当前位置:好文网>实用文>教案>七年级数学教案

七年级数学教案

时间:2024-06-08 13:06:31 教案 我要投稿
  • 相关推荐

七年级数学教案

  作为一位杰出的教职工,通常需要准备好一份教案,教案是保证教学取得成功、提高教学质量的基本条件。来参考自己需要的教案吧!下面是小编为大家整理的七年级数学教案,仅供参考,希望能够帮助到大家。

七年级数学教案

七年级数学教案1

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1.学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2.联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1.马路用什么几何图形代表?(直线)

  2.文中相关地点用什么代表?(直线上的点)

  3.学校大门起什么作用?(基准点、参照物)

  4.你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1.0代表什么?

  2.数的符号的实际意义是什么?

  3.-75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1.什么样的直线叫数轴?它具备什么条件。

  2.如何画数轴?

  3.根据上述实例的经验,“原点”起什么作用?

  4.你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:(媒体展示)

  1.判断下列图形是否是数轴。

  2.口答:数轴上各点表示的数。

  3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的.抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1.什么是数轴?

  2.数轴的“三要素”各指什么?

  3.数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1.下列命题正确的是()

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

  3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

  五、板书

  1.数轴的定义。

  2.数轴的三要素(图)。

  3.数轴的画法。

  4.性质。

  六、课后反思

  附:活动单

  活动一:画一画

  钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

  活动二:读一读

  带着以下问题阅读教科书P8页:

  1.什么样的直线叫数轴?

  定义:规定了_______、_______、_______的直线叫数轴。

  数轴的三要素:_______、_______、_______。

  2.画数轴的步骤是什么?

  3.“原点”起什么作用?_______

  4.你是怎么理解“选取适当的长度为单位长度”的?

  练习:

  1.画一条数轴

  2.在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

  活动三:议一议

  小组讨论:观察你所画的数轴上的点,你有什么发现?

  归纳:一般地,设a是一个正数,则数轴上表示数a在原点的_______边,与原点的距离是_______个单位长度;表示数-a的点在原点的_______边,与原点的距离是_______个单位长度.

  练习:

  1.数轴上表示-3的点在原点的_______侧,距原点的距离是_______;表示6的点在原点的_______侧,距原点的距离是_______;两点之间的距离为_______个单位长度。

  2.距离原点距离为5个单位的点表示的数是_______。

  3.在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是_______。

  附:目标检测

  1.下列命题正确的是( )

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2.画数轴,在数轴上标出-5和+5之间的所有整数.列举到原点的距离小于3的所有整数。

  3.画数轴,观察数轴,在原点左边的点有_______个。

  4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

七年级数学教案2

  教学建议

  一、知识结构

  二、重点、难点分析

  角的定义既是本节教学的重点,也是难点.本节知识建立在射线、线段等相关知识的基础上,同时也是进一步学习角的度量、比较、画法,以及深入研究平面几何图形的基础.

  1.角的定义是由实际生活中具有角的形象的物体抽象出来的,理解角的定义一定要明确角的边为射线,角为平面内的点集.角也可认为是一条射线绕它的端点从一个位置旋转到另一个位置而形成的图形,这里的线动成角体现了运动变化的思想.

  2.角的表示法,小学没有介绍,这里首先说明用三个字母记角.对此,要特别强调表示顶点的字母一定要写在中间,唯有在顶点处只有一个角的情况,才可只用顶点一个字母来记这个角,否则分不清这个字母究竟表示哪一个角.在讲往数字或希腊字母来记角时,可再让学生作些练习,说出所记的角怎样用三个字母来表示.

  三、教法建议

  1.本节教学可以在简单复习直线、射线、线段的基础上引入,将问题的研究方向转向这些最基本的几何图形与点结合以及互相结合能够组成什么图形.可以尝试让同学们摆火柴,重点应在具有角的形象的图形,然后可以在列举、观察、分析学习、生活、生产中同样具有角的形象的物体的基础上,让同学们尝试给出角的定义.

  2.关于角的另一种定义,也可以通过实物演示的方式得出,冽如一手扯住线的一端,另一手拉住线的另一端旋转.重点应是对运动变化的观点的渗透.平角和周角也可以让学生给出,真正理解“平”与“直”的含义.

  3.教学过程中可以给出一些判别给定图形是不是角的练习,帮助学生理解角的相关概念.同时将角的知识与学生的生活实践紧密的结合起来.可以充分发挥多媒体教学的优势,结合图片、动画、课件辅助教学.

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.理解角、周角、平角及角的顶点、角的边等概念.

  2.掌握角的表示方法.

  (二)能力训练点

  1.通过由学生观察实物图形抽象出角的定义,培养学生的抽象概括能力.通过学生独立阅读总结角的几种表示方法,培养学生的阅读理解能力.

  2.通过角的两个定义的得出,培养学生多角度分析考虑问题的能力.

  (三)德育渗透点

  1.通过日常生活中具体的角的形象概括出角的定义,说明几何来源于生活,又反过来为生产、生活服务.鼓励学生努力学好文化知识,为社会做贡献.

  2.通过旋转观点定义角,说明事物是不断变化和相互转化的,我们不能用一成不变的观点去看待某些事物.

  (四)美育渗透点

  通过学习角使学生体会几何图形的对称美和动态美,培养学生的审美意识,提高学生对几何的学习兴趣.

  二、学法引导

  1.教师教法:引导发现,尝试指导与阅读理解相结合.

  2.学生学法:主动发现,自我理解与阅读法相结合.

  三、重点·难点·疑点及解决办法

  (一)重点

  角的概念及角的表示方法.

  (二)难点

  周角、平角概念的理解.

  (三)疑点

  平角与直线、周角与射线的区别.

  (四)解决办法

  通过演示法使学生正确理解平角、周角的概念,适当加以解释,简明扼要,条理清楚即可,不必做过多的解释.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪(电脑、实物投影)、三角板、圆规、自制胶片.

  六、师生互动活动设计

  1.教师创设情境,学生进入.

  2.教师步步设问,提出问题,学生在回答问题、自己画图、观察图形的过程中掌握角的静态定义.

  3.教师指导,学生阅读、归纳四种表示角的方法.

  4.教师用电脑直观演示展示角的旋转定义.

  5.反馈练习.

  6.师生讨论总结.

  7.测试.

  七、教学步骤

  (一)明确目标

  使学生能正确认识角的两种定义及相关概念,掌握角的表示方法,正确理解平角、周角的概念,并能从图形上进行识别.

  (二)整体感知

  以现代化教学为手段,调动学生主动参与的积极性,使学生在动手过程中自觉地掌握知识点.

  (三)教学过程

  创设情境,引出课题

  师:前几节我们具体研究了小学时初步认识的直线、射线、线段.另外,小学时我们还认识了另一种几何图形??角.你能说出几个日常生活中给我们角的形象的物体吗?(学生会很快说出周围的课桌、门窗、墙壁的角;圆规张开两脚;钟表的时针与分针间形成的角等等.)

  【教法说明】为了更形象、更直观用实物投影显示一些实物图形.

  让学生说出口常生活中给我们角的形象的物体,充分发挥学生的想象力,培养其观察事物的习惯,同时,活跃课堂气氛,调动学生学习积极性.也培养了学生从具体实物图形中抽象出几何图形的能力.

  师:的确如此,在我们日常生活中,角的形象可以说无处不在.因此,一些图案的设计;机械零件的制图等等,常常用到角的画法、角的度量、角的大小比较等知识.从这节课开始我们就具体地研究角.希望同学们认真学习,掌握真本领,将来为社会做贡献.

  探究新知

  1.角的静止观点定义的得出

  提出问题:通过以上举例和小学时你对角的认识,你能画出几个不同形状的角吗?

  学生活动:在练习本上,画出几个不同形状的角,找一个学生到黑板上画图.可能出现下列情况:

  师:根据小学所学你能指出所画角的边和顶点吗?(学生结合自己理解和小学所学,会很快指出角的.边和顶点.)

  师:同学们请观察,角的两边是前面我们学过的什么图形?它们的位置关系如何?你能否根据自己的理解和刚才老师的提问,描述一下怎样的几何图形叫做角吗?

  学生活动:学生讨论,然后找代表回答.

  教师在学生回答的基础上,给予纠正和补充,最后给出角的正确定义.

  [板书]角:有公共端点的两条射线组成的图形叫做角,这个公共端点叫角的顶点,这两条射线叫角的两边.

  (出示投影1)

  指出以上图形,角的顶点和角的边.

  提出问题:角的大小与角两边的长短有关系吗?

  学生讨论并演示:拿大小不同的两副三角板或学生的三角板与教师的三角板对比演示.让学生尽可能地发表自己的看法和观点.不要拘泥于课堂上的形式,充分调动学生回答问题的积极性.

  教师对学生的回答给予肯定或否定后小结:角的两边既然是射线,则可以向一方无限延长,所以角的大小与所画角的两边长短无关,仅与角的两边张开的程度有关.

  【教法说明】角的定义的得出,不是教师以枯燥的形式强加给学生,而是让学生自己在画图、观察图形的过程中,由教师引导提出问题,步步追问,自觉地去认识.在问题解决的过程中,在复习旧知识中,不知不觉学到了新知识??角.这样缩短了新旧知识间的距离,减轻了学生心理上的压力,使他们感到新知识并不难,在轻松愉快中学到了知识.同时也会感受到新旧知识之间的联系.对发展学生用普遍联系的观点看待事物有很好的作用.

  2.角的表示方法

  师:研究角,像直线、射线、线段一样,可以用字母表示.下面我们阅读课本第25负第三自然段,总结角的表示方法有几种,你能否准确地表示一个角并读出来.

  学生活动:学生看书,可以相互讨论,然后归纳出角的几种表示方法.

  【教法说明】角的四种表示方法,课本中用一自然段说明,语言通俗,很易理解,学生完全可以通过阅读,分出四个层次,四种表示角的方法.因此教师要大胆放手,培养学生阅读理解能力,归纳总结能力.

  学生阅读后,多找几个学生回答.最后通过不断补充、完善,归纳整理得出角的四种表示方法,教师整理板书.

  [板书]

  图1图2图3

  【教法说明】总结以上四种表示方法时,对前两种表示方法,应注意的问题要加以强调.第一种表示方法必须注意:顶点字母在中间.第二种表示方法只限于顶点只有一个角.这是以后学生书写过程中最易出错的地方.另外,让学生区分角的符号与小于号.这些应注意的问题最好由学生讨论,学生发现后归纳总结.

  反馈练习:投影打出以下题目

  指出图中有几个角,并用适当的方法表示它们.

  3.用旋转的观点定义角

  师:同学们看老师从另一个角度提出新问题.前面我们给角下过定义,是在静止的情况下,观察角是由怎样的两条射线组成.下面,我们从运动的观点观察一下角的形成.

  图1

  演示:教师由电脑显示一条射线,然后射线绕其端点旋转,到另一个位置停止则形成一个角,如图1所示.举例帮助学生理解:钟摆看成一条射线,从一个位置摆到另一个位置则形成一个角.

  学生讨论并试述定义:学生叙述不会太严密,教师纠正、补充后板书.

  【板书】角:角还可以看成是一条射线从一个位置旋转到另一个位置所形成的图形.

  说明:射线旋转时,经过的部分是角的内部.让学生说明平面内除了角的内部外还有几部分,分别是什么?(角的边与角的外部)

  【教法说明】角的旋转观点的定义是教学中的一个难点,学生不易理解.因此,结合电脑的显示,举出实例等手段加强教学的直观性.

  4.平角、周角的概念

  师:角可以看成是一射线绕其端点旋转所形成的图形.那么,旋转时有无特殊情况呢?

  由电脑演示并说明:

  射线绕点旋转,终止位置和起始位置成一条直线时,所成的角叫平角,如图2所示.同样可表示为,顶点,两边为射线和射线.继续旋转,回到起始位置时,所成的角叫做周角,如图3所示.周角的顶点为,两边重合成一条射线.

  图2

  师说明:(1)平角与直线、周角与射线是两个不同的概念,它们的图形表面上看一样,但本质上不同.如:直线上取点表示点在直线上的位置,而平角是由顶点和边组成的角这一几何图形.

  (2)在这一书中,所说的角,除非特殊注明,都是指没有旋转到成为平角的角.

  【教法说明】平角、周角概念学生不容易理解,所以要通过直观演示后教师加以解释,但也不要解释得过多.否则,学生会更糊涂,简明扼要,条理清楚即可.

  反馈练习:投影显示

  1.指出图中以为顶点的平角的两边

  2.指出图中(包含平角在内)的角有几个,并分别读出它们

  对以上练习发现问题及时纠正.

  变式练习,培养能力

  投影出示:

  1.如图1:可以记作吗?为什么?

  图1

  2.如图2:、分别是、上的点

  ①与是同一个角吗?

  ②与是同一个角吗?

  3.如图3:是什么角?顶点、边分别是什么?

  图2图3

  【教法说明】为活跃课堂气氛,以上练习可以抢答.

  (四)总结、扩展

  学生看书,回答本节学了哪些主要内容,同桌可以相互讨论.最后教师按学生的回答归纳出本节知识脉络.投影显示:

  八、布置作业

  预习下节内容.

  九、板书设计

  同七、(四)中的格式,在表示方法中加上图形.

七年级数学教案3

  1.教学重点、难点

  重点:列代数式。

  难点:弄清楚语句中各数量的意义及相互关系。

  2.本节知识结构:

  本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

  3.重点、难点分析:

  列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

  如:用代数式表示:比 的2倍大2的数。

  分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.

  4.列代数式应注意的问题:

  (1)要分清语言叙述中关键词语的意义,理清它们之间的'数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

  (2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

  (3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

  (4)在代数式中出现除法时,用分数线表示。

  5.教法建议:

  列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

七年级数学教案4

  教学目标

  1.知识与技能

  ①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.

  2.过程与方法

  经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

  3.情感、态度与价值观

  通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.

  教学重点难点

  重点:会把所给的各数填入它所在的数集的`图里.难点:掌握有理数的两种分类.

  教与学互动设计

  (一)创设情境,导入新课

  讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

  (二)合作交流,解读探究

  学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

  议一议你能说说这些数的特点吗?

  学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

  说明:我们把所有的这些数统称为有理数.

七年级数学教案5

  教学目标

  1.使学生掌握代数式的值的概念,会求代数式的值;

  2.培养学生准确地运算能力,并适当地渗透对应的思想.

  教学重点和难点

  重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.

  难点:正确地求出代数式的值.

  课堂教学过程设计

  一、从学生原有的认识结构提出问题

  1.用代数式表示:(投影)

  (1)a与b的和的平方;(2)a,b两数的平方和;

  (3)a与b的和的50%.

  2.用语言叙述代数式2n+10的意义.

  3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)

  某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

  若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

  最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.

  二、师生共同研究代数式的值的.意义

  1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.

  2.结合上述例题,提出如下几个问题:

  (1)求代数式2n+10的值,必须给出什么条件?

  (2)代数式的值是由什么值的确定而确定的?

  当教师引导学生说出:“代数式的值是由代数式

  里字母的取值的确定而确定的”之后,可用图示帮助

  学生加深印象.

  然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.

  (3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

  下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)

  例1?当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.

  解:当x=7,y=4,z=0时,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70.

  注意:如果代数式中省略乘号,代入后需添上乘号.

  解:(1)当a=4,b=12时,

  a2-=42-=16-3=13;

  注意(1)如果字母取值是分数,作乘方运算时要加括号;

  (2)注意书写格式,“当……时”的字样不要丢;

  (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.

  最后,请学生总结出求代数值的步骤:

  ①代入数值?②计算结果

  三、课堂练习

  1.(1)当x=2时,求代数式x2-1的值;

  2.填表:(投影)

  (1)(a+b)2;?(2)(a-b)2.

  四、师生共同小结

  首先,请学生回答下面问题:

  1.本节课学习了哪些内容?2.求代数式的值应分哪几步?

  3.在“代入”这一步应注意什么?

  其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

  五、作业

  1.当a=2,b=1,c=3时,求下列代数式的值:

  2.填表

  3.填表

七年级数学教案6

  一、教学目标

  1、理解一个数平方根和算术平方根的意义;

  2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3通、过本节的训练,提高学生的逻辑思维能力;

  4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法。

  教学难点:平方根与算术平方根联系与区别。

  三、教学方法

  讲练结合。

  四、教学手段

  多媒体

  五、教学过程

  (一)提问

  1、已知一正方形面积为50平方米,那么它的边长应为多少?

  2、已知一个数的平方等于1000,那么这个数是多少?

  3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的`值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习,填空:

  1、(  )2=9;

  2、(  )2 =0.25;

  3、(  )2=0.0081。

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

  由练习引出平方根的概念。

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

  用数学语言表达即为:若x2=a,则x叫做a的平方根。

  由练习知:±3是9的平方根;

  ±0.5是0.25的平方根;

  0的平方根是0;

  ±0.09是0.0081的平方根。

  由此我们看到3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  (   )2=—4

  学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。

  (三)平方根性质

  1、一个正数有两个平方根,它们互为相反数。

  2、0有一个平方根,它是0本身。

  3、负数没有平方根。

  (四)开平方

  求一个数a的平方根的运算,叫做开平方的运算。

  由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

  练习:

  1、用正确的符号表示下列各数的平方根:

  ①26

  ②247

  ③0.2

  ④3

  ⑤

  解:①26的平方根是

  ②247的平方根是

  ③0.2的平方根是

  ④3的平方根是

  ⑤的平方根是

七年级数学教案7

  教学设计思路

  “问题是思考的开始”,问题的提出是数学教学中重要的一环,使学生明确学习内容的必要性,才有可能调动学生解决问题的主动性,促进学生认识能力的提高与发展.而对于生产和生活中的实际问题,学生看得见,摸得着,有的还亲身经历过,所以,当教师提出这些问题时,他们一定会跃跃欲试,想学以致用,这样能起到充分调动学习积极性的作用.

  教学目标

  知识与技能:

  1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.

  2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.

  过程与方法:

  经历探索同底数幂的除法的运算性质的过程,进一步体会幂的'意义,发展推理能力,提高语言表达能力.

  情感态度价值观:

  感受数学公式的简洁美、和谐美.

  重点难点

  重点:准确、熟练地运用法则进行计算.

  难点:负指数幂的条件及法则的正确运用.

  教学过程

  1.创设情境,复习导入

  前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.

  (1)叙述同底数幂的乘法性质.

  (2)计算:① ② ③

  学生活动:学生回答上述问题.

  (m,n都是正整数)

  教法说明:通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.

  2.提出问题,引出新知

  我国研制的“银河”巨型计算机的运算速度是108次/秒,光计算机(主要由光学运算器、光学存储器和光学控制器组成)的运算速度是108次/秒.光计算机的运算速度是“银河”计算机运算速度的多少倍?

  怎样计算 呢?

  这就是我们这节课要学习的同底数幂的除法运算.

  3.导向深入,得出性质

  做一做(鼓励学生根据幂的意义和除法意义,独立得出结果)

  按乘方的意义和除法计算:

  (1)

  (2)

  (3)

  (4)

  探究:(1)若a≠0,a15÷a5等于什么?

  (2)通过上面的计算,对同底数幂的除法运算,你发现了什么规律?

  学生思考,回答

  师生共同总结:

  教师把结论写在黑板上.

  请同学们试着用文字概括这个性质:

  【公式分析与说明】提出问题:在运算过程当中,除数能否为0?

  学生回答:不能.(并说明理由)

  由此得出:同底数幂相除,底数 .教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:

  一般地,这就是说,同底数幂相除,底数不变,指数相减.

  尝试证明:

  4.揭示规律

  由此我们规定

  规律一:任何不等于0的数的0次幂都等于1.

  一般我们规定

  规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.

  5.尝试反馈,理解新知

  (补充)例2 自从扫描隧道电子显微镜发明后,便诞生了一门新技术一纳米技术.纳米是长度单位,1 nm (纳米)等于 0.000 000 001 m .请用科学记数法表示 0.000 000 001.

  分析:绝对值较小的数可以用一个有一位整数的数与 10 的负指数幕的乘积的形式来表示.

  学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.

  教师活动:统计做题正确的人数,同时给予肯定或鼓励.

  6.反馈练习,巩固知识

  练习一

  (1)填空:

  ① ②

  ③ ④

  (2)计算:

  ① ②

  ③ ④

  学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

  练习二

  下面的计算对不对?如果不对,应怎样改正?

  (1) (2)

  (3) (4)

  学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.

  总结、扩展

  我们共同总结这节课的学习内容.

  学生活动:①同底数幂相除,底数 ,指数 .

  ②由学生谈本书内容体会.

  教法说明:强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

  6.小结

  本节主要学习内容:

  同底数幂的除法运算性质.

  零指数与负整数指数的意义.

  用科学记数法表示绝对值较小的数的方法.

  幂的运算与指数运算的关系: (m,n都是正整数); (a≠0,m,n都是正整数),即在底数相同的条件下:幂相乘→指数相加,幂相除→指数相减.

  注意的地方:

  在同底数幂的除法性质及零指数幂与负整数指数幂中,千万不能忽略底数a≠0的条件.

  7.布置作业

  P78 A组3、4 B组2、3

  8.板书设计

  8.3同底数幂的除法

  一、同底数幂的法则

  二、例题 练习

  例1 (补充)例2

七年级数学教案8

  教学目标

  1 知识与技能:

  使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  2 过程与方法:

  通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

  3 情感态度与价值观:

  让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

  教学重难点

  1 教学重点:

  掌握用整十数除的口算方法。

  2 教学难点:

  理解用整十数除的口算算理。

  教学工具

  多媒体设备

  教学过程

  1 复习引入

  口算。

  20×3= 7×50= 6×3=

  20×5= 4×9= 8×60=

  24÷6= 8÷2= 12÷3=

  42÷6= 90÷3= 3000÷5=

  2 新知探究

  1、教学例1

  有80面彩旗,每班分20面,可以分给几个班?

  (1)提出问题,寻找解决问题的方法。

  师:从中你能获取什么数学信息?

  师:怎样解决这个问题?

  (2)列式 80÷20

  (3)学生独立探索口算的方法

  师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

  学生汇报:

  预设学生可能会有以下两种口算方法:

  A.因为20×4=80,所以80÷20=4 这是想乘算除

  B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

  为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

  这样我们就把除数是整十数的转化为我们已经学过的表内除法。

  (4)师小结:

  同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

  把你喜欢的方法说给同桌听。

  (5)检查正误

  师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

  (6)用刚学会的方法再次口算,并与同桌交流你的想法

  40÷20 20÷10 60÷30 90÷30

  (7)探究估算的方法

  出示:83÷20≈ 80÷19≈

  师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

  生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

  师:谁想把你的方法跟大家说一说。

  预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

  19接近于20,80除以20等于 4,所以80除以19约等于4。

  2、教学例2

  (1)创设情境引出问题

  师:谁会解决这个问题?

  150÷50

  (2)小组讨论口算方法

  (3)你是怎么这样快就算出的呢?

  A.因为15÷5=3,所以150÷50=3。

  B.因为3个50是150,所以150÷50=3。

  这一题跟刚才分彩旗的口算方法有不同吗?

  都是运用想乘算除和表内除法这两种方法来口算的。

  师:在解决分彩旗和刚才的.问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

  口算练习:150÷30 240÷80 300÷50 540÷90

  3、估算

  (1)探计估算的方法

  师:你能知道题目要求我们做什么吗?

  你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

  (2)谁想把你的方法跟大家说一说。

  (3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

  (4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

  3 巩固提升

  1、独立口算

  观察每道题,怎样很快说出下面除法算式的商?

  如果估算的话把谁估成多少。

  2、算一算、说一说。

  (1)除数不变,被除数乘几,商也乘几。

  (2)被除数不变,除数乘几,商反而除以几。

  3、解决问题

  (1)一共要寄240本书,每包40本。要捆多少包?

  你能找到什么条件、问题。你会解决吗?

  240÷40 = 6(包)

  答:要捆6包。

  (2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

  出示条件:一共有120个小故事,每天看1个故事。

  问题:看完这本书大约需要几个月?

  问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

  120÷30 = 4(个)

  答:看完这本书大约需要4个月。

  课后小结

  这节课你有什么收获?还有什么问题?

  本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  板书

  口算除法

  有80面彩旗,每班分20面,可以分给几个班?

  80÷20=

七年级数学教案9

  一、教材分析

  1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时

  2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用

  3、教学的重点、难点:

  重点:邻补角、对顶角的概念,对顶角的性质和应用。

  难点:理解对顶角性质的探索

  (确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)

  4、教学目标:

  A:知识与技能目标

  (1).理解对顶角和邻补角的概念,能在图形中辨认.

  (2).掌握对顶角相等的性质和它的推证过程

  (3).会用对顶角的性质进行有关的简单推理和计算.

  B:过程与方法目标

  (1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

  (2).体会具体到抽象再到具体的思想方法.

  C:情感、态度与价值目标

  (1).感受图形中和谐美、对称美.

  (2).感受合作交流带来的成功感,树立自信心.

  (3).感受数学应用的广泛性,使学生更加热爱数学

  二、学情分析:

  在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.

  三、教法和学法:

  教法:

  叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.

  学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.

  四、教学过程:

  1课前准备:课件,剪刀,纸片,相交线模型

  2教学过程:设置以下六个环节

  环节一:情景屋(创设情景,激发学习动机)

  请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线

  环节二:问题苑(合作交流,解释发现)

  通过一些问题的设置,激发学生探究的欲望,具体操作:

  (1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化

  (2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

  (让学生充分的'感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)

  (3):分析研究此模型:

  设置以下一系列问题:

  A、两直线相交构成的4个角两两相配共能组成几对?(6对)

  B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。

  另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角

  C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。

  D、你能阐述它们互补和相等的理由吗?

  (一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)

  环节三:快乐房(大胆创设,感悟变换)

  (设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)

  环节四:实例库(拓展应用,升华提高)

  例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力

  例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力

  (一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).

  最后安排一个脑筋急转弯:见投影

  (让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)

  环节五:点金帚(学后反思感悟收获)

  通过本堂课的探究

  我经历了......

  我体会到......

  我感受到......

  (学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)

  角的名称

  特征

  性质

  相同点

  不同点

  对顶角

  ①两条直线相交而成的角

  ②有一个公共顶点

  ③没有公共边

  对顶角相等

  都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

  对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个

  邻补角

  ①两条直线相交面成的角

  ②有一个公共顶点

  ③有一条公共边

  邻补角互补

  环节六:沉思阁(课后延伸张扬个性)

  此为课后作业:

  (适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)

  五、教学设计说明:

  设计理念:面向全体学生,实现:

  ——人人学有价值的数学

  ——人人都能获得必需的数学

  ——不同的人在数学上得到不同的发展

  过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。

  设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。

七年级数学教案10

  一、教学目标

  1.理解一个数平方根和算术平方根的意义;

  2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3.通过本节的训练,提高学生的逻辑思维能力;

  4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法。

  教学难点:平方根与算术平方根联系与区别。

  三、教学方法

  讲练结合。

  四、教学手段

  多媒体

  五、教学过程

  (一)提问

  1.已知一正方形面积为50平方米,那么它的边长应为多少?

  2.已知一个数的平方等于1000,那么这个数是多少?

  3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习:填空

  1.(  )2=9;   2.(  )2 =0.25;

  5.(  )2=0.0081.

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.。

  由练习引出平方根的概念.

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

  用数学语言表达即为:若x2=a,则x叫做a的平方根。

  由练习知:±3是9的平方根;

  ±0.5是0.25的平方根;

  0的`平方根是0;

  ±0.09是0.0081的平方根.

  由此我们看到3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  (   )2=-4

  学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。

  (三)平方根性质

  1.一个正数有两个平方根,它们互为相反数。

  2.0有一个平方根,它是0本身。

  3.负数没有平方根。

  (四)开平方

  求一个数a的平方根的运算,叫做开平方的运算。

  由练习我们看到3与-3的平方是9,9的平方根是3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。

  练习:1.用正确的符号表示下列各数的平方根:

  ①26②247③0.2④3⑤

  解:①26的平方根是xx

  ②247的平方根是xx

  ③0.2的平方根是xx

  ④3的平方根是xx

  ⑤的平方根是xx

七年级数学教案11

  教学目标:

  1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。

  2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。

  教学重点:理解有序数对的概念,用有序数对来表示位置。

  教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时

  教学过程

  一、创设问题情境,引入新课

  展示书p105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?

  原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。

  二、师生共同参于教学活动

  (1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。

  师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?

  生:不能,要确定还必须知道“排数”。

  (2)教师书写平面图通知,由学生分组讨论。

  今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。

  师:你们能明白它的意思吗?

  学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。

  师:请同学们思考以下问题:

  ①怎样确定你自己的座位的位置?

  ②排数和列数先后须序对位置有影响吗?

  生:通过讨论,交流后得到以下共识:

  ①可用排数和列数两个不同的数来确定位置。

  ②排数和列数的先后须序对位置有影响。

  (3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

  (4)在生活中还有用有序数对表示一个位置的例子吗?

  学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。

  例如:人们常用经纬度来表示,地球上的地点

  三、巩固练习

  让学生完成p46的练习。

  四、布置作业

  1、课本习题6,1,1。

  2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?

  1 2 3 4 5 6 7 8

  五、教后反思

  师:谈谈本节课,你有哪些收获?

  由同学交流解决问题,教师设疑为以后的学习奠定基础。

  一、教学目标

  知识与技能

  了解数轴的概念,能用数轴上的点准确地表示有理数。

  过程与方法

  通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

  情感、态度与价值观

  在数与形结合的过程中,体会数学学习的乐趣。

  二、教学重难点

  教学重点

  数轴的三要素,用数轴上的点表示有理数。

  教学难点

  数形结合的思想方法。

  三、教学过程

  (一)引入新课

  提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。

  (二)探索新知

  学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

  提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

  学生活动:画图表示后提问。

  提问2:“0”代表什么?数的符号的'实际意义是什么?对照体温计进行解答。

  教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

  提问3:你是如何理解数轴三要素的?

  师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

  (三)课堂练习

  如图,写出数轴上点a,b,c,d,e表示的数。

  (四)小结作业

  提问:今天有什么收获?

  引导学生回顾:数轴的三要素,用数轴表示数。

  课后作业:

  课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

  学习目标(学习重点):

  1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

  2、运用菱形的识别方法进行有关推理。

  补充例题:

  例1.如图,在△abc中,ad是△abc的角平分线。de∥ac交ab于e,df∥ab交ac于f.四边形aedf是菱形吗?说明你的理由。

  例2.如图,平行四边形abcd的对角线ac的垂直平分线与边ad、bc分别交于e、f.

  四边形afce是菱形吗?说明理由。

  例3.如图,abcd是矩形纸片,翻折b、d,使bc、ad恰好落在ac上,设f、h分别是b、d落在ac上的两点,e、g分别是折痕ce、ag与ab、cd的交点

  (1)试说明四边形aecg是平行四边形;

  (2)若ab=4cm,bc=3cm,求线段ef的长;

  (3)当矩形两边ab、bc具备怎样的关系时,四边形aecg是菱形。

  课后续助:

  一、填空题

  1、如果四边形abcd是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

  2、如图,d、e、f分别是△abc的边bc、ca、ab上的点,且de∥ba,df∥ ca

  (1)要使四边形afde是菱形,则要增加条件______________________

  (2)要使四边形afde是矩形,则要增加条件______________________

  二、解答题

  1、如图,在□abcd中,若2,判断□abcd是矩形还是菱形?并说明理由。

  2、如图,平行四边形a bcd的两条对角线ac,bd相交于点o,oa=4,ob=3,ab=5.

  (1)ac,bd互相垂直吗?为什么?

  (2)四边形abcd是菱形吗?

  3、如图,在□abcd中,已知adab,abc的平分线交ad于e,ef∥ab交bc于f,试问:四边形abfe是菱形吗?请说明理由。

  4、如图,把一张矩形的纸abcd沿对角线bd折叠,使点c落在点e处,be与ad交于点f.

  ⑴求证:abf≌

  ⑵若将折叠的图形恢复原状,点f与bc边上的点m正好重合,连接dm,试判断四边形bmdf的形状,并说明理由。

七年级数学教案12

  一、知识结构

  二、重点、难点分析

  本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用、

  1、幂的乘方

  幂的乘方,底数不变,指数相乘,即(都是正整数)

  幂的乘方

  的推导是根据乘方的意义和同底数幂的乘法性质、

  幂的乘方不能和同底数幂的乘法相混淆,例如不能把的结果错误地写成,也不能把的计算结果写成、

  幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如

  2、积和乘方

  积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘、即(为正整数)

  三个或三个以上的积的乘方,也具有这一性质、例如:

  3、不要把幂的乘方性质与同底数幂的乘法性质混淆、幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变)

  4、同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据、对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解、在这三个幂的.运算中,要防止符号错误:例如,;还要防止运算性质发生混淆:等等、

  三、教法建议

  1、幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质、教学时,也要注意导出这一性质的过程、可先以具体指数为例,明确幕的乘方的意义,导出性质,如

  对于从指数连加得到指数相乘,要根据学生情况多作一些说明、以xx为例,再一次说明

  可以写成、这一点是导出幂的乘方性质的关键,务必使学生真正理解、在此基础上再导出性质、

  2、使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆、具体讲解可从下面两点来说明:

  (1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质、

  (2)记清幂的运算与指数运算的关系:

  (同底)幂相乘→指数相加(“乘”变“加”,降一级运算);

  幂乘方→指数相乘(“乘方”变“乘法”,降一级运算)、

  了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.

  3、在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么、三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:

  (1)(-2xy) 4 =-2 4 x 4 y 4

  (2)(x+y) 3 =x 3 +y 3

七年级数学教案13

  一、教学目标

  1.了解推理、证明的格式,理解判定定理的证法.

  2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.

  3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.

  4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.

  二、学法引导

  1.教师教法:启发式引导发现法.

  2.学生学法:积极参与、主动发现、发展思维.

  三、重点·难点及解决办法

  (一)重点

  判定定理的`推导和例题的解答.

  (二)难点

  使用符号语言进行推理.

  (三)解决办法

  1.通过教师正确引导,学生积极思维,发现定理,解决重点.

  2.通过教师指导,学生自行完成推理过程,解决难点及疑点.

  四、课时安排

  1课时

  五、教具学具准备

  三角板、投影仪、自制胶片.

  六、师生互动活动设计

  1.通过设计练习,复习基础,创造情境,引入新课.

  2.通过教师指导,学生探索新知,练习巩固,完成新授.

  3.通过学生自己总结完成小结.

  七、教学步骤

  (一)明确目标

  掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.

  (二)整体感知

  以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.

  (三)教学过程

  创设情境,复习引入

  师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).

  学生活动:学生口答第1、2题.

  师:你能说出有什么条件,就可以判定两条直线平行呢?

  学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.

  教师将第3题图形画在黑板上.

  学生活动:学生口答理由,同角的补角相等.

  师:要求学生写出符号推理过程,并板书.

  【教法说明】

  本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.

  师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

  学生活动:同分内角.

  师:它们有什么关系.

  学生活动:互补.

  师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.

七年级数学教案14

  教学目标:

  1、正确理解数轴的意义,理解数轴的三要素。

  2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。

  3、理解相反数的意义及求法。

  4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。

  重点难点

  1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。

  2、有理数和数轴上的的点的对应关系。

  教学方法

  合作探究交流

  学法指导

  观察归纳概括

  教学过程

一、情景引入:

  (1)你会读温度计吗?完成课本43页最上面的读温度计的问题。

  (2)我们能否用类似温度计的图形表示有理数呢?

  二、讲授新课:认真阅读课本第43页至45页,完成下列问题

  (1)画一条水平直线,在直线上取一点O(叫做▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。

  于是,+3可以用数轴上位于原点右边3个单位的点表示,—4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边点表示,在数轴上位于原点左边1、5的点表示,任何有理数都可以用数轴上的一个点来表示。

  三、例题讲解、巩固提高

  例1、如图,指出数轴上A、B、C、D各点表示什么数?

  A D CB

  –2 –1 0 1 2 3

  解:点A表示—2;点B表示2;点C表示0;

  点D表示—1

  练习:画出数轴并用数轴上的点表示下列个数:

  —5,0,5,—4,—、

  四、继续探究

  2与—2有什么相同点与不同点?它们在数轴上的`位置有什么关系?5与—5,与–呢?

  如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数、特别地0的相反数是0、

  在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等、

  练习:1、5的相反数是▁▁;▁▁的相反数是—3、5。

  议一议

  数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?

  数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。

  练习:比较大小:—3▁5;0 ▁—4;—3 ▁—2、5。

  3、合作交流

  (1)什么是数轴?怎样画数轴。

  (2)有理数与数轴上的点之间存在怎样的关系?

  (3)什么是相反数?怎样求一个数的相反数?

  (4)如何利用数轴比较有理数的大小?

  5、随堂练习:

  (1)下列说法正确的是()

  A、数轴上的点只能表示有理数

  B、一个数只能用数轴上的一个点表示

  C、在1和3之间只有2

  D、在数轴上离原点2个单位长度的点表示的数是2

  (2)语句:①—5是相反数?②—5与+3互为相反数③—5是5的相反数④—5和5互为相反数⑤0的相反数是0⑥—0=0。上述说法中正确的是()

  A、①②⑥ B、②③⑤ C、①④ D、③④⑤⑥

  (3)大于—4而小于4的整数有▁▁▁▁▁▁。

  (4)用“﹤”或“﹥”号填空

  ①—5▁▁—7②0 ▁▁—2③0、01▁▁▁—0、1

  (5)写出下列各数的相反数

  3、4,—3,0,a,2a—3。

七年级数学教案15

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程(师生活动)

  设计理念

  知识回顾与深化

  回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。这就是说:数的范围扩大了(数有正数和负数之分)。那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论。(数0既不是正数又不是负数,是正数和负数的分界,是基准。这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性。“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。这个问题只要初步认识即可,不必深究。

  问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。

  类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充。

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出。

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的.量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。)

  本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题

  3,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

  定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。通过实际例子的学习激发学生学习数学的兴趣。

【七年级数学教案】相关文章:

初中七年级的数学教案02-02

七年级数学教案11-03

人教版七年级数学教案11-06

七年级上册数学教案11-23

七年级下册数学教案02-16

七年级上册数学教案优秀12-08

七年级数学教案15篇02-13

七年级数学教案(15篇)02-20

七年级上册数学教案15篇02-01

七年级上册数学教案(15篇)03-02