可能性教案 篇7

  教学目标:

  1. 经历对生活中某些现象进行推理、判断的过程。

  2. 能对生活中的某些现象按一定的方法进行逻辑推理,判断其结果。

  3. 把自己推理的过程和结果与同伴进行交流。

  教学重点:

  经历对生活中某些现象进行推理、判断的过程。

  教学难点:

  能对生活中的`某些现象按一定的方法进行逻辑推理,判断其结果。

  教具准备:

  多媒体课件

  教学过程:

  一、组织开展游戏活动

  首先,建立四人小组,其中三人分别扮演淘气、笑笑、小明,约定他们三人分别参加了足球、航模、电脑兴趣小组中的一项。扮演淘气的同学说;我喜欢航模。扮演笑笑的同学说:我不喜欢踢足球。扮演小明的同学说:我不是电脑兴趣小组的。让四个同学猜猜,他们可能是哪个小组的,并说说理由。

  二、引导学生利用表格。

  把知道的信息记录在表格中,进行推理判断。

  因为三个人分别参加其中一项,而淘气已经在航模小组,所以笑笑只能在足球小组或在电脑小组,可是笑笑不喜欢足球,所以笑笑肯定在电脑小组。剩下的小明只能在足球小组。

  教师可以引导学生根据表格,把推理过程说一说。

  三、巩固应用

  1. 自主练习第2题

  这是一道实验题。实验过程中,教师指导学生作好统计。实验后,组织学生交流实验的结果。

  2. 自主练习第4题

  练习时,教师要把该题变成一个操作性的实践活动。先指导学生制作转盘,再提出要求,组织学生活动。

  四、课堂总结

  同学们,这节课我们通过实践能对生活中的一些现象进行逻辑推理,你还有什么问题吗?

可能性教案 篇8

  一、利用的数学知识

  1.组合(两个骰子上的数字之和)

  2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的和可能是2至12的所有数,不可能是1或13等数。)

  3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的。)

  二、活动步骤

  (一)示范游戏

  1.体验确定现象与不确定现象,列举所有可能的.结果。

  (运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)

  2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。

  3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。

  (二)小组内游戏,探索结论。

  通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。

  (三)理论验证

  通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。

可能性教案 篇9

  一、情境导入

  谈话:小朋友们,今天这节课老师和大家一起来做游戏,好吗?我们还设立了得星榜,要比一比3个小组中,哪个小组得星最多,合作得最默契,数学教案-可能性的教学设计。先来玩第一个游戏,猜猜礼袋里装着什么?

  学生有的猜..有的猜...

  提问:一定是吗?(不一定)

  小结:也就是说,现在你们只能是猜测,可能会是...,也可能会是...,这就是我们生活中的“可能性”(板书:可能性)

  二、摸球游

  1.用“一定”来描述摸球的结果,体验事件发生的确定性。

  谈话:那么袋子里究竟是什么呢?

  指名学生上台并指导摸球:先搅几下,摸一个,拿出来。放进去。搅一搅,再摸一个,拿出来……

  引导:怎么他每次摸到的都是红球呢?(生猜测:里面都是红球)同意他的猜测吗?我们一起来验证一下吧!(请XXX把里袋拎出来)

  小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,那我任意摸一个球,结果会是?(红)一定吗?(板书:一定)

  2.谈话:你们也想来玩摸球游戏吗?好,请组长拿出袋子。不过,在摸球之前先讲清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中并做好记录,依次传给其他组员摸,明白了吗?就让我们比一比哪组合作得最好?开始吧!

  (让学生分组摸球,教师巡视指导)

  汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)

  猜一猜,袋子里是什么颜色的球?(黄球和绿球)

  组长倒球验证,(师作出摸球的动作)轮到我摸了,我从这个袋里任意摸一个,结果会是?(黄,绿)一定吗?(不一定)那要怎么说?(可能是黄,也可能是绿)(板书:可能)

  提问:那能在这个袋子里摸到红球吗?为什么?(板书:不可能)

  3.小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。

  如果袋子里有黄球和绿球,任意摸一个,可能是黄球,也可能是绿球。但不可能是红球。

  三、实践拓展

  1.练一练。

  (1)(出示装有2个红球和3个黄球的袋子)瞧,在这个口袋里,任意摸一个球,一定黄球吗?那会怎样呢?

  (2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?为什么?

  (3)(出示装有5个黄球的袋子)这个袋子呢?为什么?

  小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊 !

  2.装球游戏,小学数学教案《数学教案-可能性的教学设计》。

  谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!

  安排3次装球活动,依次出示要求:

  (1)任意摸一个球,一定是绿球。该怎么放呢?(学生讨论,放球,师巡视)

  说说你是怎么放的?放3个5个都可以吗?

  师表扬,说的好,只要全部是绿球,那摸到的一定是绿球。

  (2)任意摸一个球,不可能是绿球。该怎么放呢?(学生讨论,放球,师巡视)

  谁愿意来说一说?这么多放法都对吗?只要怎样?(不放绿球)

  交流:任意摸一个,不可能是绿球,应该怎样装?装球时是怎样想的?

  小结:任意摸一个,不可能是红球。有很多种装法,可以装一种、两种、三种甚至更多种颜色的球,但是不能装绿色的.球。

  (3)任意摸一个球,可能是绿球。

  (每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励)

  3.转盘摇奖活动

  1、猜测:(师出示红黄蓝三色转盘)观察转盘,有几种颜色?想一想,转盘停止转动后,指针会指在哪里?能肯定吗?那应该怎么说?(转盘停止转动后,指针可能会指着红色,可能会指着黄色,还可能会指着蓝色。)

  2、体验:是不是真的会出现这些情况呢?刚才装球最快的那一小组的小朋友上来,请你们轮流拔动转盘试试看,

  4.联系生活。

  谈话:小朋友们,今天我们通过玩一玩、猜一猜、说一说,学会了用“一定”、“可能”、“不可能”来表述游戏中的各种情况,那在我们的生活中,同样有些事情是一定会发生,有些事情是不可能发生,也有些事情可能会发生。下面请小朋友们举例说说!

  小结:我们来看看今天的冠军是哪一组?那下次他们也一定是冠军吗?可能会出现什么情况呢?

  四、总结谈话

  1、今天,我们一起研究了“可能性”的问题,你学得开心吗?学到了哪些新知识?

  2、回家后把学到的新知识讲给爸爸妈妈听,再调查一下,看看生活中还有哪些事情可能发生,哪些事情不可能发生或一定会发生,一星期后举行一个交流会,比比谁讲得多讲得好!

【可能性教案】相关文章:

《可能性》教案01-31

可能性教案02-17

可能性教案06-18

有关可能性教案10-09

可能性的认识教案04-12

可能性教案模板04-17

可能性教案范文07-19

《统计与可能性》教案06-11

可能性教案设计04-02

可能性教案(15篇)02-28