当前位置:好文网>实用文>教案>《近似数》教案

《近似数》教案

时间:2023-03-15 09:24:05 教案 我要投稿
  • 相关推荐

《近似数》教案15篇

  作为一位优秀的人民教师,就难以避免地要准备教案,教案是教学活动的依据,有着重要的地位。那么写教案需要注意哪些问题呢?下面是小编帮大家整理的《近似数》教案,欢迎阅读与收藏。

《近似数》教案15篇

《近似数》教案1

  教学目标

  1、使学生会根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似值。

  2、培养学生根据具体情况解决实际问题的能力。

  教学重点

  用“四舍五人法”截取积是小数的近似值的一般方法。

  教学难点

  根据题目要求与实际需要,用“四舍五入法”截取积是小数的近似值。

  教学工具

  多媒体课件

  教学过程

  一、激发兴趣

  1、口算

  1.2×0.3、0.7×0.5、0.21×0.8、1.8×0.5

  1-0.82、.3+0.74、1.25×8、0.25×0.4

  2、用“四舍五入法”求出每个小数的近似数。(投影出示)

  2.095、4.307、1.8642

  思考并回答:(根据学生的回答填空)

  (1)怎样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?

  (2)按要求,它们的近似值各应是多少?

  3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

  二、尝试

  谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:

  1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?

  2、读题,找出已知所求。

  3、列式,板书:0.049×45。

  4、独立计算出结果,指名板演并集体订正,说一说是怎样算的。

  5、引导学生观察、思考:

  (1)积的小数位数这么多。可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。

  (2)保留一位小数,看哪一位?根据什么保留?

  (3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。

  6、专项练习(根据下面算式填空)

  3.4×0.91=3.094积保留一位小数是(),保留两位小数是()。

  7、计算下面各题。

  0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)

  三、运用

  一千克白菜的价钱是6.78元,妈妈买了0.8千克,应付多少题?(虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。)

  课后小结

  谁来小结一下今天所学的内容?

  课后习题

  1、根据下面算式填空。

  3.4×0.91=3.094

  积保留一位小数是( )积保留两位小数是( )

  2、两个因数的积保留两位小数的.近似数是3.58,准确值(三位数)可能是下面哪个数?

  3.059 3.578 3.574 3.583 3.585

  3、两个因数的积保留整数的近似数是14,精确值可能是哪些数?个位上的数是4,十分位的数是4、3、2、1、0;个位上的数是3,十分位上的数是5、6、7、8、9。

  板书

  积的近似数

  2.45×2.5≈6.13(元)

  竖式

  答:

《近似数》教案2

  一、教学目标

  (一)知识与技能

  1、认识“四舍五入”法是截取积的近似数的一般方法。

  2、掌握求小数乘法的积的近似数的方法。

  (二)过程与方法

  经历求小数乘法的积的近似数的过程,体验迁移的学习方法,培养学生应用数学知识解决实际问题的能力。

  (三)情感态度与价值观

  在学习活动中,激发学生的学习兴趣,感受知识源于生活。

  二、教学重点

  会用“四舍五入”法截取积是小数的近似数。

  三、教学难点

  能根据生活实际灵活截取积是小数的近似数。

  四、新授

  (一)导入(复习导入)

  师:在开始新课程之前,我们先回顾一下之前小数乘法学习了哪些内容?

  生:小数成整数和小数成小数。

  师:今天学习积的近似数。一说到求近似乎,想一想,我们四年级学过求什么数的近似数?

  生:求小数的近似数。

  师:还都记得怎么做吗?

  生:记得(忘了)。

  师:让我们先来热热身,看看谁掌握的最为牢固。

  (PPT展示题目)

  求下列小数的近似数,并说出你的思考过程。

  5.3456.2680.402

  要求:

  1、(精确到十分位)

  2、省略百分位后面的尾数。

  通过做题,总结规律:

  1、先确定保留的数位,在要保留的.数位下划条横线;

  2、将下一位上的数同“5”作比较,如果小于5,则舍掉;如果大于5或者等于5,则向前进1。(四舍五入法)

  3、取近似数时,若末尾的“0”起到占位的作用,则不能去掉

  (二)情景导入

  例:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少亿个嗅觉细胞?(得数保留一位小数)

  找同学读题两遍,让同学自己提取信息、列式,让同学到黑板上做题板书,并说出思考过程。

  0.049×45=2.205≈2.2(亿个)竖式略

  答:

  此处强调两点,一个单位,一个答句不能丢。

  (三)、经典练习

  0.95×0.95(得数保留一位小数)

  0.95×0.95=0.9025≈0.9(竖式略)

  想一想,若此题改为保留两位小数,怎么做?(做在练习本上)

  0.95×0.95=0.9025≈0.90(取近似数)

  (四)、做一做(书上)P11现学现练,加深印象。

  1、计算下面各题

  0.8×0.9=0.72≈0.7(得数保留一位小数)

  1.7×0.45=0.765≈0.77(得数保留两位小数)

  2、一种大米的价格是每千克3.85元,买2.5Kg应付多少钱?(联系实际生活,保留适当的小数位数)

  延伸:实际生活中,常用的纸币面值为元、角,所以保留一位小数即可!

  五、小结

  1、学生自己谈收获。

  2、老师总结课程重点。

《近似数》教案3

  教学内容:第20—21页例9

  教学目的:

  1.使学生初步学会“四舍五入“法求一个数的近似数。

  2.会写、会用“≈“。

  教学重点:用“四舍五入“法求一个数的近似数。

  教学难点:归纳求万以内近似数得方法。

  教学过程:

  一、调查汇报有关数据。

  1.学生汇报调查情况。

  2.根据学生的调查情况引入新课:

  (1)教师根据学生的'调查情况进行板书。

  (2)通过实例向学生说明什么是近似数。

  二、自主探索,领悟新知

  1.教师在学生汇报的基础上,出示一组与学生或生活相关的数据、让学生直接说出它们大约是几百。

  (1)教师出示数据。

  (2)学生汇报说明自己的想法,教师板书:

  208 200 987 1000

  927 900 892 900

  517 500 671 700

  439400 152 400

  2.在出示几个百位上的数字相同,十位数上的数字是4、5、6的三位数,让学生讨论他们大约是几百?并说明理由。

  (1)学生讨论汇报。

  (2)教师根据学生汇报点拨引导。

  在肯定学生的判断方法后提出问题,这种方法的确能够判断一个数比较接近哪个整百数,即它的近似数,但是这种求法太麻烦,因为看到这个数,就要进行口算,有的数并不是一眼就能看出来,启发学生根据板书看一看有没有更方便的方法求一个数的近似数?

  (3)学生再`次讨论,教师巡视。

  (4)汇报交流,总结方法。

  (5)教师小结,提炼方法。

  3.学习准确数和近似数的表示方法。

  教师利用板书进行引导,教学约等号的写法和读法,完善板书。

  4.反馈练习,巩固方法。

  做第20页的“做一做”

  三、总结交流,提炼方法

  (1)学生先在小组中讨论分析求万以内数的近似数的方法,然后汇报。

  (2)教师总结。

  (3)学生看书。

  四、巩固练习,强化知识

  做练习五的第1题。

  五、课堂作业

  (1)当5 60≈6000时, 内取得数字可以是( )。

  (2)当4 89≈4000时, 内取得数字可以是( )。

  (3)求下面各数的近似数(省略最高位后面的尾数)

  485≈ 16498≈ 2510≈ 40938≈ 76560≈

  板书:

  近似数和“四舍五入”法

  208≈200 987≈1000

  927≈900 892≈900

  517≈500 671≈700

  439≈400 152≈400

《近似数》教案4

  设计理念:

  培养学生收集数据、归纳总结知识和解决实际问题的能力。

  教学内容:

  北师大版11-12页《近似数》

  教材分析:

  近似数是在学生学习了本单元亿以内数的认识、读写和大数的比较和改写的基础上进行学习的,使学生进一步体会什么是近似数以及怎样求一个数的近似数,在本节知识学习中学生最容易出问题的环节是近似数的求法(位数的确定,是舍还是入),特别是需要进位时,前面是9的连续进位,应重视数位的确定和数字的入舍的教学。

  教学目标:

  1、结合具体情境使学生理解近似数在实际生活中的作用,能用四舍五入法求一个数的近似数。

  2、提高学生收集信息的能力和解决实际问题的能力。

  3、培养学生的数感,感受数学与生活的密切联系。

  教学重点:

  1、掌握用四舍五入法求一个数的近似数的方法。

  2、正确进行近似数的改写。

  教学关键:

  找准数位,看清入舍,注意约等号。

  教学准备:

  课前收集的数据资料

  教学过程:

  一、认识近似数

  (1)明确准确数和近似数。

  师:同学们说一说你家里有几口人?我们这个班一共有多少同学?你们小组又有几个同学呢?这些数都是准确数吗?

  师:那么我们伟大的祖国幅员辽阔,人口众多,哪位同学知道我国现在的人口有多少呢?我国的国土面积是多少呢?(生答)

  师: 13亿是一个准确数吗?960万平方千米呢?

  这样的数又是什么数呢?

  点拨:像你家里有多少人,班里有多少同学等这样的数就是准确数。

  像我国人口大约有13亿,我国国土面积大约有960万平方千米,这样的数就是近似数,一般来说近似数前面都要带上大约两个字。

  (2)准确数与近似数的判别。

  ①学生以小组为单位把自己收集的数据按照准确数和近似数进行分类,并讨论这些数据所表示的实际意义。

  ②小组汇报,交流。

  二、求一个数的近似数

  提问:我们找到了这么多近似数,在生活中,人们经常使用哪些方法得到一个数的近似数呢?(学生根据生活经验思考、发言)

  同学们提到用四舍五入法可以得到一个数的近似数,那么我们怎样理解四舍五入呢?怎样用四舍五入法求一个数的近似数呢?你愿意尝试一下吗?

  请同学们打开课本11页看填一填 说一说

  出示:某市在校学生今年共植树148264棵。

  (1)四舍五入到十位:约148260棵;

  (2)四舍五入到百位:约148300棵;

  观察第一组数据小组讨论:①原数的个位是几?四舍五入后是几?它的十位有变化吗?说明什么?

  观察第二组数据小组讨论:②原数的.十位是几?四舍五入后十位是几?它的百位发生了什么变化?说明什么?

  提问:通过以上观察分析你们从中有什么发现?(四舍五入到十位要找准什么位?入舍什么位?四舍五入到百位、千位、万位呢?)

  学生尝试完成

  四舍五入到千位:约( )棵;

  四舍五入到万位:约( )棵。

  知识反馈,强调重点。

  小结:把一个数四舍五入到某一位,要看后一位,如果后一位够5,就向前一位入1(五入),尾数改写成0;如果后一位不够5,舍去(四舍),尾数改写成 0。在四舍五入时关键是要找准数位,看清入舍。

  学生自学把一个数改写成以万为单位的近似数。

  ①出示:148264( )万

  学生独立完成,同桌交流,说明方法。

  (提示:①找准数位 ②用四舍五入法省略尾数并添写单位 ⑶用什么符号)

  是约等号,读作约等号。

  ②学生两人结合互相出题,并检查。

  引导学生总结把一个数改写成以万为单位的近似数的方法,强调约等号的使用。

  三、作业设计

  (1)判断题

  ①新绛县人口有32万。 ( )

  ②10000010万 ( )

  (2)教材第12页第1题。

  在做之前,可以先带领全班同学共同做31777精确到万位是多少这道题。学生说方法,然后独立完成后面的练习。做完之后,可以请学生把这些省市的森林面积按一定顺序排列。

  (3)教材第12页第三题。(强调连续进位的方法)

  (4)思维训练:括号里能填几?

  49( )83550万 49( )83549万

  (5)课后延伸

  阅读13页数学知识,搜集信息,了解数的发展史。

  四、课堂总结

  今天我们学习了哪些内容?你有什么收获?

  板书设计:

  近 似 数

  35人准确数 约13亿近似数

  某市在校学生今年共植树148264棵。

  四舍五入到十位:约148260棵;

  四舍五入到百位:约148300棵;

  四舍五入到千位:约( )棵;

  四舍五入到万位:约( )棵。

  148264( )万

  是约等号,读作约等号。

《近似数》教案5

  一.教学内容:

  求出积的近似数和有关它的一些内容。

  二.教学目的:

  (1)进一步巩固小数乘法计算。

  (2)根据要求,会用“四舍五入法”取积的近似值。

  (3)体会“四舍五入法”是解决实际问题的重要工具,培养学生的实践能力和思维的灵活性。

  三.教学重、难点:

  重点:应用“四舍五入法”取积的近似数。难点:要根据实际

  需要求出积的近似值。

  四.教学过程:

  (一).复习:

  1.保留一位小数

  2.34 5.68

  2.保留两位小数

  4.256 34.708

  3.保留整数

  5.67 6.502

  (二).导入课:

  1.老师出示几个语句,你知道那些句子表达是准确数,哪些是近似数。你是根据句中的哪些字词来判断的呢?

  (1)我们班有28人

  (2)这个箱子里大约有23个苹果。

  (3)小明的身高是172厘米,体重约60千克。

  2.我们生活中有时需要很准确的数字,但是有些时候往往不需要知道很精确的数字,只需要知道它们的近似值就可以了,那我们一般用什么方法来取近似值生:四舍五入法

  3.师:现在就用“四舍五入法”求出小数的近似值。保留整数保留一位小数保留两位小数2.095 4.307思考并回答:怎么样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,去它们的近似值?按要求,它们的近似值各应是多少?

  4.揭题谈话:在实际应用中,小数乘法乘得积往往不需要保留很多的小数位数,这时可根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似数。

  板书:积的近似数

  (三).探求新知:

  1.出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45狗约有多少亿个嗅觉细胞?(得数保留一位小数)

  (1)读题,找出已知所求,列式计算,板书:0.04945

  (2)指明板演,集体订正。

  (3)按要求,积保留一位小数,怎么保留?结果怎样?

  0.49 ×45 ≈ 2.2(亿个)

  师:今天我们学习了用四舍五入法取积的近似数,那么谁来归纳一下?生答,互相补充,归纳概括:我们求积的`近似数时,首先求出积的准确值,然后明确要保留的小数位数,再看比要保留的小数位数多一位上的数字,按“四舍五入”法截取积的近似数。

  (四).巩固练习:

  1.填空题:

  (1).积是4.56保留一位小数( )

  (2).积是6.075保留两位小数( )

  (3).积是45.9保留整数( )

  2.要完成第10页的“学一学”

  (五).小结:

  四舍五入法:

  0------4要舍去。

  5------9向前进一位,再舍去。

  (按着要求再用“四舍五入法”)

  五.布置作业:

  第13页1 . 2

  教学反思:

  (一).优点:

  (1)从实际问题中取材,使学生更快进入新知学习中,也能让学生体会源于实际生活而且于生活,激发学生学习的兴趣。

  (2)在出示图片后让学生自己提取信息、提问、解答,意在培养学生提取信息、分析问题、解决问题的能力。

  (二)不足:

  (1)引入太冗长,“四舍五入法”是四年级所学的内容,对五年级学生来说不是难点,因此可以直接入题。重难点把握不是很准确,没能很好分析学生的学情。

  (2)内容过于简单,不够充实,练习的时间过长了。可以再根据生活中实际情况深入内容,渗透“进一法”和“去尾法”。

  (3)在上课时,由于自身经验不足,在对及时抓住学生的反馈给予及时的评价和引申方面有很大欠缺,比如:我在问学生你们想付给他多少钱时,学生的答案很多,有的说6元,有的说6.1元,这些我都没能及时抓住学生的反馈,完美地结合实际生活进行教学。

  (4)在巩固练习的习题设置上不懂得延伸,2、3两题设计意图有点重复,其实可以直接用其一进行延伸。

《近似数》教案6

  教学目标:

  教科书P96-97页的内容,求大数目的近似数 。

  教学要求:

  1、让学生知道近似数的含义,并会根据要求用四舍五入的 方法省略一个数的尾数,写出它的近似数。

  2、在认识近似数、理解近似数的过程中培养学生的估算意识。

  3、使学生体会近似数的含义,增强对近似数的感受,发展学生的数感。

  教学重难点:

  用四舍五入的方法求一个数的近似数

  教学准备:

  课前查资料,了解一些数量信息。

  教学过程:

  一、认识近似数

  1、读中感悟 :

  (1)出示:到20xx年末,我国共有公共图书馆2709个,图书馆藏书约43776 万册。

  到20xx年末,我国共有自然保护区1999个,自然保护区的面积大约 有14398万公顷。

  (2)学生读一读, 师:画线的四个数所表达的数量的准确程度是否一样?

  组织讨论,引入准确数、近似数的.概念 。

  像2709和1999 表示准确的数量 准确数

  像43776万和14398万表示大约的数,与实际比较接近的数 近似数

  生活中的一些事物的数量,有时不用精确的数来表示,而只是用一个与它比较接近的数来表示,这样的数是近似数。

  2、生活中再认识

  师:生活中的许多数量是用近似数表示的,你留心了吗?你在哪 见过或听过?(或课前同学们也搜集了一些数,请拿出你搜集到的资料,和同桌说说这些数是准确数还是近似数)

  回忆,交流 。

  说明:没有办法得到一个精确结果或没有必要用一个准确数表示 时,就用近似数 。

  3、读数,判断近似数

  过度:老师这里也搜集了几组数据,你能读出这些数,说说哪些是近似数吗?

  出示信息,要求读出,并说明哪些是近似数(或用想想做做 第1题)

  ①《中国昆虫名录》收录了当时已知的中国昆虫20069种。

  ②20xx年4月英国《自然》杂志报告说,全球昆虫可能仅有200万到 600万种。

  ③江阴市实验小学共有学生4502人。

  ④20xx年五一黄金周期间,苏州东方水城7天来共接待境内外游 客230万人次,旅游总收入约16亿元。

  指名读题 组织交流

  二、探索求一个近似数的方法

  1、出示例题

  下面是某市20xx年末全市人口情况统计。

  总计(人) 男性(人) 女性(人)

  970889 484204 486685

  先把男性和女性的人数分级,它们各接近四十几万?你能写出它们的近似数吗?

  2、求近似数的方法,一般采用四舍五入法

  (板书:四舍五入法)

  什么叫四舍五入法呢?请你自学书P96页下方的一段话。

  交流,老师解释。

  例如 48 4204 通过分级,我们知道大约有四十几万,然后看万位后一位,千位上是4,比5小,四舍去,所以

  (板书 480000

  48万)

  同样,486685怎样取近似数? 学生说,老师板书。

  970889呢? 自己坐在作业本上。注意格式。

  3、以万或亿作单位

  (1)对着前面判断的信息,提问这些近似数是以什么为单位的? 万或亿作单位写近似数有什么好处?

  以万或亿作单位的由于实际的需要、为了读写方便

  (2) 出示:283000 1970000000它们选用什么单位比较合适?

  集体讲评,说思考过程 。

  (3)比较:有何相同点和不同点?

  讨论得出:相同方法相同四舍五入,不同前者用0占位,后者省略尾数后用万或亿作 单位 。

  三、巩固练习

  完成第97页的想想做做,师指名回答,并纠正学生的错误的认识。

  四、课堂总结。

  通过这节课的学习,你有什么收获?

  五、课后延伸

  从报纸、杂志或网上收集一些近似数,在班级里交流

  六、作业设计:

  1、省略下面各数最高位后面的尾数,再写出近似数。

  705 385 1994 3208 9775

  2、用亿、作单位写出下面各数的近似数。

  8340000000 20680000000 980000000

  七、课堂作业

  完成相应的《三级训练》。

《近似数》教案7

  【教学目标】

  1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。

  2、通过学生自主探索、合作交流,培养学生的探索能力。

  【教学重点】

  使学生掌握求一个小数的近似数的方法。

  【教学难点】

  使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。

  【教具】

  多媒体课件

  【教学过程】:

  一、课前预习

  1、怎样用“四舍五入”法求出一位小数的近似数?

  2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?

  二、展示交流

  (一)创设情境,引入新知

  课件出示豆豆,看看小豆豆的身高是多少呢?

  今天下午我们就来研究求一个小数的近似数。

  (二)求小数的近似数的方法

  1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?

  2、探究新知

  (1)同桌讨论回忆什么是“四舍五入”法?

  (2)讨论尝试

  ①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。

  ②出示例1,讨论求0。984的近似数

  ③保留一位小数时,末尾的“0”为什么应该写呢?

  (3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。

  (三)将不是整万或整亿数改写成用“万”或“亿”作单位的数

  1、出示教材第74页例2

  ①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?

  ②结论:改写成用“亿”或“万”作单位的数。

  2、从算理入手,理解改写方法。

  ①讨论:怎样改写呢?

  ②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。

  三、检测反馈

  1、教材第74页上、下的.“做一做”。

  2、教材第75页练习十二第一、2题。第3、4题

  四、板书设计教

  求一个数的近似数

  四舍五入

  法

  保留两位小数0.984≈0.98 142800千米=14.28万千米

  保留一位小数0.984≈1.0 778330000千米=7.7833亿千米

  ≈7.8亿千米

  保留整数0.984≈1

  注意:在表示近似数时,小数末尾的0不能去掉

  教学反思:

  现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。

《近似数》教案8

  课题四:

  商的近似数

  教学内容:

  教科书第23页的例7和“做一做”中的题目。

  教学目的:

  1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.

  2、提高学生的比较、分析、判断的能力。

  教学过程:

  一、复习

  1.按“四舍五入法”,将下列各数保留一位小数.

  3.724.185.256.037.98

  2.按“四舍五入”法,将下列各数保留两位小数.

  1.4835.3478.7852.864

  7.6024.0035.8973.996

  做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

  二、新课

  1.教学例6.

  教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)

  教师问:保留一位小数,应该等于多少?表示计算到“角”。

  教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的.小数位数多除出一位,然后再“四舍五入”.)

  2.做第23页“做一做”中的题目.

  教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

  教师问:你解题时用了什么技巧?

  三、巩固练习

  1、求下面各数的近似数:

  3.81÷732÷42246.4÷13

  2、书上的作业。

《近似数》教案9

  教学目标:

  1.使学生掌握求小数乘法的积的近似数的方法。

  2.使学生经历求小数乘法的积的近似数的过程。

  3.使学生在解决实际问题中,进一步体会数学与生活的密切联系,培养实践能力的`灵活性。

  教学重点:

  掌握求小数乘法的积的近似数的方法。

  教学难点:

  根据要求与实际需要取积的近似数。

  教学准备:

  多媒体课件。

  教学过程:

  一、基础训练

  1.436保留整数、一位小数、两位小数分别是多少?

  15.7394精确到个位、十分位、百分位、千分位分别是多少?

  一般用什么方法取近似数?怎样用四舍五入法求出这些近似数?

  二、导入新课

  师:同学们你们知道什么单位的嗅觉最灵敏吗?

  生:狗,人们用狗来做侦探,看家。

  三、进入新课

  师出示教材11页情境图

  师:从图上你都看到了什么?

  生:描述画面内容。

  师:是呀,狗狗使用它灵敏的嗅觉发现坏人的。

  投影出示例6

  生:读题,理解题意。题中得知生活中和多地方不需要准确值,要近似数。

  1.尝试题

  师:怎样计算狗的嗅觉约有多少亿个嗅觉细胞呢?(求0.049的45倍是多少。)

  2.自学课本

  有困难的同学借助课本来学习

  3.尝试练习

  生:独立完成在练习本上。指名学生板演。

  0.049×45≈2.2(亿个)

  4.学生讨论

  师:充分展示学生出现的情况,组织学生讨论,探究。

  强调:横式后面写的是近似数所以要用约等号而不用等号。

  明确:保留一位小数,看哪位,根据什么保留?(看百分位,满5舍去后向前一位进一;小于5就直接舍去)保留两位小数呢?

  生:看千分位是几,千分位上是5舍去后向前一位进一。

  讨论:怎样求积的近似数?

  5.教师讲解

  小结:先求积,看保留小数的后一位,用“四舍五入法”取近似数,横式得数要用约等号。

  四、巩固练习

  1.11页做一做第1题.

  求近似数要注意什么?(计算准确,看清题目要求几位小数,积中小数点的位置)

  2.11页做一做第2题.

  明确为什么保留两位小数?(生活中没有比分更小的钱币)

  五、课堂作业

  练习三1~3题。

  六、小结:谈谈收获。

  练习题

  1.计算下面各题。

  0.8×0.9(得数保留一位小数)

  1.7×0.45(得数保留两位小数)

  2.一种大米的价格是每千克3.85元,买2.5千克应付多少钱?

  练习三

  1.按要求保留小数数位

  (1)保留一位小数

  1.2×1.40.37×8.43.14×3.9

  (2)保留两位小数

  0.86×1.22.34×0.151.05×0.26

  2.一幢大楼有21层,每层高2.84米。这幢大楼约高多少米?(得数保留整数)

  3.世界上的一台电子计算机很大,它的质量相当于6头5.85吨重的大象。这台计算机有多重?(得数保留整数)

《近似数》教案10

  一、素质教育目标

  (一)知识教学点

  1.使学生理解近似数和有效数字的意义

  2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字

  3.使学生了解近似数和有效数字是在实践中产生的.

  (二)能力训练点

  通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.

  (三)德育渗透点

  通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想

  (四)美育渗透点

  由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.

  二、学法引导

  1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识

  2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习

  三、重点、难点、疑点及解决办法

  1.重点:理解近似数的精确度和有效数字.

  2.难点:正确把握一个近似数的精确度及它的有效数字的个数.

  3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片

  六、师生互动活动设计

  教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.

  七、教学步骤

  (一)提出问题,创设情境

  师:有10千克苹果,平均分给3个人,应该怎样分?

  生:平均每人千克

  师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?

  生:不能

  师:哪怎么分

  生:取近似值

  师:板书课题

  【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性

  (二)探索新知,讲授新课

  师出示投影1

  下列实际问题中出现的数,哪些是精确数,哪些是近似数.

  (1)初一(1)有55名同学

  (2)地球的半径约为6370千米

  (3)中华人民共和国现在有31个省级行政单位

  (4)小明的身高接近1.6米

  学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的'例子.

  师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?

  启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.

  以开始提出的问题为例,揭示近似数的有关概念

  板书:

  1.精确度

  2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.

  例如:3.3有二个有效数字

  3.33有三个有效数字

  讨论:近似数0.038有几个有效数字,0.03080呢?

  【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②

  例1.(出示投影2)

  下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?

  (1)43.8(2).03086(3)2.4万

  学生口述解题过程,教者板书.

  对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.

  【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.

  巩固练习见课本122页练习2、3页

  例2(出示投影3)

  下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?

《近似数》教案11

  教学目的:

  ●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  ●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

  教学重点:能正确的求一个小数的近似数。

  教学难点:怎样准确的求一个小数的近似数。

  教学过程:

  一、导入新课

  师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?

  生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。

  师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)

  师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)

  师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。

  1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

  986534 58741 31200

  50047 398010 14870

  2、下面的□里可以填上哪些数字?

  32□645≈32万 47□05≈47万

  学生填完后,说一说是怎么想的。

  [以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]

  二、探究新知

  我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。

  师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?

  你是怎样得出豆豆身高的进似数的?

  师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?

  生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。

  生:

  (1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。

  (2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。

  引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。

  师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。

  (3)保留整数部分应怎样思考,注意什么问题呢?

  师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的`方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)

  (4)小结:

  问:求一个小数的近似数应注意什么?

  引导学生讨论知道:求一个小数的近似数要注意两点:

  ①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

  ②取近似值时,在保留的小数位里,小数末一位或几位是0的.0应当保留,不能丢掉。

  三、练习

  (1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。

  (2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)

  (3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。

  (4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。

  (5)出示租车说明,判断租多少辆车去出游?

  师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。

  四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。

《近似数》教案12

  教学目标:

  1、在测量情境中体会用近似数表示长度的必然性,能用近似数表示生活中的数量.

  2、能根据实际问题的需要四舍五入取近似值.

  3、对于由四舍五入法得到的近似数,能说出它精确到哪一位,它们有几个有效数字,是什么.

  教学重点:

  按要求取近似值,能说出它精确到哪一位,有几个有效数字,按精确到哪一位的要求,四舍五入取近似值.

  教学难点:

  指出较大数位的近似数的有效数字.

  教学过程:

  一、创设情景引入

  出示投影:78页彩图,学生组内合作讨论、交流解决问题.

  二、新课:

  (一)通过学生的活动,加深对近似数的`理解,并讲解例题1、2

  (二)练习:

  1、判断下列各数,哪些是准确数,哪些是近似数

  (1)某歌星在体育馆举办音乐会,大约有一万二千人参加;()

  (2)检查一双没洗过的手,发现带有各种细菌80000万个;()

  (3)张明家里养了5只鸡;()

  (4)1990年人口普查,我国的人口总数为11.6亿;()

  (5)小王身高为1.53米;(6)月球与地球相距约为38万千米;()

  (7)圆周率π取3.14156.()

  2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:

  (1)四舍五入到十分位___________;(2)四舍五入到百分位_________;

  (3)四舍五入到个位____________.

  一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.

  在上题中,小明得到的近似数分别精确到那一位.

  3、下面由四舍五入得到的近似数各精确到那一位

  0.320__________;123.3__________;5.60____________;204__________;

  5.93万____________;1.6×104_____________.

  4.小亮量得某人三级跳的距离是12.9546米,按下列要求取这个数的近似数:

  (1)精确到0.1____________;(2)精确到0.01_________;(3)精确到0.001_______.

  5.把数73600精确到千位得到的近似数是_______________

  精确到万位得到的近似数是_________________

  6.近似数3.70所表示的精确值a的范围是()

  (A)3.695≤a<3.705(B)3.6≤a<3.80

  (C)3.695<a≤3.705(D)3.700<a≤3.705

  7.下列数中,不能由四舍五入得到近似数38.5的数是()

  (A)38.53(B)38.56001(C)38.549(D)38.5099

  分析近似数8与8.0的差别

  (三)讲解精确度、有效数字的概念:

  对于一个近似数从____边第____个不是____的数字起,到________的数位止,所有的数字都叫做这个数的有效数字.

  如:1、0.03296精确到万分位是_______,有____个有效数字,它们是_________________

  2、数0.8050精确到_______位,有_____个有效数字,是_______________

  3、数4.8×105精确到_______位,有_____个有效数字,是_______________

  4、数5.31万精确到_______位,有_____个有效数字,是_______________

  四、讲解例题,解后反思,加深对相关知识的理解.

  练习:一箱雪梨的质量为20.95㎏,按下面的要求分别取值:

  (1)精确到10㎏是______㎏,有______个有效数字,它们是________

  (2)精确到1㎏是______㎏,有______个有效数字,它们是________

  (3)精确到0.1㎏是______㎏,有______个有效数字,它们是______

  五、小结:什么是有效数字?按精确到哪一位,求近似值时要注意什么?

  六、作业:P83习题1、2

《近似数》教案13

  教学目标

  (一)能正确地比较亿以内数的大小。

  (二)能把整万的数改写成用万作单位的数。

  (三)能正确地写出省略万后面尾数的近似数。

  (四)培养学生比较、分析的思维能力,养成良好的学习习惯。

  教学重点和难点

  重点:亿以内的数位顺序。

  难点:数位与位数的区别,省略万后面的尾数求近似数的方法。

  教具和学具

  投影片。

  教学过程设计

  (一)复习准备

  在下面○里填上>、<或=,再说一说你是怎样比较的?

  999○1010 601○564 687○678

  提问:

  1.第一组两个数你是怎样比较的?

  (三位数与四位数比,四位数一定比三位数大,因为三位数比一千小,四位数大于或等于一千。)

  2.第二、三组数都是三位数,你是怎样比较的?

  (两个三位数比较,百位上数大的那个数就大;百位上相同,十位上大的那个数就大。)

  (二)学习新课

  教师谈话:我们已经学过万以内数的比较大小,今天我们要学习的第一个内容,是亿以内数的比较大小。(板书课题:比较数的大小)

  1.出示例5。

  比较下面每组中两个数的大小:

  (1)99864和101010。

  提问:

  ①两个数各是几位数?

  ②五位数最高位是什么位?六位数最高位是什么位?

  9万多与10万多来比较,谁大谁小?

  (10万多比9万多大。)

  所以99864<101010。(板书)

  由此来看,五位数与六位数比较,谁比谁大?

  (六位数比五位数大。)

  ③同学们推想一下,七位数与六位数比较呢?八位数与七位数比较呢?那么如果两个数的位数不同,怎样比较大小呢?

  (如果两个数的位数不同,位数多的那个数大,七位数比六位数大,八位数比七位数大。)

  出示第二组数:(2)356000和360000。

  提问:

  ①这两个数各是几位数?

  ②这两个数都是六位数,位数相同的两个数怎样比较大小呢?先比较哪位上的数?

  ③两个数左起第一位十万位上都是3,怎么比较?

  (两个数左起第一位十万位上都是3,看左起第二位,第一个数左起第二位万位上的5比第二个数万位上的 6小,所以356000<360000。)

  教师把第一个数356000的万位改成6,即366000和360000。

  ④两个数左起第一位十万位上都是3,万位上都是6,怎么比较呢?

  (两个数左起第一位十万位上都是3,第二位万位上都是6,就要看第三位。第一个数第三位千位上是6,第二个数千位上是0,所以366000>360000。)

  启发学生逐步总结出完整的比较数的大小的方法。

  提问:

  ①比较两个数的.大小有几种情况?位数不同怎么比?

  ②如果位数相同怎么比?先要从哪一位比?如果左起第一位上的数相同,怎么比呢?

  指导学生阅读课本中关于比较两数大小方法的结语,并提问学生结语的最后为什么有省略号“……”,表示什么意思?举例说明。

  教师说明:“位数”是指一个数用几个数字写出来的(最左端的数字不能是0),有几个数字就是几位数。如99864是五位数,101010是六位数。“左起第一位”是数位,数位是指一个数中的数字所占的位置。如 99864左起第一位是“9”,“9”是在万位上,101010左起第一位是“1”,“1”在十万位上。“数位”与“位数”是不一样的。

  练一练

  (1)比较每组中两个数的大小,说说是怎么比的?

  70080○70101 98965○100000

  (2)按照从小到大的顺序排列下面各数。

  40400 400400 44000 50004

  指导学生做第(2)题时,先比较位数的多少,再把位数相同的几个数进行比较,也可以把这四个数排成一竖行,相同数位对齐。如:

  可以看出:400400最大,40400最小。再把它们从小到大编成序号,按序号进行排列:40400<4400<50004<400400就不容易错。

  2.教学把整万的数改写成用“万”作单位的数。

  出示50000,让学生读数。

  教师指出:这是一个整万的数。像这样整万的数,写成用“万”作单位的数比较简便。

  提问:万位在右起第几位?整万的数万位后面有几个0?

  把整万的数改写成用“万”作单位的数,只要把后面的四个0去掉,加上一个万字就行了。例如 50000写成 5万,或 50000=5万。又如 1800000写成 180万,或 1800000=180万。

  练一练

  把下面的数改写成用“万”作单位的数。

  (1)250000

  (2)3200000

  (3)1994年我国共生产自行车40450000辆。

  其中第(3)题强调单位名称,即4045万辆。

  3.教学求近似数。

  教师谈话:我们学过用四舍五入法求一个数的近似数,请同学们把下面各数千后面的尾数省略,求出它的近似数。

  4926 9375

  提问:省略千后面的尾数,根据哪一位上的数进行四舍五入?(根据百位上的数进行四舍五入。)

  教师叙述:比万大的数,我们也可以用同样的方法来求它的近似数,这就是我们今天要学习的第二个内容。(板书课题:求近似数)

  出示例6:把下面各数万位后面的尾数省略,求出它们的近似数。

  (1)84380 (2)726310

  出示第(1)题。提问:

  (1)省略千后面的尾数时,是根据百位上的数进行四舍五入的,省略万后面的数,要根据哪一位上的数进行四舍五入?

  根据学生的回答,教师强调,只要根据尾数的最高位,不要管尾数的后几位是多少。教师把千位上的4用方框框起来,即8(4)380。

  (2)千位上的数不满5,怎么办?

  根据学生的回答,把万后面的尾数舍去。教师板书:8(4)380≈8万。

  (3)为什么中间用约等于符号连接起来,而不用等号?为什么整万的数用万作单位可以用等号连接起来?

  出示第(2)题。

  由学生说一说,根据哪一位上的数进行四舍五入?千位上的数比5大,该怎么办?教师板书:72(6)310≈73万。

  练一练

  把下面各数万位后面的尾数省略,求出近似数。

  (1)63599 (2)709327

  (3)1994年我国大学毕业生有637000人。

  其中第(3)题要强调写单位名称,即637000≈64万人。

  (三)巩固反馈

  1.总结性提问:

  (1)今天我们学习了哪些内容?

  (2)怎样比较两个整数的大小?

  (3)怎样把整万的数改写成以万作单位的数?

  (4)怎样省略万后面的尾数,求出它的近似数?

  2.发展性练习。

  指导学生做练习三的第5题。

  第(1)题指导性提问:

  (1)49999前面一个数是多少?把它写出来。

  (2)49999后面一个数是多少?把它写出来。

  第(2)题指导性提问:

  (1)最小的一位数是几?最大的一位数是几?

  (2)最小的两位数是几?最大的两位数是几?

  (3)最小的三位数是几?最大的三位数是几?

  请独立填写练习三第5题第(2)题。

  3.思考性练习。

  下面的□里可以填哪些数字?

  19□785≈20万 60□907≈60万

  9□8765≈1000000 9□4765≈900000

  先出示第一横排两道题,相邻两位同学讨论怎样填,然后全班交流。同学们可能填不全,最后由老师小结:第一道题,19万多的近似数是20万,说明千位上的数是5或比5大的数,方框里可填9,8,7,6,5;第二道题,60万多的数的近似数是60万,说明千位上的数是比5小的数,方框里可填0,1,2,3,4。第二横排则由学生独立来填。

  4.课后练习:

  练习三第1,3,4题。

  课堂教学设计说明

  本节课是在学生基本上掌握了亿以内数的读写方法以后,学习比较两个数的大小,把整万的数改写成以万作单位的数,用四舍五入法求近似数。虽然内容不十分集中,但与过去学过的旧知识联系紧密。因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新方法。

  本节课分三个层次,分两段提出课题。

  第一层次是比较两个数的大小。由复习万以内数比较大小,引伸到比较亿以内两个整数的大小。分成位数不同和位数相同的两种情况,引导学生总结出比较两个整数大小的方法。

  第二个层次是学习把整万的数改写成以万作单位的数。

  第三个层次是学习求近似数,由复习省略千后面的尾数求出近似数,类推到省略万后面的尾数,求出近似数,归纳为根据尾数的最高位,进行四舍五入。这样引导,有利于培养学生的归纳推理能力。

  根据本节课的内容,教学中采用边讲边练的形式,对课本中的练习进行适当地指导。最后的思考性练习对本节课所学的求近似数知识,起到进一步巩固和提高的作用。

  板书设计

  比较数的大小 求近似数

  复习:

  999○1010

  601○564

  687○678

  4926≈5千

  9375≈9千

  例5 比较下面每组中两个数的大小。

  99864和101010 356000和360000

  99864<101010 356000<360000

  50000=5万 1800000=180万

  例6 把下面各数万后面的尾数省略,求出它的近似数。

  (1)84380 (2)726310

  8(4)380≈81万

  72(6)310≈73万

《近似数》教案14

  教学目标:

  1.使学生掌握求一个小数的近似数的方法.

  2.能正确地用“四舍五人法”求近似数.

  3.使学生理解保留小数位数越多,精确程度越高.

  教学重点:

  使学生理解取近似值对结果的精确程度的影响.

  教学难点:

  理解保留小数位数越多,精确程度越高.

  教学方法:

  探究交流法

  教学准备:

  多媒体课件

  课时课型:

  1课时 新授课

  教学过程:

  (一)、创设情境

  1.出示情境图,电子秤上显示的数据和售货员的话,提出疑问怎么会不一样?引出“四舍五入法”

  2.引出近似数,复习整数求近似数。

  (二)探究交流

  1.出示情境图,在实际应用小数时,往往也没有必要说出它的准确数,只要它的`近似数就可以了。提出0.984的近似数是多少?小组讨论后指名汇报。

  (根据学生汇报现场操作展示在多媒体PPT中,插入函数能在播放时在方框里输入学生汇报结果,能及时将学生的想法展现在课件上)

  2根据汇报结果,分别具体探讨保留两位小数的近似数,保留一位小数,保留整数后的近似数。并说一说操作的过程。

  3、强调取近似数的要求不同表示方法

  4、小组探讨1与1.0的精确度

  5、引导通过线段图理解保留一位小数是1.0,小数末尾的0,应当保留,不能去掉。

  6、总结:刚才是利用什么方法求0.984的近似数?独立完成想一想后在小组中交流,找不同说原因。

  (三)巩固练习

  1、选择,学生独立完成,指名汇报

  (1)保留( )位小数,表示精确到十分位。

  ①一位 ②两位 ③三位

  (2)如果要求保留三位小数,表示精确到( )位。

  ①分 ②百分 ③千分

  2、求下面小数的近似数

  (1)保留两位小数

  0.256 12.006 1.0987

  (2)精确到十分位

  3.72 0.58 9.0548

  (选两组,整组4人一起在电脑前讨论后,将本组答案用电脑操作展现在课件上放映呈现给大家)

  3、按要求填出表中的近似数

  4、拓展题

  四、全课总结

  1、数学课将结束了,你有哪些收获?在哪方面还需努力?

  2、今天我们学习的是课本73页的知识,打开课本,认真看一看课本,找出书中你认为需要掌握的知识用笔做个记号,然后大声地朗读出来。

  课后作业: 1.从课后习题中选取;

  2.完成练习册本课时的习题

  板书设计:

  求一个小数的近似数

  0.984≈0.98 0.984≈1.0 0.984≈1

  小于5,舍去 大于5,向前一位进1 大于5,向前一位进1

  表示近似数的时,0不能去掉

  课后反思:

《近似数》教案15

  一、教学目标

  (一)知识与技能

  通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。

  (二)过程与方法

  掌握用“四舍五入”法截取商的近似数的一般方法。

  (三)情感态度和价值观

  在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。

  二、教学重难点

  教学重点:掌握用“四舍五入”法截取商的近似数的一般方法。

  教学难点:理解求商的近似数与积的近似数的异同。

  三、教学准备

  多媒体课件。

  四、教学过程

  (一)复习旧知,揭示课题

  1.按照要求写出表中小数的近似数。(PPT课件出示题目。)

  2.求出下面各题中积的近似值。(PPT课件出示题目。)

  (1)得数保留一位小数:2.83×0.9;

  (2)得数保留两位小数:1.07×0.56。

  3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的'内容。(板书课题:商的近似数。)

  【设计意图】通过复习求一个小数的近似数,为新课学习做好铺垫。通过复习求积的近似数,为后面将求积的近似数和求商的近似数进行对比做好准备,也利于引出课题。在引出课题的同时,让学生知道求商的近似数的必要性。

  (二)创设情境,自主探究

  1.教学教材第32页例6。

  (1)出示例6题目信息。(PPT课件演示。)

  (2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)

  (3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或PPT课件演示。)

  ①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。

  ②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。

  (4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?

  ①学生独立完成。

  ②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或PPT课件演示。)

  (5)教师组织学生交流讨论。

  ①通过上面的两次计算,想一想怎样求商的近似数?

  ②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或PPT课件演示。)

  (6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。

  ①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(PPT课件演示例6精确到“角”的计算过程。)

  ②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(PPT课件演示例6精确到“分”的计算过程。)

  【设计意图】复习已唤起了学生用“四舍五入”法取近似数的知识经验,这里通过买羽毛球的情境,让学生经历求商的近似数的过程,体会和总结求商的近似数的一般方法。同时也结合实例体会了商的近似数的实际意义。

  2.对比求商的近似数与求积的近似数的异同。

  (1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(PPT课件演示。)

  (2)思考:求商的近似数与求积的近似数有什么相同和不同?(PPT课件演示。)

  (3)引导学生交流、概括。(PPT课件演示。)

  ①相同点:都是按“四舍五入”法取近似数。

  ②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。

  【设计意图】通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。

  (三)巩固应用,内化方法

  1.基本练习。

  (1)完成教材第32页“做一做”。

  ①学生独立完成,教师巡视,适时指导。

  ②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。

  (2)完成教材第36页练习八第3题。

  ①学生独立练习,教师巡视,适时指导。

  ②组织学生交流、比较取近似值的各种方法,看哪种方法既快捷又简便。明确从全局出发只列一个竖式,看最多保留三位小数,就先直接除到第四位小数,然后再一位小数、两位小数、三位小数地进行保留,这样既简便又不易出错。

  2.提高练习。

  判断对错。(对的在括号里打“√”,错的在括号里打“×”。)

  (1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )

  (2)求商的近似数时,精确到百分位,就必须除到万分位。( )

  (3)求商的近似数和求积的近似数一样,必须先求出准确数。( )

  3.解决问题。

  (1)完成教材第36页练习八第2题。

  ①引导学生理解题意,让学生说一说要想知道“是上午铺路的速度快,还是下午铺路的速度快”,该怎么办?(要分别计算出上午和下午铺路的速度,并比较大小。)

  ②学生独立计算,教师巡视,了解学生保留不同小数位数的取值情况。

  ③组织学生交流各种不同保留小数位数的情况,体会只要能比较出速度的快慢,保留的小数位数越少越简单,明确取近似值时可以根据实际情况确定精确度,灵活选择保留的位数。

  (2)完成教材第36页练习八第4题。

  ①引导学生审题,并让学生明白当题目中没有明确保留小数位数的要求时,一般要保留两位小数。

  ②引导学生自觉、灵活地进行简便计算(将“1.9÷0.045”转化为“3.8÷0.09”),并完成第(1)问。

  ③完成第(2)问:提出其他数学问题并解答。

  【设计意图】练习设计注意了练习的针对性和层次性,注重了让学生通过练习内化求商的近似数的方法。同时对解决问题的技巧进行了适时点拨和指导,发展了学生思维的深刻性和灵活性。

  (四)课堂小结,畅谈收获

  这节课你学会了什么?有什么收获?

  (五)作业练习,及时巩固

  1.课堂作业:教材第36页练习八第1题。

  2.课外作业:教材第36页练习八第5题。

【《近似数》教案】相关文章:

《近似数》教案03-12

《商的近似数》教案03-13

《积的近似数》教案03-30

商的近似数教案02-26

《求小数的近似数》教案03-18

《商的近似数》数学教案04-07

近似数教学反思02-09

近似数的教学反思04-15

《近似数》教学反思10-25