当前位置:好文网>实用文>教案>比的意义教案

比的意义教案

时间:2024-10-21 08:50:16 教案

比的意义教案3篇(优)

  作为一名默默奉献的教育工作者,编写教案是必不可少的,教案是实施教学的主要依据,有着至关重要的作用。教案应该怎么写呢?下面是小编为大家收集的比的意义教案,仅供参考,大家一起来看看吧。

比的意义教案3篇(优)

比的意义教案1

  教学内容

  课本43-44页以及相关练习

  教学目标:

  1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

  2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

  教学重点:

  理解比的意义以及比与除法、分数的关系

  教学难点:

  弄清比和比值的联系和区别。

  教学准备:

  课件,投影。

  教学过程:

  一、创设情境,生成问题

  师:同学们,你们知道我国的第一艘载人飞船叫什么吗?(出示情境图)

  问:怎样用算式表示国旗长与宽的关系?(引导学生说出:可以求长是宽的几倍?或求红旗的宽是长的几分之几?)

  小结:长和宽的倍数关系可用除法表示。

  二、探索交流,解决问题

  1、比的意义

  (1)两个同类量的比

  比较这两个数量之间的关系,除了除法,数学上还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。

  不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

  思考:两个数量组成比时,谁比谁,谁在前,谁在后,可以交换位置吗?为什么?(小组交流,汇报补充,深层体会比的意义)

  (2)两个不同类量的比

  “神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?

  (算式:42252÷90,依据是速度可以用路程÷时间表示)

  对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。

  问:路程和时间的比表示什么含义?(生自由发言,理解“路程比时间”表示速度)

  (3)归纳比的意义。

  通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)

  2、比的写法

  (1)阅读课本自学

  问题:几比几怎样写?怎样读?

  比的`各部分名称是什么?

  怎样求比值?比值可以怎样表示?

  比和比值有什么联系和区别?

  (2)小组交流汇报。

  3、比、除法和分数的联系

  (1)比与除法的关系

  问:比的前项相当于什么?后项相当于什么?比值相当于什么?比的后项可以是零吗?为什么?

  小组交流汇报。

  (2)比与分数的关系。

  根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)

  三、巩固应用,内化提高

  1、完成课本“做一做”。

  2、练习十一第1、2题。

  四、回顾整理,反思提升

  通过这节课的学习,你有什么收获?

  课后延伸:

  在生活中找一找,在哪里存在比?表示什么含义?

  板书设计:

  比的意义

  15:10=15÷10=3/2

  前项比号后项比值

比的意义教案2

  教学目标

  1.理解比的意义,掌握比的读法和写法,认识比的各部分名称.

  2.掌握求比值的方法,并能正确求出比的比值.

  3.培养学生抽象、概括能力.

  教学重点

  理解比的意义,掌握求比值的方法.

  教学难点

  理解比的意义,建立比的概念.

  教学过程()

  一、谈话引入

  在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比.(板书:比的意义)

  二、讲授新课

  例1.一面红旗,长3分米,宽2分米.长是宽的几倍?宽是长的几分之几?

  板书:3÷2= = 2÷3=

  1.3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?

  2.2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?

  3.小结

  (1)长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几.

  (2)3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比.

  4.练习

  有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?

  例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?

  1.求的是什么?谁除以谁?也就是谁和谁进行比较?

  2.汽车行驶路程和时间的比是100比2表示什么?

  3.思考:单价可以说成是谁和谁的比?

  工作效率可以说成是谁和谁的比?

  商可以说成是谁和谁的比?

  4.小结

  通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比.

  (三)归纳总结

  引导学生观察板书 ,什么叫比?

  教师板书:两个数相除又叫做两个数的比.

  (四)练习

  1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是( ),柳树和杨树棵树的比是( )

  2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是( ).

  3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是( ),青菜和萝卜单价的比是( ).

  (五)比的各部分名称和求比值的方法(演示课件“比的`意义”)

  1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.

  例如: 3比2 记作:3∶2

  2比3 记作:2∶3

  100比2 记作:100∶2

  2.“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.

  板书:

  3.提问:比的前项和后项能随便交换位置吗?为什么 ?

  4.练习:求比值

  教师说明:求比值不写单位名称.

  (六)比、除法、分数之间的关系(演示课件“比、除法、分数的异同”)

  1.教师提问

  (1)两个数相除又叫做两个数的比,比和除法到底有什么关系?

  (2)为什么要用“相当于”这个词?能不能用“是”?

  (3)在除法中,除数不能是零,那比的后项呢?

  2.比的分数形式

  (1)教师:比还有一种表示方法,就是分数形式.例如:

  板书:3∶2可以写成 ,仍读作“3比2“

  2∶3可以写成 ,仍读作“2比3”

  (2)思考:比和分数有什么关系?

  三、巩固练习

  (一)填空

  两辆汽车,甲车4小时行驶200千米,乙车3小时行驶180千米.

  1.甲车的速度可以说成( )和( )的比,是( )∶( ),比值是( ).

  2.乙车的速度可以说成( )和( )的比,是( )∶( ),比值是( ).

  3.甲、乙两车所行路程的比是( ).

  4.甲、乙两车所用时间的比是( ).

  5.甲、乙两车所行速度的比是( ).

  (二)选择

  1.大卡车载重量是5吨,小卡车载重量是2吨,大小卡车的载重量比是 .( )

  2.如果a是b的3倍,那么a和b的比是1∶3.( )

  3.小强的身高是1米,爸爸的身高是173厘米,小强和爸爸身高的比是1∶173.( )

  (三)思考题

  1.甲乙两队比赛结果是3∶2,是指这节课所学的比吗?

  2.根据男、女生人数的比是4∶5,你可以知道男女生的具体人数吗?

  3.一台机器上有大小两个齿轮,大齿轮有100个齿,每分钟25转;小齿轮有40个齿,每分钟120转.根据所给条件,你可以写出哪些比?

  四、课堂小结

  今天这节课你学到了哪些知识?比和除法、分数之间的联系是什么?区别呢?

  五、课后作业

  (一)应用题,

  1.小红3小时走了11千米.写出她所走的路程和时间的比.

  2.航空模型小组8个人共做了27个航空模型.写出这个小组做的模型总数和人数的比.

  3.商店一共运来8.2吨水果,其中有3.5吨是橘子.写出运来橘子的重量和运来水果的总重量的比.

  (二)求比值.

  4∶5 0.8∶0.4

比的意义教案3

  教学目标:

  1、知识目标:

  (1)使学生进一步掌握比的意义、基本性质,能正确迅速地化简比和求比值;

  (2)进一步理清比与分数、比与除法的关系。

  2、能力目标:通过教师引导整理知识框架,提高学习的系统性,培养学生归纳、总结等自我梳理能力,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。

  3、情感目标:在复习活动中让学生体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生成功学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。

  教学重点:进一步掌握比的意义、基本性质及比同分数、除法之间的关系,能正确迅速地化简比和求比值。

  教学难点:知识间的疏理、沟通

  教学准备:多媒体课件

  教学过程:

  一、直接导入

  今天这节课我们一起来复习有关比和比例的'知识。(板书课题:比和比例)

  二、归纳整理

  1、复习比的意义,比的意义主要应用在哪里?

  练习:(求比值)16:12

  2、复习比与除法、分数的关系。

  你能说一说比与除法和分数有什么联系和区别吗?

  (1)如果用a和b分别表示比的前后项,你能用字母表示出比、除法和分数的关系吗?。指名学生口答写出的等式。

  板书:a:b=a÷b=a/b(b≠0)

  让学生说明为什么b≠0?(0不能作除数,没有意义)

  练习:12÷( )=4/9=16:( )=( )

  7:14=( )÷28=35/( )=( )

  3、复习比的基本性质。

  (1)什么是比的基本性质?

  (2)比的基本性质有什么应用吗?(板书:化简比)

  (3)练习:4:1.8

  指名两人板演,其余学生做在练习本上。集体订正。追问:我们是按怎样的方法化简比的?

  提问:运用比的基本性质,把比的前项和后项同时乘或者除以一个不为0的数,化简的结果是一个什么?(还是一个比)

  强调:要化成最简整数比,也就是前项和后项一定是整数并且要互质,4、比较求比值和化简比。

  引导比较。

  现在请同学们把刚才求比值和现在的化简比来比较一下,它们各自的依据和方法有什么区别,结果有什么区别?(根据学生的回答,整理成书上的对比表。强调两者在解答的根据、方法和表示的结果上的不同点。)

  5、复习比例的意义和基本性质。

  6、比例的基本性质有什么应用?(解比例)

  练习:

  ①解比例0.25:x=15:100

  ②判断是否能组成比例

  7、复习比的应用:在生活中比和比例的应用很广泛,同学们看这两道题:(按比例分配、解比例应用题)

  三、课堂总结,评价自己

  今天这节课我们一起复习了“比”的知识,通过复习,你有什么收获?

【比的意义教案】相关文章:

比的意义教案04-15

比的意义教案02-20

《比的意义》教案02-27

小数的意义教案12-30

分数的意义的教案04-21

《分数的意义》教案01-20

小数的意义教案06-07

分数的意义教案01-24

《小数的意义》的教案02-17

《比例的意义》教案06-06