当前位置:好文网>实用文>教案>分数的意义教案

分数的意义教案

时间:2024-11-05 05:41:53 教案 我要投稿

关于分数的意义教案锦集7篇

  作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。那要怎么写好教案呢?下面是小编为大家收集的分数的意义教案7篇,欢迎阅读,希望大家能够喜欢。

关于分数的意义教案锦集7篇

分数的意义教案 篇1

  学习内容:

  课本第97页例1及“做一做”,第99页练习十九第1、2、3题。

  学习目标:

  1.我会用分数与小数的关系,把小数化成分数。

  2.我能应用所学数学知识解决问题的能力。

  学习重难点:

  小数化分数的方法。

  学习过程:

  一、导入新课

  请大家回忆一下,说说小数的意义是什么?本节课,我们一起学习分数和小数的互化,怎样把小数化成分数?

  二、合作探究、检查独学

  1.自学例1,小组合作交流

  用分数表示:

  用小数表示:

  这两个结果有什么关系:

  2.用自己的`话说一说怎样把小数化成分数?应注意什么问题?

  ①我的想法:

  ②完成课本97页“自己试一试”三个填空题。

  3.小组代表展示、汇报

  4.总结升华

  5.我能行:“做一做”把下列小数化成分数。

  0.4= 0.05= 0.37=

  0.45= 0.013=

分数的意义教案 篇2

  教学目标

  1. 认识单位“1”,理解分数的意义及分母、分子的含义。

  2. 培养学生的观察、分析、抽象、概括等思维能力。

  3. 通过层层设疑,不断强化学生的质疑意识,提高学生的质疑能力。

  教学重点:建立单位“1”的概念。

  课前准备:通过各种途径去查找、了解分数是怎样产生的。

  教学过程

  一.创设情景

  课前让同学通过各种途径去查找、了解分数是怎样产生的,有哪些同学已经查找到了相关的信息,能与大家交流吗?

  再请同学们看两个例子。

  1、出示2个实例(课件)

  (1) 这些饼,我们可以用3个来表示,而这些呢可以用4个来表示,再请大家看这半个饼还能用整数来表示吗?

  (2) 用米尺来测量木板的长度,能用整米数来表示吗?

  许多例子都可以告诉我们,在生产和生活中,有时我们通过计算或是测量都是不能得到整数结果的,为了适应客观实际的需要,而产生了新的数——也就是分数(出示)。开始,人们只认识一些简单的分数,如二分之一、三分之一等。经过很长时间后,才产生像现在这样完善的分数的知识。同学们知道吗?我国还是世界上发明和使用分数比较早的国家之一。

  其实分数对于同学们来说不会太陌生,我们已经对分数有了初步的认识。

  2、 揭示课题:今天这节课我们在分数初步认识的基础上探究分数的意义。

  二、互动探究

  (一)复习把一个物体或一个计量单位平均分

  首先让我们一起来回忆一下:

  1. 用课件展示。(3个例子)

  (1) 把一块饼平均分成2份,每份是它的二分之一。

  (2) 把一张正方形的纸平均4份。

  (3) 把一条线段平均分成5份,

  2. 小结:以前我们学习了把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,都可以用分数表示。

  (二)学习把一个整体平均分

  1.想一想:

  在现实生活中是不是只能把一个物体进行平均分?请举例。

  师小结:在现实生活中不仅能把一个物体进行平均分,还可以把许多物体看作一个整体来平均分。

  2.思考:

  这里有一堆苹果,你能拿出它的1/4 吗?你是怎样想的?

  把什么看作一个整体?怎么分的?能完整的叙述一下吗?

  把这些苹果看作一个整体,平均分成4份,每份的一个苹果就是这些苹果的1/4。

  3.讨论:

  把6只熊猫平均分,有几种分法?每份用什么分数表示?

  (1)汇报分的情况。

  (2)说说你们是怎样想的?注意叙述完整。

  把什么看作一个整体?怎么分的?

  把六只熊猫看作一个整体,平均分成6份,每份的一只熊猫就是这个整体的1/6。要表示这个整体的2份呢?3份?5份?

  还可以怎样分呢?

  (三)归纳分数的意义

  1.观察:刚才用来平均分的物体与以前的有什么不同呢?

  以前是把一个物体平均分,刚才是把许多物体看作一个整体来平均分。

  2.启发:

  像这样平均分的一个物体、一个计量单位或一个整体我们都可以用自然数1来表示,通常把它叫做单位“1”。我们所看到的1个饼、1张纸、4个苹果、6只熊猫都可以看作单位“1”。

  那么在生活中,我们还可以把哪些看作单位“1”呢?

  3.我们已经了解了什么是单位“1”,下面请同学们讨论一下:什么叫做分数?

  (1)汇报。

  (2)出示分数的意义,看有没有不明白的地方。

  出示:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  师:单位“1”为什么要用引号?

  “1”不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的一个整体。这个“1”很特殊,所以我们给它加上引号,把它称为单位“1”。

  你认为在这句话中,还有哪些字或词比较重要?

  (四)分数各部份的名称及意义

  我们知道了分数的意义,下面来看看分数的'组成

  出示:小红旗

  指名回答用什么分数来表示?说说想法。

  4/9这个分数,指名说出分数各部份的名称。

  结合图上的例子,说说各部份所表示的意义。

  课件展示。

  三、巩固发展

  我们已经学习了分数的意义以及分子、分母所表示的含义,不知同学们学习得怎样,我想考考大家,有没有信心?

  1、看图:

  (1)(做一做)谁能说说 3/5的意义?这里的单位 “1”指的是什么?

  (2)分母3分别表示什么?分子2分别表示什么?

  2、练习:

  (1)练习十八 1、2、题(课件出示)

  (2)判断:

  (1)4/7是把单位“1”分成7份,表示这样4份的数。

  (2)男生人数占全班人数的 ,是把全班人数看作单位 “1”。

  (3)把一堆苹果平均分成6份,表示这样5份的数是6/5 。

  (3)把全班48个同学平均分成6组,每组8个同学。

  3个同学是这个小组人数的几分之几?

  3个同学是全班人数的几分之几?

  讨论:同样是3个同学,为什么分别用3/8和3/48来表示。

  四、总结

  这节课我们学习了什么?它的内容是什么?我们在用分数的时候需要注意些什么呢?

分数的意义教案 篇3

  教学内容:教科书第36页例1、“试一试”“练一练”,练习六第1-5题。

  教学目标:

  1.使同学初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。

  2.使同学在说明所表示的意义的过程中,进一步培养分析、综合与笼统、概括的能力,感受分数与生活的联系,增强数学学习的信心。

  教学重点:正确理解分数的意义和单位“1”的含义。

  教学难点:引导同学自主概括出分数的意义。

  教学对策:通过创设互相协作、积极探索的学习情境,组织同学动手操作、动脑考虑,自主探索,教师适时点拨,引导和启迪同学考虑。

  教学准备:教学光盘

  教学过程:

  一、揭题。

  二、新授。

  1.教学例1

  出示例1中的一组图

  请大家根据每幅图的意思,用分数表示每个图中的涂色局部。写出分数后,再想一想:每个分数各表示什么?在小组内交流。

  同学汇报所填写的分数,你认为这些图中分别是把什么平均分的?

  一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。

  左起第四个图形与前三个图形有什么不同?

  一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

  (1)在这几个图形中,分别把什么看成单位“1”的?

  (2)分别把单位“1”平均分成了几份?用分数表示这样的几份?

  (3)从这些例子看,怎样的数叫作分数?

  拿12根小棒自已发明一个分数

  说说你是怎么做的?

  假如老师要表示6根小棒可以用什么分数表示?

  2. 教学“试一试”

  同学在小组内说说上面每个分数的分数单位,以和各有多少个这样的分数单位。

  反馈交流时,教师请同学同桌两人合作回答,一人说分数,另一人说分数单位。

  3.完成“练一练”

  各图中的涂色局部怎样用分数表示?请大家在书上填空。说说是怎样想的。

  每个分数的分数单位是多少?各有几个这样的分数单位?

  三、巩固

  1.做练习六的第1题

  每个分数的分母与分数单位有什么联系?

  2.做练习六的第2题

  先让同学在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。

  同样是三分之二,为什么涂色桃子的个数不同?

  3.做练习六的第3题

  照样子说说题中每个分数的意义。

  在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1

  4. 做练习六的第4题

  先让同学看图指一指直线上从几到几的这一段可以表示单位“1”。再让同学中直线上的点表示各分数。然后让同学说说各是怎样想的`。

  5. 做练习六的第5题

  同学独立完成后,说说所填写的两个分数有什么不同。

  这两个分数都是把12枝铅笔看作单位“1”平均分后得到的;第一个分数要把单位1平均分成12份,第二个分数要把单位1平均分成2份。

  四、总结。这节课学习了哪些内容?

  教学反思:分数意义的归纳鼓励同学用自身的语言说出,切实做到了淡化概念,注重实质。使同学建构的过程得以凸显,内化的知识得到外显。特别是“若干”一词,扣得很有价值,让同学做到了真正理解,使同学在新情景中实现迁移,举一反三。

  授后小记

  早在三年级的时候同学已经初步认识了分数的意义,本课主要让同学弄清“单位‘1’”和分数单位的意义。

  1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以看作单位“1”。

  2、将单位“1”平均分成若干份,表示这样一份的数叫做分数单位。

  同学的练习中,“‘一节课的时间是2/3小时’的分数意义”一题中把什么看作单位“1“个别同学仍有一定困难。

分数的意义教案 篇4

  教学内容

  苏教版九年义务教育六年制小学数学第十册第73~75页。

  教学目标

  1. 在初步认识分数的基础上,经历动手操作、自主探索、合作交流的过程,进一步理解分数的意义;弄清分子、分母、分数单位的含义;掌握分数的读写方法。

  2. 培养初步的观察能力、动手操作能力、抽象概括能力和与同伴合作学习的意识。

  教学过程

  一、 创设情境,温故知新

  1. 创设猜谜情境。

  师:用以下成语各打一个数。

  一分为二(1/2) 百里挑一(1/100)

  七上八下(7/8) 十拿九稳(9/10)

  [反思:以有趣的猜谜引入,增添了教学情趣,拓宽了学生视域,体现了学科之间的联系。]

  2. 寻找认知起点。

  师:(指1/2、1/100、7/8、9/10)这些都是什么数?除了这几个分数,你还知道其他的分数吗?请你在纸上写一个分数,并读给同桌听。

  师:你已经知道了哪些有关分数的知识?

  大多数学生知道分数各部分的名称,并且会读、写分数,有的学生还会计算同分母分数加减法,知道真分数和假分数。

  师:你还想知道什么?

  根据学生发言,揭示今天学习的内容:分数的意义。(板书课题)

  [反思:通过简短的师生对话,摸清了学生的已有经验和知识基础,找准了教学的现实起点。]

  二、 合作交流,探究意义

  1. 操作。

  师:1/2可以表示什么?为了便于大家研究,老师为每个小组提供了一些动手操作的材料:(一个圆片、一盒水彩笔、6只熊猫图、8朵花图等)请每人用拿到的材料来表示1/2。

  学生操作后,小组交流,教师巡视并参与、指导小组讨论。

  [反思:从学生的学习实际出发,为每一个学习小组提供了丰富的、有结构的学习材料,尊重了学生的差异,做到了人尽其才,材尽其用。让学生在小组内交流,保证每个学生都有表达的机会,使个体参与落到了实处。同时,学生在相互倾听、相互补充的过程中,能够不断丰富自己对分数的直观感受。教师参与讨论,可以了解小组讨论的真实情况,便于有效地指导小组合作,调控教学进程。]

  2. 交流。

  师:哪一组愿意来说说,你们是怎样表示1/2的?

  生:我把这个圆片对折,其中的一份就是它的1/2。

  师:还有哪些同学是运用对折方法表示1/2的?

  每组的1号、2号、3号同学都把材料举了起来。

  生:3只熊猫是6只熊猫的1/2。

  生:4朵花是8朵花的1/2。

  师:(指4号同学)你是怎样表示一盒水彩笔的1/2的?

  生:一盒水彩笔有12枝,把这盒水彩笔平均分成2份,每份是6枝,6枝是这盒水彩笔的1/2。

  师:每盒水彩笔的1/2都是6枝吗?为什么?

  生:我用9枝表示这盒水彩笔的1/2,因为这盒水彩笔共有18枝。

  师:刚才同学们用不同的材料表示了1/2,现在老师把你们说的用图表示出来(出示图:把一个圆平均分成2份,在每份中都写上1/2)。是不是这样?

  [反思:面对各个小组众多的合作学习成果,选取一组作中心发言,节约了教学时间,提高了效率。把不同材料表示的1/2用直观图表示出来,有利于学生把握1/2的本质。]

  3. 归纳。

  师:刚才同学们在表示1/2的过程中,有什么相同的地方?(板书:平均分)有什么不同的地方?(分的材料不同)

  师:有的是一个圆片,也就是一个物体,(板书:一个物体)也有的是一个计量单位,如1米长的绳子,(板书:一个计量单位)还有的是由几个物体组成的,如一盒水彩笔、6只熊猫、8朵花,我们称它们为一个整体。(板书:一个整体)你还知道哪些事物可以看作一个整体吗?

  生:一个班级。

  生:一摞本子。

  ……

  师:一个物体、一个计量单位、一些物体组成的整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。(在“一个物体、一个计量单位、一个整体”上用彩色粉笔覆盖板书:单位“1”)

  师:既然一个物体、一个计量单位、一个整体都可以看作单位“1”,那么我们刚才表示1/2的过程就可以概括成把单位“1”平均分成2份,表示这样一份的数就是1/2(板书)。1/2还可以表示什么?

  ……

  师:只要把单位“1”平均分成2份,表示这样一份的数,都可以用1/2来表示。

  [反思:对操作过程的回溯、反思、归纳、推演,使学生认识并理解了分数意义中的两个重要内涵:平均分和单位“1”。]

  4. 拓展。

  红

  黄

  蓝

  (1) 出示:

  师:红色部分用分数怎样表示?(1/3)黄色部分、蓝色部分呢?

  生:都可以用1/3表示。

  师:为什么都用1/3表示?

  生:因为都是把这个长方形平均分成3份,表示这样的一份的数。

  师:黄色部分和蓝色部分共占这个长方形的几分之几?(2/3)

  (2) 出示:○○○●●●

  师:请用分数表示3个红色的圆。

  生:1/2。

  生:3/6。

  师:为什么同样是3个红色的圆,可以用两个不同的分数表示?你是怎样想的?

  生:把6个圆平均分成2份,3个红色的圆是1份,占1/2。

  生:把6个圆平均分成6份,3个红色的圆是3份,占3/6。

  [反思:从1/2扩展到几分之一,从几分之一扩展到几分之几,学生对分数意义的认识变得更加丰富、厚实。用分数表示3个红色的圆,既有利于学生体会平均分的份数和表示的份数之间的关系,又为后继学习分数的基本性质作了铺垫。]

  5. 概括。

  师:我们通过动手操作表示了1/2,并且能根据图意说出相应的分数。知道了把单位“1”平均分成几份,表示这样一份的数就是几分之一,表示这样几份的数就是几分之几。那么,到底什么是分数呢?

  生:把单位“1”平均分成几份,表示这样几份的数,叫做分数。

  师:他说得完整吗?谁来补充?

  生:把单位“1”平均分成几份,表示这样一份或几份的数,叫做分数。

  师:打开书第74页,看书上是怎么说的。还有什么问题?

  [反思:在学生对分数形成了丰富体验的基础上,教师通过问题及板书的引导,及时让学生概括分数的意义,教材的逻辑意义成功地转化为学生的心理意义。]

  6. 解释。

  师:(指1/100、7/8、9/10)根据分数的意义,你能说说这几个分数所表示的意义吗?(学生回答)

  师:你能结合这几个分数说一说,分数的分子和分母各表示什么意思吗?

  生:在一个分数中,分母表示平均分的份数,分子表示有这样的多少份。

  师:把单位“1”平均分成若干份,表示这样一份的数,叫做“分数单位”。(板书:分数单位)

  师:1/100的.分数单位是什么?它有几个1/100?7/8、9/10呢?

  指名回答后,同桌互相交流自己写的分数的意义及分数单位是什么。

  [反思:在学生初步认识分数的意义之后,让学生由抽象回到具体,结合具体的分数解释意义,能深化学生对分数意义的认识。同时,在这一过程中,学生进一步感悟了分子、分母的意义。让学生同桌之间交流自己写的分数和分数单位,扩大了参与面,增加了练习量。]

  三、 巩固反馈,深化理解

  1. 书面练习。

  完成练习十三第1~3题。

  其中阴影部分不能用1/3表示。让学生猜测,可以用几分之几表示,并利用教科书第74页“练一练”第1题的图形,验证猜测是否正确。

  [反思:这样处理,一方面用活教材,使分散的习题成为有机的整体,另一方面使学生体会到有时表面上没有平均分的图形也可以进一步细分,进而用分数表示,深化了对分数意义的认识,培养了思维的深刻性。]

  2. 用分数解决实际问题。

  (1) 请发过言的同学站起来,发过言的人数占全班人数的几分之几?

  (2) 找一个未发言的同学站起来,问:你占小组人数的几分之几?占全班人数的几分之几?占全校人数的几分之几?同样是一个人,为什么表示的分数在变化?

  (3) 现在发过言的人数占全班的几分之几?为什么变化了?

  [反思:用分数解决实际问题的过程既是对课堂学习状况的调查,又是对课堂学习内容的升华。由于问题来自于学生的学习实际,既能有效地激发学生参与学习活动的热情,又对部分发言不够积极的学生进行了恰当的教育和引导。]

  四、 课堂总结(略)

分数的意义教案 篇5

  课题一:(一)

  教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。

  教学重点 理解。

  教学用具 教材第84~85页有关的投影片、线段图等。

  教学过程

  一、创设情境

  1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。

  2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。

  3.揭示课题

  在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。

  二、探索研究

  1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:

  (1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?

  (2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )

  (3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?

  如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?

  2、进一步认识单位1。

  以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:

  (1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?

  (2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?

  (3)练习:说出下图中涂色的部分各占整体的几分之几。

  ● ●

  ●○○○○○ ● ●

  ●○○○○○ ● ●

  ● ○

  ● ○

  ● ○

  3.揭示。

  (1)观察以上教学过程 所形成的板书。

  一个物体

  计量单位 单位1

  一些物体

  告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)

  (2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?

  (3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

  4.练习。练习十八第1、2、3题。

  5.教学分数各部分名称、分数单位。分数的读、写法。

  (1)教师任意写出几个分数,让学生说出分数各部分的名称。

  (2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?

  (3)认识分数单位,初步了解分数单位的特点。

  练习:① 的分数单位是,它有个 。

  ② 的分数单位是,它有个 。

  ③个 是。

  ④ 是个 。

  (4)想一想:读、写分数的方法是怎样的?

  读作 ,表示 个 。

  读作 ,表示有 个 。

  三、课堂实践

  1. 表示把平均分成份,表示这样的份的数。

  2. 读作,分数单位是,再添上个这样的单位是整数1。

  四、课堂小结

  1、什么叫做分数?如何理解单位1?

  2、什么是分数单位?分数单位有什么特点?

  五、课堂作业

  练习十八第5、6题。

  课题二:(二)

  教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。

  教学重点 理解。

  教学过程

  一、 创设情境

  1.用分数表示图中阴影部分。

  ▲▲ ▲▲

  △△ ▲▲

  2.口答:什么是分数?如何理解单位1?

  3.填空。

  是个 。 的分数单位是

  7个 是。 的分数单位是

  二、揭示课题

  出示学习内容及学习目标。板书课题:。

  三、探索研究

  1.认识用直线上的点表示分数。

  分数也是一个数,也可以用直线(数轴)上的点来表示。

  (1)认识用直线上的点表示分数的方法。

  ①画一条水平直线,在直线上画出等长的距离表示0、1、2。

  ②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :

  0 1 2

  (2)提问:如果要在直线上表示 ,该怎样画?启发点拨。

  ①先画什么?再画什么?

  ②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?

  ③ 应用直线上的哪一个点来表示?

  (3)如果要在这条直线上表示分母是10的分数,该怎么办?

  这条直线上0~1之间的`第七个点表示的分数是多少?

  2.练习。

  (1)教材第87页下面做一做的第2题。

  (2)用直线上的点表示 、 、 、 。

  3.教学例1。

  (1)指名读题,帮助学生理解题意。

  (2)出示讨论题,同桌讨论。

  ①这题中把什么看作单位1?

  ②1人占这个整体的几分之几?

  ③5人占这个整体的几分之几?

  (3)汇报讨论结果,板书答语。

  (4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。

  4、练习。教材第88页的做一做。

  四、课堂实践

  1.教材第87页的做一做。

  2.用直线上的点表示 下面的分数: 、 、 、 、 。

  3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?

  五、课堂小结

  1.用直线上的点表示分数的方法是怎样的?

  2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?

  六、课堂作业

  练习十八第4、7、8题。

  课题三:分数与除法的关系

  教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。

  教学重点 理解和掌握分数与除法的关系。

  教学用具 投影片(教材第89页的饼图)

  教学过程

  一、创设情境

  1.填空。

  (1) 表示。

  (2) 的分数单位是,它有个这样的分数单位。

  2.计算。(1)58 (2)49

  二、揭示课题

  我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)

  三、探索研究

  1.教学例2

  (1)读题后,指导学生根据整数除法的意义列出算式。板书:

  13=

  (2)讨论:1 除以3结果是多少?你是怎样想的?

  (3)教师画出线段示意图,帮助学生理解。

  1米

  ?

  通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。

  (3)写出答语。

  2.教学例3。

  (1)读题后,引导学生列出算式:34。

  (2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  (3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。

  (4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,

  34=(块)。

  由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。

  3、认识分数与除法的关系。

  (1)引导学生观察13=、34=这两道算式,想一想:

  ①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?

  ②用分数表示商时,除式里的被除数、除数分别是分数里的什么?

  ③分数与除法的关系是怎样的?

  (2)教师总结,学生发言,归纳出以下三点:

  ①分数可以表示整数除法的商;

  ②在表示整数除法的商时,要用除数作分母、被除数作分子;

  ③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)

  分数与除法的关系可以表示成下面的形式:

  板书:被除数除数=

  (3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?

  板书:ab=(b0)

  (4)想一想:这里的b能为0吗?为什么?

  启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。

  (5)再想一想:分数与除法有区别吗?区别在哪里?

  着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。

  4、学生阅读教材,质疑问难。

  四、课堂实践

  教材第91页中间的做一做。

  五、课堂小结。

  引导学生回顾全课,说说学到了什么,自我总结,教师作补充。

  六、课堂作业 。练习十九第1~3题。

  课题四:分数与除法关系的应用

  教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。

  教学重点 求一个数是另一个数的几分之几的应用题。。

  教学过程

  一、创设情境

  1.口答:30分米=米 180分=时

  练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

  2.说一说:分数与除法的关系?

  3.用分数表示下面各算式的商。

  (1)79(2)47(3)815(4)5吨8吨

  二、揭示课题

  这节课学习分数与除法关系的应用。(板书课题)

  三、探索研究

  1.出示例4。

  (1)出示例4并审题。

  (2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?

  让全体学生尝试练习。

  (3)集体订正。订正时让学生说说是怎样想的?

  (4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?

  重点说明当两数相除得不到整数商时,其结果可以用分数表示。

  2.练习教材第91页下面的做一做。

  3.教学例5 。

  (1)出示教材第92页复习题,让学生独立列式解答。

  集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?

  板书:3010=3

  答:鸡的只数是鸭的3倍。

  (2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。

  讨论后师生共同评价,主要有两种方法:

  ①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。

  ②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。

  (3)比较复习题与例5异同点。

  通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。

  4、练习。教材第92页做一做第1、2题。

  四、课堂实践

  1.在括号里填上适当的分数。

  8厘米=米 146千克=吨 23时=日

  41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米

  2.五(1)班有女生25人,比男生多4人。

  (1)男生占全班人数的几分之几?

  (2)女生占全班人数的几分之几?

  (3)男生人数是女生人数的几分之几?

  五、课堂小结

  1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?

  2、求一个数是另一个数的几分之几应用题的解答方法是什么?

  六、课堂作业

  练习十九第4~7题。

  七、思考题。

  练习十九第8题及思考题。

  课题五:分数大小的比较

  教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。

  教学重点 掌握比较分数大小的方法。

  教学用具 投影片(教材例6、例7直观图)

  教学过程

  一、创设情境

  1.教材第93页复习题,请一名学生口答。

  2.看图写分数,并比较分数的大小。

  0 1

  二、揭示课题

  以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)

  三、探索研究

  1.同分母分数的大小比较。

  (1)比较 和 的大小。

  出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )

  如果没有直观图,该怎样比较 与 的大小呢?

  因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。

  (2)用类似的方法引导学生比较 和 的大小。

  (3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)

  板书:分母相同的两个分数,分子大的分数比较大。

  2.练习:教材第93页做一做。

  3.同分子分数的大小比较。

  (1)比较 和 的大小。

  ①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。

  ② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。

  (2)比较 和 的大小。

  用类似的方法进行比较并得出结论: < 。

  (3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?

  板书:分子相同的两个分数,分母小的分数比较大。

  4、练习:教材第95页的做一做。

  四、课堂小结

  比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。

  五、课堂实践

  1.练习二十第1题。

  2.练习二十第3题。

  六、课堂作业

  练习二十第2、4题。

  七、思考练习

  在括号里填上合适的数

  < < < > >

分数的意义教案 篇6

  教学内容

  教科书第1~3页例1,课堂活动第1题及练习一1~4题。

  1.让学生理解百分数的意义,能正确读写百分数,知道百分数与分数的区别。

  2.在学生探究数学的过程中培养学生的抽象概括能力和比较分析能力。

  3.使学生感受百分数与生活的联系,体会数学的应用价值,激发学生学习数学的兴趣。

  理解百分数的意义。

  教具:小黑板。

  学具:学生收集的生活中的百分数。

  一、联系生活,引入新课

  (1)学生汇报收集的生活中的百分数。

  课前,老师让大家收集生活中的百分数,找到了吗?在什么地方找到的?

  (2)人们在生活中为什么这么喜欢用百分数呢?这节课咱们就一起来研究。(揭示课题)你想了解百分数的哪些知识?

  二、自主探索,学习新知

  1.理解百分数的具体含义

  (1)出示麻辣烫火锅配料成分,根据百分数信息分析麻辣原因。

  辣椒占45%,花椒占38%,其他成分占17%。

  教师:知道火锅为什么这么麻?这么辣吗?

  (2)分析:辣椒占45%表示的意义。

  分母100表示什么?45呢?

  45%是什么数与什么数比较的结果?

  (3)花椒占38%,其他成分占17%的意义又该怎样理解?

  小结:如果把火锅配料的成分看做是100份,辣椒占了其中的45份,花椒占了38份,其他成分仅仅占了17份,难怪它又麻又辣!

  2.结合身边的实例分析,进一步理解百分数的意义

  出示某市学生近视率的信息。

  (1)说一说其中每个百分数表示的意义。(2)体会百分数的优点,观察比较这组数据,你能发现什么?

  (3)情感目标教育渗透。看到这组数据,你有什么感想?想对同学们说什么?

  3.抽象概括出百分数的意义

  刚才我们了解了每一个具体的百分数的含义,那么现在你能用自己的话说一说百分数表示什么意义吗?(先独立思考,再小组交流)

  三、拓展应用,促进发展

  1.招聘“学校新闻小记者”的活动

  教师:寻找百分数信息,说百分数的意义,谈自己的感想。

  (1)在某市学校附近的小摊中,合格的.食品仅是30%。

  (2)按照规划,到20xx年我国城市污水处理率不低于60%,重点城市不低于70%。

  (3)我国的耕地面积占世界总耕地面积的7%,我国人口占世界总人口的22%。

  2.汇报自己手中收集的百分数

  四人小组汇报自己收集的每个百分数的意义。

  3.写百分数

  (1)百分数该怎么写呢?(学生观察,教师示范)

  教师:先写什么?再写什么?写时要注意什么?

  (2)书写比赛。(让学生在20秒的时间内写百分数,看谁写得又快又好。)

  如果老师要求完成的任务是写10个,能用一个百分数表示自己完成的情况吗?

  教师:如果写11个,能用百分数表示吗?

  4.完成练习一的第1题

  5.百分数与分数比较

  (1)百分数跟我们学过的哪种数比较相似?有什么联系与区别?(小组交流)

  (2)判断。下面哪个分数可以用百分数的形式表示。

  2510080100kG……

  小结:百分数是一种特殊的分数,表示两个数之间的倍数关系,它的后面不能写单位名称;而分数既可以表示一个具体的数量,又可以表示两个数之间的倍数关系;如果分数表示具体的数量时,它的后面就可以写单位;如果表示倍数关系时,它的后面就不写单位。

  6.百分数联想风暴

  观察格子图,你能快速地联想到哪些百分数?(涂50个黑色格子,6个红色格子,44个白色格子)

  教师:今天这节课你有什么收获?你能用百分数总结这节课的收获吗?

分数的意义教案 篇7

  一 教学内容:

  分数的产生

  教材第60 页的内容。

  二 教学目标:

  1 .使学生知道分数的产生过程。

  2 .使学生感受到数学知识同样是在人类的生产和生活实践中产生的。

  三 重点难点:

  理解分数的产生。

  四 教具准备:

  米尺,挂图,几张长方形、正方形的纸。

  五 教学过程:

  (一)导入

  同学们,我们在三年级时已经初步认识了分数,还记得我们都学了分数的哪些知识吗?

  学生通过回忆说出已学过的分数知识。

  1 .复习分数各部分名称。

  ( 1 )举一个分数的例子。

  ( 2 )以 为例,说说分数的各部分名称。

  2 … … 分子

  — … … 分数线

  3 … … 分母

  ( 3 )还可以用什么来表示分数?(用图、线段或正方形来表示分数。)请你用线段图表示 。

  把正方形纸平均分后,画出阴影,用分数表示阴影部分。

  (二)教学实施

  1 .测量。

  师生合作测量黑板的长,观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)

  2 .计算。

  老师把一个西红柿平均分给两个同学,每人分得的西红柿的个数怎样表示?( l ÷ 2 的结果不能用整数表示。)

  3 .讲述。

  在人们实际生产和生活中,人类在测量和计算的时候,往往不能得到整数的'结果,这就需要用一种新的数来表示,这样就产生了新的数—分数。最初,人们只认识一些简单的分数,如二分之一、三分之一等。我国是世界上发明和使用分数比较早的国家之一。

  4 .资料介绍。

  请学生结合自己课前查找的资料说说分数是怎样产生的。

  (三)课堂小结

  同学们相互交流本节课的学习收获。

【分数的意义教案】相关文章:

分数的意义教案03-19

分数的意义教案01-24

《分数的意义》教案01-20

分数的意义的教案04-21

《分数的意义》教案12-18

《分数的意义》教案范文08-02

【推荐】分数的意义教案02-27

分数的意义教案【热】02-21

【精】分数的意义教案02-19

【荐】分数的意义教案02-20