当前位置:好文网>实用文>说课稿>初中数学说课稿

初中数学说课稿

时间:2024-07-03 12:58:49 说课稿

初中数学说课稿[集合15篇]

  作为一位杰出的教职工,通常需要用到说课稿来辅助教学,说课稿有助于顺利而有效地开展教学活动。优秀的说课稿都具备一些什么特点呢?以下是小编精心整理的初中数学说课稿,仅供参考,希望能够帮助到大家。

初中数学说课稿[集合15篇]

初中数学说课稿1

  大家好!所选用的教材为浙教版义务教育课程标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。(或加教学评价)

  一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学 年级 第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习 等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

  2、学情分析

  从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了 ,对已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,

  但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  难点确定为:

  二、 教学目标分析

  新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:

  1. (了解、理解、熟记、初步掌握、会运用 对 进行 等);

  2. 通过的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。

  3. 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

  三、 教学方法分析

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构注意主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘ 通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的'让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:

  ① 通过本节课的学习,你学会了哪些知识;

  ② 通过本节课的学习,你最大的体验是什么;

  ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

  (7) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态.

初中数学说课稿2

  一、 说教材

  (一)教材分析

  平移和旋转都是学生在日常生活中经常看到的现象。从数学的意义上讲,平移和旋转是两种基本的图形变换。图形的平移和旋转对于帮助学生建立空间观念,掌握变换的数学思想方法有很大作用。

  从二年级上册辨认从不同的位置,观察物体的静态形状,发展到动态感知平移和旋转现象,符合儿童的空间发展水平。教材注意结合学生的生活经验,提供大量感性、直观的生活实例,来感知体会它们的不同特点,使学生掌握它们的运动规律及平移的方法。为以后学平行线,三角形的`分类以及推导三角形、平行四边形、梯形等图形的面积计算公式打好基础。

  (二)设计理念

  结合教材的这一特点,我本着体现生活实践数学化、数学概念实践化这样两个转变,向学生提供有价值的数学学习内容,让学生从日常生活中接触、感悟到的大量事物中,领悟到在生活中处处有数学,处处用数学。通过动手实践、自主探索、合作交流等活动,引导学生主动地、富有个性地学习,从而建立对平移和旋转的认识,通过学生自定向、自运作、自调节、自激励,最终将知识与技能、过程与方法、情感态度与价值观三维目标落到实处。

  (三)教学目标

  知识与技能目标:

通过生活实例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际,初步感知平移和旋转现象。

  过程与方法目标:

通过动手操作,使学生会在方格纸上画出一个简单图形,沿水平方向、垂直方向平移后的图形。

  情感与态度目标:

初步渗透变换的数学思想方法,让学生感受事物之间的内在联系,受到数学美的熏陶。

  (四)教学重点、难点

  教学重点:

正确理解并区分平移和旋转现象。

  教学难点:

在方格纸上画出简单的平移后的图形。

  教具、学具准备:课件、课前小研究、作业纸

  二、 说教法、学法

  数学教学是数学活动的教学,是师生之间、学生之间互动与共同发展的过程。根据课程标准和学生的年龄特点,我采用了情境教学法和活动教学法,并结合我校生本教育的理念,设计了课前小研究,让学生通过自主学习,获得自我发展。

  有效教学的核心是学生参与,学习活动不单是纯粹地掌握书本知识,更重要的是培养学生,自主获取知识和运用知识的能力。因此在学习过程中,我主要体现了通过学生观察比较、合作交流、实践操作等方法,让数学走进学生的生活。

  三、说教学过程

  (一) 感知图形变换

  1、 (自定向)创设情境,引入新课。

  2、 (自运作)研究展示,初次生成。

  3、 (自调节)辨析内化,发现规律。

  4、(自激励)列举现象,深化认识。

  (二) 研究平移距离

  1、(自定向)故事导入,引发思考。

  2、(自运作)操作探究,突破难点。

  3、(自调节)辨析争论,掌握方法。

  4、(自激励)解决问题,形成技能。

  四、 说板书

  平移 旋转

  小火车 小缆车 摩天轮旋转椅

  方向 距离

  向右平移5格

  向右平移7格

初中数学说课稿3

  一、 教材分析

  (一)教材地位

  这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标

  知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.

  过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.

  情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.

  (三)教学重点:

  经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.

  二、教法与学法分析:

  学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.

  教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.

  三、 教学过程设计

  1创设情境,提出问题

  2.实验操作,模型构建

  3.回归生活,应用新知

  4.知识拓展,巩固深化

  5.感悟收获,布置作业

  (一)创设情境提出问题

  (1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.

  (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.

  二、实验操作模型构建

  1.等腰直角三角形(数格子)

  2.一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

  设计意图:这样做利于学生参与探索,利于培养学生的'语言表达能力,体会数形结合的思想.

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.

  通过以上实验归纳总结勾股定理.

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律.

  三.回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.

  四、知识拓展巩固深化

  基础题,情境题,探索题.

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.

  基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维.

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.

  五、感悟收获布置作业:这节课你的收获是什么?

  作业:

  1、课本习题2.1

  2、搜集有关勾股定理证明的资料.

  板书设计

  探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么

  设计说明:

  1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.

  2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.

  初中数学说课稿课件:《认识平行四边形

  【说教材】

  一、说课内容:苏教版数学四年级下册第43~45页。

  二、教学内容的地位、作用和意义:

  这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识平行和相交的基础上,进一步认识平行四边形,并掌握其特征。通过这节课深入的学习,使学生为今后进一步学习平行四边行面积计算打下基础。教材中第一个例题,首先联系生活实际,让学生找出一些常见物体上的平行四边形,再要求学生根据个人的生活经验举例,充分感知平行四边形;接着让学生做出一个平行四边形并相互交流,初步感受平行四边形的基本特征。在此基础上,抽象出平行四边形的图形让学生认识,引导学生探索发现平行四边形的基本特征。第二个例题认识平行四边形的底和高,并揭示高和底的意义。“试一试”让学生动手测量几个平行四边形指定底边上的高及相应的底,进一步感受高与底的意义。

  三、说目标

  1、知识与技能目标

  (1)理解平行四边形的概念及其特征。

  (2)认识平行四边形的底和高,会画高。

  (3)培养学生实践能力,观察能力、分析能力。

  2、过程与方法目标

  让学生通过动手操作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

  3、情感态度与价值观目标

  让学生感受图形与生活的密切联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。

  四、教学重点、难点:

  教学重点:是认识平行四边形;利用材料做平行四边形并发现其特征;能测量或画出平行四边形的高。

  教学难点:是学生在做平行四边形的过程中体会其特征。

  五、说教具和学具准备

  教具:三角板、平行四边形纸片、长方形活动框、小黑板等。

  学具:三角板、平行四边形纸片、量角器。

  【说学情】

  四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。

  【说教法和学法】

  这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手操作、观察、分析、讨论、归纳等方法来完成教学,使学生在轻松愉快中获得新知。我们认为在本课教学中应体现以下几点

  一、联系生活实际进行教学

  “数学的生活化,让学生学习现实的数学”是新课程理念之一。教学时应先让学生从生活场景图中找平行四边形,再寻找生活中的平行四边形。最后举例说明平行四边形容易变形的特性在生活中的应用。使学生感受到“数学从生活中来,到生活中去”。使数学课堂回归到生活世界。

  二、让学生在活动中探究

  心理学家皮亚杰说:“活动是认识的基础,智慧从动作开始。”在教学中通过学生做平行四边形、相互交流,从中感受平行四边形的特征。在“想想做做”中通过拼一拼、移一移、剪一剪等活动,让学生感受不同平面图形之间的联系。

  三、独立思考与合作交流

  本课教学安排了两次合作交流,在合作交流之前我都给予学生充足的时间去独立思考,这样在合作交流时才有话可说,思维才能碰撞。

  【说教学程序】

  一、创设情境导入新课

  1、介绍七巧板

  师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?

  一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。

  2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)

  【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】

  二、尝试探索建立模型

  (一)认一认形成表象

  师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?

  不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)

  (二)找一找感知特征

  1、在例题图中找平行四边形

  师:老师这有几幅图,你能在这上面找到平行四边形吗?

  2、寻找生活中的平行四边形

  师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)

  (三)做一做探究特征

  1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?

  2、在小组里交流你是怎么做的并选代表在班级里汇报。

  3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)

  4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)

  【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的`心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】

  (四)练一练巩固表象

  完成想想做做第1、2题

  (五)画一画认识高、底

  1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?

  2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。

  3、平行四边形的高和底书上是怎么说的呢?(学生看书)

  4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)

  5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)

  6、画高(想想做做第5题)(提醒学生画上直角标记)

  三、动手操作巩固深化

  1、完成想想做做第3、4题

  第3题:拼一拼、移一移,说说怎样移的?

  第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。

  2、完成想想做做第6题(课前做好,课上活动。)

  (1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。

  (2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?

  (3)得出平行四边形的特性

  师再捏住平行四边形的对角向里推。看你发现了什么?

  师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)

  (4)特性的应用

  师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)

  【设计意图:】

  四、畅谈收获拓展延伸

  1、师:今天这节课你有什么收获吗?

  2、用你手中的七巧板拼我们学过的图形。

  3、寻找平行四边形容易变形的特性在生活中的应用。

  【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】

初中数学说课稿4

  一、地位和作用

  这一节内容是初中数学新教材八年级上册第十一章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。

  2、活动目标

  ①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。

  ②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。

  ③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。

  ④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。

  总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。

  二、学情分析

  八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。

  三、学法分析

  1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。

  2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。

  四、教法分析

  由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:

  ⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。

  ⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。

  教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。

  1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。

  2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。

  3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。

  4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。

  五、教学过程设计

  一、复习回顾

  1.一次函数的定义。

  2.一次函数的图象。

  3.直线y=kx+b与方程的联系。

  那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。

  教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。

  设计意图:回顾所学知识作好新知识的衔接。

  二、导探激励

  问题1:作出函数y=2x-5的图象,观察图象回答下列问题:

  (1) x取何值时,2x-5=0?

  (2) x取哪些值时, 2x-5>0?

  (3) x取哪些值时, 2x-5<0?

  (4) x取哪些值时, 2x-5>3?

  教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。

  设计意图:问题1可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。

  学生可以用不同方法解答,教师意图是尽量用图象求解。

  问题2:用画函数图象的方法解不等式:

  -2x+3<3x-7.

  分析:

  由一次函数与一元一次不等式的关系可先将其化为一般形式,

  再画图求解;也可以将-2x+3与3x-7看作是两个

  关于x的`一次函数,即y1=-2x+3,y2=3x-7。

  于是不等式的解集即对应着y1

  解法1:

  原不等式化为5x-10>0,画出直线y=5x-10如图所示,

  可以看出x>2时这条直线上的点在x轴上方,

  即这时y=5x-10>0,所以不等式的解集为x>2.

  解法2:

  将原不等式的两边分别看作是两个一次函数,

  画出直线l1∶y=-2x+3,y2=3x-7,如图所示,

  可以看出它们的交点的横坐标为2,当x>2时,

  对于同一个x,直线y=-2x+3上的点在直线y=3x-7上相应的点的下方,这时-2x+3<3x-7,所以不等式的解集为x>2.

  三、达测深化

  做一做:

  兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题:

  (1)何时哥哥追上弟弟?

  (2)何时弟弟跑在哥哥前面?

  (3)何时哥哥跑在弟弟前面?

  (4)谁先跑过20m?谁先跑过100m?

  (5) 你是怎样求解的?与同伴交流。

  教师活动:展示做一做,鼓励学生从多角度思考问题。请部分学生展示其解法。教师借助课件对学生解答作出评判。展示练习,在学生思考后,用课件展示图象以便学生识图。

  设计意图:函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型,通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。

  四、小结

  通过本节课的学习,你有哪些收获?

  五、作业 P19 读一读 P20 习题1.6

初中数学说课稿5

  一、教材分析

  1、教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

  2、教学重难点

  重点:一次函数与二元一次方程(组)关系的探索。

  难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

  3、教学目标

  知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

  数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

  解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

  情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

  二、教法说明

  对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

  三、教学过程

  (一)感知身边数学

  多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?

  学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

  [设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

  (二)享受探究乐趣

  1、探究一次函数与二元一次方程的关系

  填空:二元一次方程 可以转化为 ________。

  思考:(1)直线 上任意一点 一定是方程 的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?

  (3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

  [设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  2、探究一次函数与二元一次方程组的关系

  (1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?

  此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

  (2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?

  进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

  [设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

  (三)乘坐智慧快车

  例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

  解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。

  解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。

  注意:所画的函数图象都是射线。

  [设计意图]为培养学生的'发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

  (四)体验成功喜悦

  1、抢答题

  (1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。

  (2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。

  2、旅游问题

  古城荆州历史悠久,文化灿烂。今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?

  [设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  (五)分享你我收获

  在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

  (六)开拓崭新天地

  1、数学日记

  姓 名 日 期

初中数学说课稿6

  一、教材分析(说教材):

  1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。

  2、教学目标:

  1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。

  2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。

  3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。

  4、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用

  下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:

  二、教学策略(说教法):

  1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。

  2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。

  三、教学过程环节一:

  创设情境、导入新课

  通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)

  回顾:

  1、矩形的定义:有一个角是直角的平行四边形叫矩形

  2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。

  3、平行四边形的性质:

  平行四边形的性质

  平行四边形判定

  平行四边形两组对边分别相等

  平行四边形两组对边分别平行

  两组对边分别平行(或相等)的四边形是平行四边形

  平行四边形一组对边平行且相等

  平行四边形对角线互相平分

  一组对边平行且相等的四边形是平行四边形

  对角线互相平分的四边形是平行四边形

  平行四边形两组对角分别相等

  两组对角分别相等的四边形是平行四边形

  环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。

  活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。

  定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)

  环节三:应用辨析,巩固定理

  总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。

  矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:

  一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。

  二、填空题:

  1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。

  2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:

  判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的`条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。

  环节四:开放训练,发散思维

  变式训练

  如图,△ABC中,点O是AC边上的一个动点,

  过点O作直线MN∥BC,设MN交∠BCA的

  平分线于点E,交∠BCA的外角平分线于点F。

  (1)求证:EO=EF

  (2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。

  变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。

  环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

  环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。

  以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!

初中数学说课稿7

  教材简析

  《统计》是义务教育课程标准实验教科书数学(苏教版)一年级上册第九单元的内容。教材首先出现实际场景生日聚会,引导同学们学习分类整理,初步学习统计,认识统计的意义和作用。

  教材还安排了想想做做,内容是整理小组里同学们最喜欢吃的几种水果的人数。目的是让同学们相互协同、合作学习,体会事件发生的不确定性,进一步体会统计的过程及作用,逐步培养同学们的实践能力。

  这一课时的教学重点是通过实践活动使同学们感受数据的整理过程。

  教学的难点是初步感受事件发生的不确定性。

  设计理念

  同学们是学习的主人,新课程要求遵循同学们学习数学的心理规律,强调从同学们已有的生活经验出发,让同学们亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。《统计》这一课意在让同学们主动地参与数学活动,并通过亲手实践,经历和体会整理简单数据的过程,初步认识统计的思想和方法。

  教学目标

  1.通过学习数据整理,感知数学在生活里的作用。

  2.经历数据的整理过程,初步认识象形统计图和统计表,获得简单统计的结果。

  3.感受统计在日常生活中的应用,体会事件发生的不确定性。

  4.学会有序观察、有条理地思考。

  5.在合作与交流的学习中,学会肯定自己和倾听他人的意见。

  教学流程

  一、提供质疑的时机,唤起主角意识。

  师:同学们,你们每年都过生日吗?过生日时你邀请哪些好朋友呢?爸爸妈妈是怎样为你过生日的呢?(出示主题图)今天是大象的生日。看了这张图,你们想提什么问题?

  生:大象家来了哪些客人?客人送给大象哪些花呢

  【这一层次从同学们熟悉的生活情境与童话世界出发,选择同学们身边的、感兴趣的过生日这一事件,让同学们自己提出有关的数学问题,通过生生互问、师生互问,实现角色转换。唤起同学们的主角意识。】

  二、提供探索的机会,激活主角意识。

  1.动手实践、自主探索。

  (1)分类理一理。

  师:这些问题都提得很好,那么谁又能解决这些问题呢?你能一眼看出每种小动物各有多少只吗?怎么办?(让同学们在小组内讨论后说说。)

  生:只要把小狗放在一起,小猴放在一起,小猪放在一起。(让同学们四人小组合作操作,把小动物分类理一理,在实际场景图上找到一个动物,就在下面摆一个动物。)

  指名同学们到黑板前分类整理,有的同学们将小动物分类后摆成一堆一堆的,有的同学们将小动物分类后一个对一个排成一排一排的,有的同学们是从下往上排的,有的同学们是从上往下排的。

  哪种摆法比较好?通过比较,同学们知道摆成一堆一堆的.不能很快看出每种小动物各有多少只。而将小动物分类后一个对一个地排好,就能比较容易地看出每种小动物有多少只。

  师:分类后一个对一个地排好,我们就说是分类理一理。

  【这一层次让同学们自己来思考、探索解决问题的方法,通过同学们的操作与实践去发现、经历和体会分类整理的过程,从而形成表象,激活了主角的表现力和创造力。】

  (2)语言描述。

  看了这张图你能告诉大象什么呢?请你和同桌说一说,同桌在说的时候,你要仔细听,听听他说的是否和你说的一样。(同学们互相说。)

  刚才同学们交流得很认真,现在谁能站起来响亮地说给大家听。

  像这样整理有什么好处?

  【语言是思维的外壳,借助语言可使动作思维内化为智力活动,让同学们用同桌交流、全班交流的形式反复描述,既提高了同学们的语言表达能力,又有利于操作表象的形成,同时激活了主角的评价能力。】

  2.独立操作、体会过程。

  师:红花、黄花、绿花、紫花各有多少朵呢?请你从附页中把它们剪下来,分颜色理一理。

  同学们汇报分类整理的结果。教师在四种颜色的花下板书花的朵数,再画上线,并让同学们说说从表中知道了什么?先同桌说,再指名说。

  师:我们把小动物分类理一理,把花分颜色理一理,这就是统计。(揭示课题:统计)

  【这一部分通过独立操作的学习方式,使同学们感受数据的整理过程,进一步培养主角意识。】

  三、创设选择的空间,积淀主角意识。

  师:同学们真聪明,为了奖励大家,大象拿出水果招待大家,你喜欢吃哪一种水果?把它从附页中剪下来,以组为单位理一理,并说说 从这张图中你知道了什么?

  给同学们提供一些贴近生活的统计表,如听课老师年龄统计表、小组男女生人数统计表、本节课教具、学具统计表等,让同学们进行调查、整理。同学们可以独立做,也可以合作做,然后把自己最为满意的一张表介绍给大家。

  【在纷繁复杂的现实世界中,每个人都面临着各种各样的选择。培养同学们的选择意识和选择能力,对同学们以后适应社会甚为重要。在这一层次,教师为同学们创设选择的空间,让同学们体味自由选择的轻松和快乐,这是积淀主角意识的有效方式。同时让同学们统计喜欢吃水果的人数,也使同学们初步感受了事件发生的不确定性。】

  四、赋予总结评价权利,丰富主角意识。

  引导同学们自己总结:今天你学到了什么知识?是怎么学到的?

  【让同学们自己总结,不但使同学们懂得了操作实践、合作交流是一种重要的学习方法,而且提高了同学们学习的积极性,丰富了主角意识。】

初中数学说课稿8

  一、教材分析

  “分数的初步认识”这一单元教材是在学生已掌握一些整数知识的基础上进行教学的。整数是单位“1”的叠加,而分数是单位“1”的均分,从整数到分数是数的概念的一次扩展,是学生认识数的一次质的飞跃。

  本节课是整个单元的起始课。几分之一既是一个分数,又是一个分数单位,对以后认识几分之几、分数大小的比较等起着至关重要的作用。

  二、教学目标

  基于本课教学内容在本单元的地位与作用及教材编排意图,我拟定这节课的教学目标为:

  1、知识与技能:初步认识分数,能结合具体图形理解几分之一的含义;会读写几分之一,能直观比较几分之一的大小。

  2、过程与方法:让学生经历几分之一的认识过程,体验动手操作、合作交流的方法,获得数学学习的活动经验。

  3、情感态度与价值观:通过具体实例,感受到数由整数向分数的扩展,体会分数在生活中的应用,激发学生的学习兴趣。

  教学重点:理解几分之一的意义;

  教学难点:理解只有“平均分”才能产生分数,建立几分之一的表象。

  教学关键:结合具体图形理解并描述几分之一的含义。

  三、教学方法

  课程标准指出:“有效的数学学习不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”基于这一理念,本节课我采用了情境教学法、直观演示法、操作实验法、观察法和讨论法等教学方法,通过设计丰富多彩的分月饼、折纸片、涂颜色、找分数等数学活动,让学生在动手实践、自主探究、合作交流中经历知识的发生、发展过程,主动构建数学知识。

  教学准备:多媒体,彩笔,圆形、正方形、长方形纸片,1分米长的线段,两分米长的绳子。

  四、教学过程

  本节课分四个环节完成:(一)创设情境,导入新课;(二)自主探索,合作学习;(三)学以致用,解决问题;(四)总结提高,拓展延伸。

  (一)创设情境,导入新课

  利用小朋友喜欢的动画片人物喜羊羊创设一个分东西的情景:

  (1)有4个苹果,平均分给懒羊羊和美羊羊,每只羊分几个?

  (2)有2个草莓,平均分给懒羊羊和美羊羊,每只羊分几个?

  这两个问题,学生很自然的用2、1等整数来描述分的结果,这时我出示第三个问题:1个月饼,平均分给懒羊羊和美羊羊,每只羊分几个?学生会说每只羊分半个,“半个”还能像刚才那样用整数来表示吗?那该用什么样的数来表示呢?这个问题成为教学的出发点和矛盾产生的创生点,激发了学生浓厚的学习兴趣,此时教师揭示本节课教学内容并板书课题:分数——认识几分之一(板书)

  (二)自主探索、合作学习。

  1、认识

  (1)电脑演示,初步认识:

  多媒体演示把一个月饼平均分成两份的过程。指出:把一个月饼平均分成两份,每份是这个月饼的一半。用数学的语言来说,就是这个月饼的二分之一,写作1/2。(板书:二分之一 1/2 )

  接着引导学生明白:中间短短的横线叫分数线,表示平均分;分数线下的“2”表示平均分成两份,分数线上面的“1”表示其中的一份。再让学生一起读一读,让学生借助月饼图说一说你是怎么理解1/2的,剩下的那一份是这个月饼的1/2吗?明白平均分成的两份中,每一份都可以用1/2表示。

  (2)动手操作,促进内化:

  ①让学生动手用各种图形来表示出1/2,体验不同折法。

  ②让学生展示自己的作品,要求学生运用准确的数学语言描述1/2所表示的意义,特别要讲清是谁的1/2。并启发思考:折法不同,涂色的部分也各不相同,但它们都可以用1/2 来表示,那是为什么?理解只要把一个图形平均分成两份,每一份都可以用1/2表示。

  ③展示没有平均分的例子,引导学生进行讨论,通过这些反例来突出“平均分”在分数概念中的核心作用,形成有意义的建构。

  这一环节着眼一个“动”字, 通过教师有意识的引导,让学生主动地从不同的角度去进一步认识1/2,丰富1/2 的表象,建构1/2 的意义,使学生对数的认识由整数扩展到了1/2,也为后面学习其他分数提供思路和方法。

  2、认识几分之一

  (1)猜想:分数是否只有1/2这一个呢?除了能折出这些纸的1/2,你还能折出它们的几分之一呢?(板书:1/3 、1/4 、1/5 ……)

  (2)探究:让学生利用纸片等材料通过折一折、画一画,表示自己喜欢的分数,并请部分学生将自己的作品贴在黑板上相应的分数下面,说说分数表示的意思。这一极具探究空间的开放性活动,再次提供给学生自主创造的机会,在“做分数”和交流的过程中得到了更多新的几分之一,对分数的认识也由1/2扩展到了几分之一。

  (3)举例:让学生说说生活中见到的几分之一。

  指出:像1/2、1/3 、1/4 、1/5……这样的数,都是分数。

  3、比较分数的大小

  通过把同样长的绳子反复对折,再比较其中的一份。

  引导学生观察和思考,使学生体会和感悟:分数的个数是无限的.;同一个物体,平均分的份数越多,得到的每一份就越少,完善学生对几分之一的认识。

  (三)应用新知,解决问题

  针对学生的认知特点,我把练习按照基础——提高——拓展分成了三个层次,意在能让学生更好的巩固新知,并能在此基础上有所提高和拓展,做到有趣、有益、有层、有度。

  1、基本练习:

  (1)说出红色小正方形在下图中分别用哪个数表示:

  学生回答后,追问:为什么同样的一个正方形却用不同的数来表示?加深对分数的认识。

  (2)下列阴影部分用分数表示正确吗?正确的画√,不正确的画×。

  2、提高练习:设计了一道喜羊羊分西瓜的小故事:三个同样大的西瓜,逐个平均分成2份、3份、4份,让学生在具体情境中比较几分之一的大小。

  3、拓展练习:看主题图,在图中有哪些地方可以用分数表示?使学生感受到分数与生活的联系和分数在实际生活中的运用。最后选取图中的一个多边形问学生:图中涂色部分还能用分数表示吗?这一问题无疑会与学生刚刚建立的新知产生矛盾,在学生的争执中,教师抛出答案:不能用几分之一表示,但可以用几分之几表示,这将是我们后面要继续学习的内容。这个练习力图渗透分数由几分之一到几分之几的扩展。

  (四)总结提高,拓展延伸

  这节课你有什么收获?通过回顾、交流,对情感态度、学习方式等进行自我评价,培养学生的归纳总结能力,体验成功的乐趣。

  五、板书设计

  本课的板书设计,重点突出,展现了学生对几分之一的逐步认识和理解的过程。

  板书设计:

  分数——几分之一

  1 …………其中的一份

  二分之一 —— …………平均分

  2 …………平均分的份数

  各位评委、各位老师,以上就是我对本课教学的一些认识,不当之处敬请大家指教。谢谢大家!

初中数学说课稿9

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。

  一.教材分析

  1.教材的地位和作用

  本节教材是初中数学8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。第18章,既是学生函数的入门,也是进一步学习的基础。

  作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

  2.教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。

  二.学情分析

  从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。

  三.教学目标分析

  新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感、态度、价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时也是学生学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。

  1.知识与技能

  理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象,掌握k与b的取值对直线位置的影响。

  2.过程与方法

  经历一次函数的作图过程,探索某些一次函数图象的异同点;

  3.情感态度与价值观

  体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂.

  四.教学方法分析

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  五.教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (一)创设情境

  前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象。

  (1)y=-1/2x ;(2)y=-1/2x+2; (3) y=3x;  (4) y=3x+2。

  教学说明:

  第一步、对于函数(1)应结合以前函数图像的作法详细讲解。特别注意学生在列表取值,平面直角坐标系的正方向、单位长度,描点的正确性等学生作图的易错点。

  第二步、学生自主完成函数(2)的图像。

  第三步、同学们观察并互相讨论,并回答:你所画出的'图象是什么形状?

  一次函数y=kx+b(k≠0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k≠0).又因为两点可以确定一条直线,所以今后画一次函数图象时只要取两点,过两点画一条直线就可以了。

  第四步、学生用两点法作出函数(3)(4)的图像。

  观察上面四个函数的图象,发现它们都是直线.请同学举例对他们的发现作出验证。

  设计意图:教学应从学生已有的知识体系出发,作函数图像是本节课深入研究一次函数y=kx+b(k≠0)的图象的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (二)探究归纳

  再观察上面四个函数的图象,也就是k、b的取值与一次函数图像位置的关系:

  (1) y=-1/2x+2是由直线y=-1/2x向上移动2个单位得到的;而直线y=3x+2是由直线y=3x分别向上移动2个单位得到的。

  (2) y=-1/2x+2与y=3x+2的交点在同一点,是因为两条直线的b相同;即直线与y轴的交点纵坐标取决于b。

  由此得出结论,两个一次函数,当k一样,b不一样时有共同点:直线平行,都是由直线y=kx(k≠0)向上或向下移动得到;

  不同点:它们与y轴的交点不同。

  而当两个一次函数,b一样,k不一样时,有共同点:它们与y轴交于同一点(0,b);不同点:直线不平行。

  补充说明:由于上述函数只有b>0的情况,不能体现将正比例函数向下平移,因此我在教学中让学生自主完成了b<0时的图像以利于学生理解图像向下平移的情况。

  设计意图:现代数学教学理论认为:教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳使学生有一个完整的知识形成过程。

  (三)实践应用

  1.完成课本例1

  注意引导让学生讨论、交流,及时反馈知识在实际中的应用。

  2.完成课后练习

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让更多的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (四) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,应从学习的知识、方法、体验几个方面进行归纳,我设计了这么三个问题:

  ①通过本节课的学习,你学会了哪些知识;

  ②通过本节课的学习,你最大的体验是什么;

  ③通过本节课的学习,你掌握了哪些学习数学的方法?

  (五)布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

  六.教学评价

  本课教学注意挖掘教材,体现学生的主体地位;同时以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学习水平,使传授知识与培养能力融为一体。说课对我来说仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见,谢谢大家!

初中数学说课稿10

  各位专家领导,上午好:今天我说课的课题是《勾股定理》

  一、教材分析:

  (一)本节内容在全书和章节的地位

  这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

  (二)三维教学目标:

  ⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

  ⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

  通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  (三)教学重点、难点:

  勾股定理的证明与运用

  用面积法等方法证明勾股定理

  对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  ⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

  ⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

  ⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的`有效性,也调动了学生的学习积极性。

  二、教法与学法分析

  数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。

  新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  三、教学过程设计

  (一)创设情景

  多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

  (二)动手操作

  ⒈课件出示课本P99图19.2.1:

  观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

  学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  ⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  ⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

  (三)归纳验证

  通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

  (四)问题解决

  ⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

  ⒉自学课本P101例1,然后完成P102练习。

  (五)课堂小结1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。 2.教师用多媒体介绍“勾股定理史话”

  ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

  ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

  目的是对学生进行爱国主义教育,激励学生奋发向上。

  (六)布置作业:课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

  以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!

初中数学说课稿11

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  本节课选自人教版初中数学八年级上册第十二章第一节内容《全等三角形》,属于图形与几何领域。本节课是在学生掌握了三角形的边之间的关系、角之间的关系的基础上进行的学习,主要学习全等三角形的概念、对应顶点、对应边、对应角的概念,以及全等三角形的性质,为后面探究证明全等三角形成立的条件奠定了基础,也为后面要学习的几何证明奠定了基础,故而本节课在教材中起着承上启下的作用。

  二、说学情

  接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,而且在生活中也为本节课积累了很多经验。所以,本节课的学习对学生来说是相对比较容易的。故而本节课着重强调让学生自己动手,发现知识,亲身感受知识的形成过程。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解并掌握全等三角形的`概念及性质。

  (二)过程与方法

  经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。

  (三)情感、态度价值观

  感受生活中的数学,体会数学的魅力,从而激发学习数学的兴趣,获得成功的情感体验。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:全等三角形的概念与性质。教学难点是:全等三角形的性质。

  五、说教法和学法

  数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。所以在这节课中我将采用激、导、探的教学方法。让学生带着问题学、在探索中学、在动手操作中学。在教学中积极培养学生的学习兴趣和动机,明确学习目的。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)导入新课

  首先是导入环节,我采用图片导入的方式,在多媒体上播放生活中全等物体的图片,并提问:图片中的图形有什么特点?你们还能不能举出这样的例子?从而引出课题《全等三角形》。

  这样导入的好处是生活中的实例生动有趣,可以很好地吸引学生的兴趣,激发学生的好奇心,建立数学与生活的联系,更好的将数学融入到生活中去。

  (二)讲解新知

  其次是讲解新知环节,这一环节主要是学习全等三角形的相关概念和全等三角形的性质。

  在开始的时候,我会先给学生分发纸板,请他们拿出三角尺按在纸板上,描出三角板,并裁下。在使用剪刀的过程中我会提醒学生注意安全。完成裁剪操作后,我会抛出问题“照图形裁下来的纸板和三角尺的形状、大小完全一样吗?”“把三角尺和裁得的纸板放在一起能够完全重合吗?”

  学生得到答案之后,我会继续在多媒体上给出用同一张底片冲洗出来的两张尺寸一样的照片,请学生观察,并提出问题“两张照片中的图形放在一起是否也能完全重合?”由此我会给出概念:能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形。

  在提出全等三角形的概念之后,我会顺势在多媒体上展示一个三角形,并以此作出平移、翻折、旋转三种变换,请学生观察,并提问“对于操作前后的两个三角形,什么变了?什么没变?”。期间,我会给学生发放三角形纸片,请学生自己在白纸上进行平移、翻折、旋转这三种变换,并将变换后得到的三角形剪下来,提示可以采取测量、剪裁重合等操作帮助观察,看看什么变了、什么没变。通过这样的操作,学生能够得到位置变化、形状大小不变的结论,我会和学生一起总结:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

  接下来,我会在黑板上呈现平移变换前后的两个三角形,请学生再次动手操作重合步骤,并将两个三角形中重合的顶点、边、角标注出来,也请学生上黑板进行标注,接着根据图示向学生讲解对应顶点、对应边、对应角的概念。在这里我会顺势讲解全等三角形的符号表示。

  前面的教学当中,我让学生反复将全等三角形重合,并寻找其对应边和对应角,为后面学生发现其相等关系做好了铺垫。最后我会抛出问题,在这组全等三角形中,对应边有什么关系?对应角呢?学生能够通过观察或者动手操作得出结论:全等三角形的对应边相等,对应角相等。

  本节课内容是本章的基础性内容,这样就更需要学生亲身感受知识的形成过程,于是我不断设计让学生亲自动手操作,包括制作全等三角形并将其重合等活动,帮助学生感受全等三角形形状大小相同的特点,更好的理解与记忆本堂课的重点知识。

  通过这样一道习题再次巩固如何寻找对应边和对应角。

  (四)小结作业

  最后是课堂小结,我会请学生谈一谈,通过这一节课的学习,你有什么收获?以学生自主总结的方式不仅可以加深对知识点的理解与记忆,还有助于我了解学生的学习情况,便于我调整自己的授课思路与节奏。

  课后思考:我们学习了全等三角形的性质,那如何判断两个三角形是否全等?留下这样的思考问题,可以为下节课的学习做铺垫。

  七、说板书设计

  我的板书设计遵循简洁明了的原则,突出了本节课的重点部分,以下是我的板书设计:

初中数学说课稿12

  各位评委:

  大家好!今天我说课的题目是 ____,所选用的教材为浙教版义务教育课程标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。(或加教学评价)

  一、教材分析

  1、教材的地位和作用

  本节教材是初中数学____ 年级第____章第____节的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

  2、学情分析

  从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的`要求,我将本节课的重点确定为:______________难点确定为:____________________

  二、教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1. 知识与技能目标:初步掌握____,能够运用所学的知识解决一些简单的问题。

  2. 过程与方法目标:经历探索____的过程,培养学生观察分析、类比归纳的探究能力,加深对函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论等数学思想的认识。

  3.情感态度与价值目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

  三、教学方法分析

  本节课我将采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的"最近发展区"设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就旧,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个方面进行归纳,我设计了这么三个问题:

  ① 通过本节课的学习,你学会了哪些知识;

  ② 通过本节课的学习,你最大的体验是什么;

  ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

  (7) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

初中数学说课稿13

  各位领导、 老师们,大家好,我是沁阳市外国语中学教师刘黎明。今天我说课的内容是人教版义务教育新课标数学八年级下册第十九章第二节《平行四边形的判定》第一课时。下面谈一下本节课的设想。

  一、教材分析

  (一)教材所处地位和作用

  《平行四边形的判定》紧接《平行四边形的性质》一节。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用。

  (二)教学目标分析

  根据学生已有的认识基础及本课教材的地位和作用,依据新课程标准确定本课教学目标为:

  知识与技能:

  通过探索平行四边形常用的判定条件的过程,掌握平行四边形常用的判定方法.

  数学思考:

  1、通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生的合情推理能力和动手操作能力及应用数学的意识和能力。

  2、使学生掌握证明与举反例是判断一个数学命题是否成立的基本方法。

  解决问题:

  通过平行四边形判别条件的探索过程,丰富学生从事数学活动的经验与体验,感受感受数学思考过程的条理性及解决问题的策略的多样性,发展学生的实践能力及创新意识。

  情感态度与价值观:

  培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵.

  (三)教学重点难点分析

  平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.

  二、教法学法分析

  鉴于教材特点及八年级学生的年龄特点、心理特征和认知水平,在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导),让学生在老师的引导下自始至终处于一种积极思维、主动探究的学习状态。使课堂洋溢着轻松和谐的气氛,探索进取的气氛,而教师在其中当好课堂教学的组织者、决策者、创造者和参与者。同时借助实物教具进行演示,以增加课堂容量和教学的直观性。

  本堂课立足于学生的“学”,要求学生多动手,多观察,让学生经历发现,说明,完善的过程,培养其操作说理、观察归纳的能力。从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体验参与的乐趣,成功的喜悦。

  三、教学程序设计

  (一)、回顾交流,逆向思索

  在复习了平行四边形定义和性质,提出判定平行四边形的方法引导学生探究。

  设计意图:从旧知识问题引入新课, 提出具有启发性的问题,能够调动学生的积极思维,激起学生的学习欲望,也为下面探究平行四边形的判定方法打下基础。著名教育家苏霍姆林斯基曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的.内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。

  (二)探索方法,发现新知

  ⒈ 提出问题后我安排了如下两组探索题

  探索一、将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;你能说出这种方法的道理吗?并与同伴交流。

  探索二、若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.。你能说出这种方法的道理吗?与同伴交流。

  这两个问题,让学生分小组展开讨论,此时课堂上营造一种和谐、热烈的气氛,在小组讨论中教师可鼓励学生用度量、旋转、证三角形全等等多种方方法来证明所得四边形是平行四边形。教师还要指导学生进行总结、归纳、在探索过程中鼓励学生力求寻找多种方法来解决问题,同时还可组织组与组之间的评比,这样也能培养他们的竞争意识。然后由一名学生代表发言,让学生锻炼自己的语言表达能力,让学生的个性得到充分的展示。最后教师和大家一起总结归纳。得出平行四边形的判别方法:

  1 两组对边分别平行的四边形是平行四边形;

  2 两组对边分别相等的四边形是平行四边形;

  3 两条对角线互相平分的四边形是平行四边形。

  这一教学活动的设计意图:确保学生主体作用得到充分发挥,让学生从被动学习到主动学习、自主学习,让学生从接受知识到探究知识,从个人学习到合作交流。这样的活动教学将会真正焕发出课堂教学的活力,从而在课堂教学中注入一种新课程理念:给学生一个空间,让他们自己往前走;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案。

  (三)范例点击,应用所学:

  为了进一步落实教学目标,让学生在学懂学会的基础上融会贯通,我安排了坡度适中,题型多样的系列题组:

  例1、◇ABCD的对角线AC,BD交于点O,E、F是AC上的两点,并且AE=CF.求证四边形BFDE是平行四边形.

  设计意图:此题作为本课的例题,要求学生不仅找出判定平行四边形的,而且能有条理的写出证明过程,教师要及时查缺补漏,规范解题格式,让学生着重讲清判断的理由,起到及时巩固判别方法的作用。同时也锻炼学生的语言表达能力。

  (机动)演练题:在四边形ABCD中,E、F分别是AB、CD的中点,四边形AECF是平行四边形吗?证明你的结论.

  设计意图:此题作为本课的机动题,时间允许就在课堂完成。本题要求学生不仅找出平行四边形判定,而且能有条理的写出证明过程,让学生反复认识,学会分析,此题完成后,学生已顺利达到教学目标。

  (四)、随堂练习,巩固深化

  1.课本P97“练习”1.

  设计意图:题1的综合性,灵活性比较强,学生能够顺利解决,对培养他们学好数学的信心大有好处。

  (五) 布置作业,专题突破

  1.课本:P100习题19.14,5,

  2.选做 :P100习题19.1 10,12

  证明:两组对角分别相等的四边形是平行四边形。

  3.预习:探究:还有什么方法可以判定一个四边形是平行四边形?

  设计意图:根据新课标精神,“人人学有用的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”在作业时给出有梯度的练习,以满足不同层次学生学习的需要。而且通过题2的探究,让学生发现平行四边形更多的判定方法。为下节课进一步探究平行四边形的其他判定法方法奠定基础。

  (六).评价分析

  本节课教学过程中通过问题设置,引发学生学习的兴趣,引导学生主动探索,通过对平行四边形判别方法的讨论发现新知,归纳总结,得出结论。本节内容逻辑性较强,对学生的逻辑思维能力要求较高,学生在说理上存在一定困难是正常的。但在问题讨论、引导发现、巩固训练的过程中,师生的信息交流畅通,反馈评价及时,学生与学生积极交流、讨论、思维活跃,教学活动始终处于教师的期盼控制中。

初中数学说课稿14

  各位评委、各位老师大家好!今天我说课的课题是八年级下册第五章第4节《数据的波动》(第一课时)。现我就教材、教法、学法、教学流序、板书五个方面进行说明。(恳请在座的各位专家、同仁批评指正。)

  一、说教材:

  1.本节课的主要内容:

  探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平” 相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差与标准差。

  2.地位作用:

  纵观本章的教材安排体系,以数据“收集—表示—处理—评判”的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通过结果评判形成决策的教学,是数据处理解决现实情景问题必不可少的重要环节,是本章学习的最终目的与落脚点。通过本节的学习为处理各种较为复杂的现实情境的数据问题打下基础。

  3.教学目标:

  依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差与方差,并会用它们表示数据的离散程度”要求,确定以下目标:

  (1)知识目标:a、掌握刻画数据离散程度的.“极差”“方差”“标准差”三个量度。b、会动手与利用计算器计算“方差”“标准差”。

  (2)过程与方法目标:a.经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。b.通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)c.突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。d.在具体实例中体会样本估计总体的思想。

  (3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。

  4.重点与难点:重点:

  理解刻画数据离散程度的三个量度——极差、标准差与方差,会计算方差的数值,并在具体问题情境中加以应用。

  难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。

  二、说教法

  教学过程是教师与学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则与本节教学目标,我采用如下的教学方法:

  1.引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性与积极性。

  2.比较法。在极差与方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。

  3.练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题与解决问题的能力得到进一步的提高。

  4.选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入与比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差与方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。

  三、说学法:

  教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间与空间,我主要设计的学法指导是:

  (1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题与解决问题。

  (2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。

  (3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解与应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容与知识。

  (4)引导自学法:学生自学掌握计数器计算方差与标准差的操作功能。

  四、说教学程序:

  1.创设情境,导入新课:

  <1>、展示情景(链接奥运会中韩运动员设计的情景)。

  <3>、分析思考寻求解决方案(观察表格数据求平均数)。

  2、新课:

  (由学生已经掌握的知识来引出课题,吸引学生的注意力与提高学习本节知识的兴趣)

  <1>、概念介绍:

  <3>、引进概念

  <5>、计算引例中的方差与标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。

  <2>、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)

  4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。

  5、布置作业:P—199(1)(2)(3-选作题):

  五.说板书设计

  板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解与掌握,同时便于比较与记忆,有利于提高教学效果。

初中数学说课稿15

  一、说教材

  1、教材分析

  本节课中要学习整式的加减运算,以西宁到拉萨路段为背景引入教学知识。根据路程、路程、速度、时间之间的数量关系,设计了几个问题。这些问题的解决需要学习合并同类项,去括号等概念和运算法则。本节课的内容是在学生已有的用字母表示数以及有理数运算的基础上展开的,整式的加减运算是学习下一章一元一次方程的直接基础,也是以后学习分式和根式运算,方程以及函数等知识的基础。

  2、学情分析

  在整式的加减运算中,让学生把整式计算与有理数计算进行类比,体会数式通性,既可以复习前面所学数的知识,又使得式的有关知识得以简化,在教学中,多设计小问题,引导学生由易到难,小组合作,探究、进行自主学习,培养他们对知识的探索精神。

  二、教学目标

  1、知识与技能:进一步熟练,合并同类项的方法,会进行简单的合并同类项。

  2、过程与方法:通过类比有理数的运算,体会数式通性。

  3、情感态度与价值观

  把问题通过小组交流,合作探究,总结归纳;通过数与式运算的分析,培养学生自主学习良好习惯。

  三、教学重难点

  本节重难点是合并同类项法则的探究过程。

  四、教学过程

  1、复习:①同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  ②合并同类项:把多项式中的.同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

  2、探究新知

  ①分析例2:⑴求多项式2x-5x+x+4x-3x-2的值,其中x=。

  ⑵求多项式3a+abc-c-3a+c的值,其中a=﹣1/6,b=2,c=﹣3.

  师生合作探究:一种方法是直接把x的值代入多项式计算;第二种是把多项式经过合并同类项,即化简后,再代入x的值计算,比较两种方法哪种简便?

  解法1:把x=代入2x-5x+x+4x-3x-2得

  2×﹙﹚-5×+﹙﹚+4×-3×﹙﹚-2

  =2×-5×++4×-3×-2

  =-2.5++2--2

  =﹣2-

  =﹣2.5

  解法2:2x-5x+x+4x-3x-2

  =﹙2+1-3﹚x+﹙﹣5+4﹚x-2

  =﹣x-2

  当x=时,原式=﹣-2=﹣2.5

  教师总结:通过两种解法的比较得出,先化简多项式,再把x的值代入化简后的整式进行计算简便。

  ⑵3a+abc-c-3a+c

  =﹙3-3﹚a+abc+﹙﹣+﹚c

  =abc

  当a=﹣1/6,b=2,c=﹣3时

  原式=abc=﹙﹣1/6﹚×2×﹙﹣3﹚=1

  2、练一练:求下列各式的值

  ⑴3a+2b-5a-b,其中a=﹣2,b=1;

  ⑵3x-4x+7-3x+2x+1,其中x=﹣3

  3、分析P65的例3

  例3:1、水库中水位第一天连续下降了a小时,每小时平均下降2m;第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?

  2、某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?

  学生:小组合作探究

  教师总结:1、把下降水位变化量记为负,上升的水位变化量记为正,第一天水位的变化量为﹣2acm,第二天水位变化量为0.5acm。

  两天水位变化量为﹣2a+0.5a=﹙﹣2+0.5﹚a=﹣1.5a﹙cm﹚

  2、把进货的数量记为正,售出的数量记为负

  进货后这个商店共有大米5x-3x+4x=﹙5-3+4﹚x=6x﹙kg﹚

  四、小结:熟悉合并同类项的法则,要求多项式的值,必须将多项式适当化简后可以化简计算。

  五、作业P70﹙4、5﹚

【初中数学说课稿】相关文章:

初中数学说课稿03-13

初中数学《数轴》说课稿03-05

初中数学说课稿01-15

(荐)初中数学说课稿06-25

(通用)初中数学说课稿06-24

数学说课稿初中范文03-19

关于数学说课稿初中模板01-07

数学《优化》说课稿06-22

数学说课稿03-16

数学比长短说课稿12-31