当前位置:好文网>实用文>教案>二次函数与一元二次方程教案

二次函数与一元二次方程教案

时间:2024-02-02 11:32:02 教案

二次函数与一元二次方程教案

  作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。我们应该怎么写教案呢?以下是小编收集整理的二次函数与一元二次方程教案,欢迎阅读与收藏。

二次函数与一元二次方程教案

二次函数与一元二次方程教案1

  教学目标

  (一)教学知识点

  1.能够利用二次函数的图象求一元二次方程的近似根.

  2.进一步发展估算能力.

  (二)能力训练要求

  1.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.

  2.利用图象法求一元二次方程的近似根,重要的`是让学生懂得这种求解方程的思路,体验数形结合思想.

  (三)情感与价值观要求

  通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力.

  教学重点

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.能够利用二次函数的图象求一元二次方程的近似根.

  教学难点

  利用二次函数的图象求一元二次方程的近似根.

  教学方法

  学生合作交流学习法.

  教具准备

  投影片三张

  第一张:(记作2.8.2A)

  第二张:(记作2.8.2B)

  第三张:(记作2.8.2C)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可.但是在图象上我们很难准确地求出方程的解,所以要进行估算.本节课我们将学习利用二次函数的图象估计一元二次方程的根.

二次函数与一元二次方程教案2

  一、教学目标:

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

  3.能够利用二次函数的图象求一元二次方程的近似根。

  二、教学重点、难点:

  教学重点:

  1.体会方程与函数之间的联系。

  2.能够利用二次函数的图象求一元二次方程的近似根。

  教学难点:

  1.探索方程与函数之间关系的过程。

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  三、教学方法:启发引导 合作交流

  四:教具、学具:课件

  五、教学媒体:计算机、实物投影。

  六、教学过程:

  检查预习 引出课题

  预习作业:

  1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

  2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

  师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

  教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

  设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的`根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

二次函数与一元二次方程教案3

  教学设计

  一 教学设计思路

  通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。

  二 教学目标

  1 知识与技能

  (1).经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.

  (2).会利用图象法求一元二次方程的近似解。

  2 过程与方法

  经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  三 情感态度价值观

  通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想.

  四 教学重点和难点

  重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。

  难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  五 教学方法

  讨论探索法

  六 教学过程设计

  (一)问题的提出与解决

  问题 如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系

  h=20t5t2。

  考虑以下问题

  (1)球的飞行高度能否达到15m?如能,需要多少飞行时间?

  (2)球的飞行高度能否达到20m?如能,需要多少飞行时间?

  (3)球的飞行高度能否达到20.5m?为什么?

  (4)球从飞出到落地要用多少时间?

  分析:由于球的飞行高度h与飞行时间t的关系是二次函数

  h=20t-5t2。

  所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。

  解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。

  当球飞行1s和3s时,它的高度为15m。

  (2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。

  当球飞行2s时,它的高度为20m。

  (3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。

  因为(-4)2-44.10。所以方程无解。球的飞行高度达不到20.5m。

  (4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。

  当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。

  由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

  例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。

  分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值。

  一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。

  (二)问题的讨论

  二次函数(1)y=x2+x-2;

  (2) y=x2-6x+9;

  (3) y=x2-x+0。

  的图象如图26.2-2所示。

  (1)以上二次函数的图象与x轴有公共点吗?如果有,有多少个交点,公共点的横坐标是多少?

  (2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?

  先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。

  可以看出:

  (1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。

  (2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。

  (3)抛物线y=x2-x+1与x轴没有公共点, 由此可知,方程x2-x+1=0没有实数根。

  总结:一般地,如果二次函数y= 的'图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

  (三)归纳

  一般地,从二次函数y=ax2+bx+c的图象可知,

  (1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。

  (2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

  由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。

  (四)例题

  例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)。

  解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-0.7,2.7。

  所以方程x2-2x-2=0的实数根为x1-0.7,x22.7。

  七 小结

  二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

  。

  八 板书设计

  用函数观点看一元二次方程

  抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系

  例题

二次函数与一元二次方程教案4

  【教学目标】

  1、知识与技能:

  (1)体会函数与方程之间的联系,初步体会利用函数图象研究方程问题的方法;

  (2)理解二次函数图象与x轴(横轴)交点的个数与一元二次方程的根的个数之间的关系,理解方程有两个不等的实根、两个相等的实根和没有实根的函数图象特征; (3)理解一元二次方程的根就是二次函数与y=h(h是实数)图象交点的横坐标。 2、过程与方法:

  (1)由一次函数与一元一次方程根的.联系类比探求二次函数与一元二次方程之间的联系; (2)经历类比、观察、发现、归纳的探索过程,体会函数与方程相互转化的数学思想和数形结合的数学思想。 3、情感、态度与价值观:

  培养学生类比与猜想、不完全归纳、认识到事物之间的联系与转化、体验探究的乐趣和学会用辨证的观点看问题的思维品质。

  【重点与难点】

  重点:经历“类比--观察--发现--归纳”而得出二次函数与一元二次方程的关系的探索过程。 难点:准确理解二次函数与一元二次方程的关系。

  【教法与学法】

  教法(=):命题课,采用“发现式学习”的方式,注重“最近发展区”,寻根问源,以旧知识为基础创设问题情境,引导学生经历“类比—猜想—观察—发现—归纳—应用”的探究过程。 学法:探究式学习。

  【课前准备】

  多媒体、PPT课件。

  【教学过程】

  附:板书设计:

二次函数与一元二次方程教案5

  教学目标

  掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

  重点、难点:

  二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

  教学过程:

  一、情境创设

  一次函数y=x+2的图象与x轴的交点坐标

  问题1.任意一次函数的图象与x轴有几个交点?

  问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?

  二、探索活动

  活动一观察

  在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

  活动二观察与探索

  如图1,观察二次函数y=x2-x-6的图象,回答问题:

  (1)图象与x轴的交点的坐标为A(,),B(,)

  (2)当x=时,函数值y=0。

  (3)求方程x2-x-6=0的解。

  (4)方程x2-x-6=0的解和交点坐标有何关系?

  活动三猜想和归纳

  (1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的`其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

  (2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?

  这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

  三、例题分析

  例1.不画图象,判断下列函数与x轴交点情况。

  (1)y=x2-10x+25

  (2)y=3x2-4x+2

  (3)y=-2x2+3x-1

  例2.已知二次函数y=mx2+x-1

  (1)当m为何值时,图象与x轴有两个交点

  (2)当m为何值时,图象与x轴有一个交点?

  (3)当m为何值时,图象与x轴无交点?

  四、拓展练习

  1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

  (1)请写出方程ax2+bx+c=0的根

  (2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。

  2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)

  五、小结

  这节课我们有哪些收获?

  六、作业

  求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。

二次函数与一元二次方程教案6

  教学目标

  知识与技能

  1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间 的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.

  2.会利用二次函数的图象求一元二次方程的近似解.

  过程与方法

  经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  情感态度价值观

  通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.

  教学重点和难点

  重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.

  难点:二次函数与x轴交 点的个数与一元二次方程的根的 个数之间的关系.

  教学过程设计

  (一)问题的提出与解决

  问题 如图,以40m/s的速度将 小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线. 如果不考虑空气阻力,球的飞行高度h( 单位:m)与飞行时间t(单位:s)之间具有关系

  h=20t—5t2

  考虑以下问题

  (1)球的飞行高度能否达到15m?如能,需要多少飞行时间?

  (2)球 的飞行高度能否达到20m?如能,需要多少飞行时间?

  (3)球的飞行高度能否达到20.5m?为什么?

  (4)球从飞出到落地要用多 少时间?

  分析:由于球的飞行高度h与飞行时间t的关系是二次函数

  h=20t-5t2.

  所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的.值:否则,说明球的飞行高度不能达到问题中h的值.

  解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2= 3.

  当球飞行1s和3s时,它的高度为15m.

  (2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.

  当球飞行2s时,它的高度为20m.

  (3)解方程 20.5=20t-5t2. t2-4t+4.1=0

  因为(-4)2-4×4.1<0>(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.

  当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s时球落回地面

  播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.

  从上面可以看出.二次函数与一元二次方程关系 密切.

  由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

  例如:已知二次函数y =-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.

  一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.

  (二)问题的讨论

  二次函数(1)y=x2+x-2;

  (2) y=x2-6x+9;

  (3) y=x2-x+0.

  的图象如图26.2-2所示.

  (1) 以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?

  (2)当x取公共点的横坐标时,函数的值是多少?由 此,你能得出相应的一元二次方程的根吗?

  先画出以上二次函数的图象,由图像学生展开讨论,

  在老师的引导下回答以上的问题.

  可播放课件:函数的图像, 输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.

  可以看出:

  (1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0 .由此得出方程x2+x-2=0的根是-2,1.

  (2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.

  (3)抛物线y=x2-x+1与x轴没有公共点, 由此可知,方程x 2-x+1=0没有实数根.

  总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根.

  (三)归纳

  一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是 x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax 2+bx+c=0的一个根.

  (2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.

  由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由 于作图或观察可能存在误差,由图象求得的根,一般是近似的

  (四)例题

  例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

  解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.

  所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.

  播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.

  (五)小结

  总结本节的知 识点.

  (六)作业:

  (七)板书 设计

  二次函数与一元二次方程

  抛物线y=ax2+bx+c与方程a x2+bx +c=0的解之间的关系

  例题

【二次函数与一元二次方程教案】相关文章:

一元二次方程教案03-02

一元二次方程教案01-15

一元二次方程复习教案03-12

初中数学一元二次方程教案09-01

二次函数教案02-20

《二次函数》教案02-21

一元二次方程教学反思04-04

《一元二次方程》教学反思03-30

《一元二次方程》的优秀教案(通用5篇)04-30

一元二次方程的解法教学反思02-23