当前位置:好文网>实用文>教案>七年级数学教案

七年级数学教案

时间:2023-02-13 09:41:18 教案

七年级数学教案15篇

  作为一名教师,就难以避免地要准备教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么优秀的教案是什么样的呢?以下是小编收集整理的七年级数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

七年级数学教案15篇

七年级数学教案1

  教学目标:

  1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

  2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

  3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

  教学重点:

  初步认识正数和负数以及读法和写法。

  教学难点:

  理解0既不是正数,也不是负数。

  教学具准备:

  多媒体课件、温度计、练习纸、卡片等。

  教学过程:

  一、游戏导入(感受生活中的相反现象)

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)

  ②向前走200米(向后走200米)

  ③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。

  ②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。

  ④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的`?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ②北京的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844。43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844。43米或8844。43米。

  吐鲁番盆地的海拔可以记作:—155米。(板书)

  (2)小结:以海平面为界线,+8844。43米或8844。43米这样的数可以表示海平面以上的高度,—155米这样的数可以表示海平面以下的高度。

  四、小组讨论,归纳正数和负数。

  1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

  2、学生交流、讨论。

  3、指出:因为+8844。43也可以写成8844。43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

  ①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

  ②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

  4、小结:什么是正数、负数?

  师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0。5、+8844。43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

  五、联系生活,巩固练习

  1、练习一第2、3题

  2、你知道吗:水沸腾时的温度是xxxx。水结冰时的温度是xxxx。地球表面的最低温度是。

  3、讨论生活中的正数和负数

  (1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元)

  (2)电梯:这里的1和—1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

  六、课堂小结

  这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

七年级数学教案2

  一、教学内容分析

  1。2有理数1。2。2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

  二、学生学习情况分析

  (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

  (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

  (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

  三、设计思想

  从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

  四、教学目标

  (一)知识与技能

  1、掌握数轴的三要素,能正确画出数轴。

  2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

  (二)过程与方法

  1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

  2、对学生渗透数形结合的思想方法。

  (三)情感、态度与价值观

  1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

  2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  五、教学重点及难点

  1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

  2、难点:有理数和数轴上的点的对应关系。

  六、教学建议

  1、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

  2、知识结构

  有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:

  定义规定了原点、正方向、单位长度的直线叫数轴

  三要素原点正方向单位长度

  应用数形结合

  七、学法引导

  1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

  2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

  八、课时安排

  1课时

  九、教具学具准备

  电脑、投影仪、三角板

  十、师生互动活动设计

  讲授新课

  (出示投影1)

  问题1:三个温度计。其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

  师:三个温度计所表示的温度是多少?

  生:2℃,—5℃,0℃。

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7。5m处分别有一棵柳树和一棵杨树,汽车站西3m和4。8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)

  师:我们能否用类似的图形表示有理数呢?

  师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

  师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

  数,用直线上的点表示正数、负数和零。具体方法如下

  (边说边画):

  1。画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2。规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3。选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为—1,—2,—3,…

  师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  让学生观察画好的直线,思考以下问题:

  (出示投影2)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示—1的点在什么位置?

  (4)原点向右0。5个单位长度的A点表示什么数?

  原点向左1。5个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

  师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

  位长度的直线叫做数轴。

  进而提问学生:在数轴上,已知一点P表示数—5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的`数是否还是—5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

  【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。

  师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

  尝试反馈,巩固练习

  (出示投影3)。画出数轴并表示下列有理数:

  1、1。5,—2。2,—2。5,,,0。

  2。写出数轴上点A,B,C,D,E所表示的数:

  请大家回答下列问题:

  (出示投影4)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  【教法说明】此组练习的目的是巩固数轴的概念。

  十一、小结

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

  十二、课后练习习题1。2第2题

  十三、教学反思

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教案3

  教学目标

  (一)教学知识点

  1、了解近似数的概念,并按要求取近似数

  2、体会近似数的意义及在生活中的作用

  (二)能力训练要求

  能根据实际问题的需要选取近似数,收集数据

  (三)情感与价值观要求

  进一步体会数学的应用价值,发展“用数学”的信心和能力

  教学重点

  1、体会和感受生活中的近似数和精确数,明白测量的结果都是近似数

  2、能按要求对一个数四舍五入取近似数

  教学难点

  合理地对一个数四舍五入取近似值

  教学方法

  实验——讲——练相结合

  通过测量实验体会生活中存在着近似数和精确数,经过讲解和练习能将一个数按要求取近似值

  教具准备

  1、收集不同形状的树叶制成标本

  2、最小单位是厘米的刻度尺和最小单位是毫米的刻度尺

  教学过程

  Ⅰ、创设情景,引入新课

  [师]在我们学习和生活中,经常会遇到一些数据。例如:

  (1)小明班上有45人;

  (2)吐鲁番盆地低于海平面155米;

  (3)某次地震中,伤亡10万人;

  (4)小红测得数学书的长度为21.0厘米

  而这些数据在收集的过程中,有些是精确的,而有些由于客观条件无法或难以得到精确数据或无需要得到精确数据而取了近似数

  凭你生活的经验,你能判断一下,哪些是精确数?哪些是近似数吗?

  [生]我认为第(1)个中的数据是精确的,而第(2)、(3)、(4)中的数据都是近似的

  [师]很好,下面我们接着来做一个实验,进一步体验近似数的意义和在生活中的作用、

  Ⅱ、引入新课,获得直观的体验

  1、实验——测得树叶的长度

  [师]同学们在下面收集了不少的树叶,把这些树叶制成标本的时候,要求必须在标本中注明每片树叶的长度,下面我们就以同桌为一小组,用你准备好的最小刻度是厘米和最小刻度是毫米的刻度尺测量你收集到的树叶的长度,并读取数据

  (教师可以让学生交流,讨论读取数据的方法,同时给予指导,让同学们体验到测量读取的数据是有误差的)

  [师]在同学们测量的过程中,同桌的小明和小颖用最小单位不同的刻度尺测量了同一片树叶的长度,如图3-1所示:

  图3-1

  (1)根据小明的测量方法,你能知道他用的刻度尺最小刻度是什么吗?这片树叶的长度约为多少?根据小颖的测量呢?

  (2)谁的测量结果更精确一些?说说你的理由

  [生]小明用的刻度尺最小单位是厘米,这片树叶的长度约为6.8厘米,其中6是精确的,8是估计的,即是近似的;小颖用的刻度尺最小单位是毫米,她测量的结果可以读成6.78厘米,其6和7都是精确的,而8是估计的,即是近似的

  [生]从刚才这位同学的分析,很容易看出小颖测量的结果要比小明的更精确一些

  [师]同学们分析得很精细,同桌的小明和小颖共收集了12片树叶,测得刚才那片树叶的长度的值分别约为6.8厘米和6.78厘米、在这一收集数据的过程中,哪些数据是精确的,哪些数据是近似的呢?

  [生]他们一共收集了12片树叶,这个数据是精确的,而测量的树叶的长度的值是近似的

  [师]大家还可以用你的刻度尺测量一下桌子的长度、厚度,数学课本的长度、厚度,又可以读出一些数据,它们是精确的还是近似的?

  [生]我测得我的课桌的长度是80.5厘米,它是近似的

  [生]我测得课桌的长度是80.45厘米,它也是近似数

  [师]由此,我们可知测量得出的结果都是近似的,例如珠峰的高度是8848米,是测量得出的,它是近似数

  在生活中,除了测量的结果是近似数以外,还有没有其他数据也是近似的?

  [生]有,例如方便面袋子上写着:总净含量110克,数据110克是近似的

  [生]饮料桶标注的净含量是350 mL也是近似数

  [生]天气预报中报到今天的最高气温是28℃,“28℃”这个数据也是近似数

  [生]咱们这本教科书字数是202千字,“202千字”这个数据也是近似的

  [师]真棒,同学们能列举生活中这么多的近似数据,说明同学们平时很留心观察一些事物,这一点很值得肯定

  2、议一议

  图3-2

  (1)上面的数据,哪些是精确的?哪些是近似的?

  (2)举例说明生活中哪些数据是精确的?哪些数据是近似的?

  [生](1)2000年第五次人口普查表明,我国人口总数为12.9533亿,人口总数为12.9533亿这个数据是近似数

  [师]为什么呢?(Why?)

  [生]因为我国地域辽阔,客观条件就决定了在人口普查的过程中是无法或难以得到精确数据的

  [师]的确如此,在测量过程中,我们难以得到精确数据,尽管现在科技的发展,有了更为精密的'仪器、在人口普查中,由于客观条件等的限制,也难以或无法取到精确值

  [生]第二幅图是精确值

  [生]第三幅图中,年级共有97人是精确值,而买门票大约需要800元是近似值、

  [师]回答正确、这里的“800元”也是近似值,但这个近似值不是无法或难以得到精确数据,而是根据实际情况要估算一下大约需多少钱,无需得到精确值

  你还能举出生活中一些例子说明哪些数据是精确的?哪些数据是近似的吗?

  [生]小明的身高是1.58米,体重40公斤,年龄14岁,这些数据都是近似数

  [生]小明今天上了6节课,是精确的

  [生]一条草鱼重2.854千克,这个数据也是近似数

  [生]我们班有25个女生,这个数据是精确数

  [师]我们了解了生活中存在着这么多的近似数和精确数,下面我们来看一看如何根据具体情况和要求采用四舍五入法求一个数的近似数、

  3、做一做

  例1小明量得课桌长为1.025米,请按下列要求取这个数的近似数:

  (1)四舍五入到百分位;

  (2)四舍五入到十分位;

  (3)四舍五入到个位、

  [分析]用四舍五入法求一个数的近似数,关键是看四舍五入到哪一位,看这一位后面一位的数够五不够五,来决定取舍,特别注意近似数1.0,末尾的0不能随意去掉、

  解:(1)四舍五入到百分位为1.03米;

  (2)四舍五入到十分位为1.0米;

  (3)四舍五入到个位为1米

  例2小丽与小明在讨论问题

  小丽:如果你把7498近似到千位数,你就会得到7000

  小明:不,我有另外一种解答方法,可以得到不同的答案、首先,将7498近似到百位,得到7500,接着把7500近似到千位,就得到了8000

  小丽:……

  你怎样评价小丽和小明的说法呢?

  [生]小丽的说法是正确的因为一个数近似到千位,要一次做完,看百位上的数决定四舍五入,而不能先近似到百位,再近似到千位

  例3中国国土面积约为9596960千米2,美国和罗马尼亚的国土面积约为9364000千米2(四舍五入到千位)和240000千米2(四舍五入到万位)如果要将中国国土面积与它们相比较,那么中国国土面积分别四舍五入到哪一位时,比较起来的误差可能会小些?

  [分析]对数据进行比较是培养数感的一个重要方面、在对数据进行比较时,有时可以根据需要选择各自的近似数进行比较、在选择近似数时,一般数据要四舍五入到同一数位,这样出现较大误差的可能性会小一些

  解:当与美国的国土面积比较时,可将中国国土面积四舍五入到千位,得到9597000千米2,因为它们同时四舍五入到了千位,这样比较起来误差会小一些

  类似地,当与罗马尼亚国土面积相比较时,可以将中国国土面积四舍五入到万位,得到9600000千米2、

  Ⅲ、课时小结

  [师]通过这节课的学习,你有何体会和收获呢?

  [生]我们知道了测量所得的数据都是近似数

  [生]生活中既有精确的数据,也有近似的数据,因此我们的生活丰富多彩、

  [生]能根据具体情况和要求求一个数的近似数

  [生]用四舍五入法取近似数时,不能随便将小数末尾的零去掉、例如2.03取近似数,四舍五入到十分位,得到近似数2.0,不能把零去掉、

  板书设计

  一、生活中的数据——近似数和精确数

  1、实验测量所得的结果都是近似的(测量树叶的长度)

  2、议一议

  二、根据具体情况,采用四舍五入求一个数的近似数、(师生共析,由学生板演)

七年级数学教案4

  一、 教学目标

  1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

  2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

  3、 学会用正负数表示实际问题中具有相反意义的量。

  二、 教学重点和难点

  重点:正负数的概念

  难点:负数的概念

  三、 教具

  投影片、实物投影仪

  四、 教学内容

  (一 )引入

  师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

  生:自然数

  师:为了表示“没有”,又引入了一个什么数?

  生:自然数0

  师:当测量和计算的结果不是整数时,又引进了什么数?

  生:分数(小数)

  师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

  请学生用数表示这些量,遭遇表示困难。

  师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

  (二)新课教学

  1、 相反意义的量

  师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

  (1) 汽车向东行驶2.5千米和向西行驶1.5千米;

  (2) 气温从零上6摄氏度下降到零下6摄氏度;

  (3) 风筝上升10米或下降5米。

  引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义

  请学生举出一些相反意义的量的实例。

  教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

  2、 正数与负数

  师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

  由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

  师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

  生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

  师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的`数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

  生:(讨论后得出)不能。

  师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

  (三)、练习

  1、 学生完成课本第4页练习1,2,3

  2、 补充练习

  (1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;

  (2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

  (3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。

  (四)小结

  1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

  2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

  3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

  (五)作业

  见作业1.1节作业。

七年级数学教案5

  教学目标:

  1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点:

  数轴的概念和用数轴上的点表示有理数

  知识重点

  教学过程(师生活动) 设计理念

  设置情境

  引入课题

  教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学。

  探究新知

  教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论

  问题3:

  1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

  2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4, 每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结

  请学生总结:

  1, 数轴的三个要素;

  2, 数轴的作以及数与点的转化方法。

  本课作业

  1, 必做题:教科书第18页习题1.2第2题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1, 数轴是数形转化、结合的重要媒介,情境设计的'原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教案6

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?

  同学们动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  这正是我们本章要解决的问题。

  三、巩固练习

  1、教科书第3页练习1、2。

  2、补充练习:检验下列各括号内的数是不是它前面方程的解。

  (1)x-3(x+2)=6+x(x=3,x=-4)

  (2)2y(y-1)=3(y=-1,y=2)

  (3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业。教科书第3页,习题6。1第1、3题。

  解一元一次方程

  1、方程的简单变形

  教学目的

  通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

  重点、难点

  1、重点:方程的两种变形。

  2、难点:由具体实例抽象出方程的两种变形。

  教学过程

  一、引入

  上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

  二、新授

  让我们先做个实验,拿出预先准备好的天平和若干砝码。

  测量一些物体的.质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

  如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

  如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

  让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

七年级数学教案7

  教学建议

  一、知识结构

  二、重点、难点分析

  角的定义既是本节教学的重点,也是难点.本节知识建立在射线、线段等相关知识的基础上,同时也是进一步学习角的度量、比较、画法,以及深入研究平面几何图形的基础.

  1.角的定义是由实际生活中具有角的形象的物体抽象出来的,理解角的定义一定要明确角的边为射线,角为平面内的点集.角也可认为是一条射线绕它的端点从一个位置旋转到另一个位置而形成的图形,这里的线动成角体现了运动变化的思想.

  2.角的表示法,小学没有介绍,这里首先说明用三个字母记角.对此,要特别强调表示顶点的字母一定要写在中间,唯有在顶点处只有一个角的情况,才可只用顶点一个字母来记这个角,否则分不清这个字母究竟表示哪一个角.在讲往数字或希腊字母来记角时,可再让学生作些练习,说出所记的角怎样用三个字母来表示.

  三、教法建议

  1.本节教学可以在简单复习直线、射线、线段的基础上引入,将问题的研究方向转向这些最基本的几何图形与点结合以及互相结合能够组成什么图形.可以尝试让同学们摆火柴,重点应在具有角的形象的图形,然后可以在列举、观察、分析学习、生活、生产中同样具有角的形象的物体的基础上,让同学们尝试给出角的定义.

  2.关于角的另一种定义,也可以通过实物演示的方式得出,冽如一手扯住线的一端,另一手拉住线的另一端旋转.重点应是对运动变化的观点的渗透.平角和周角也可以让学生给出,真正理解“平”与“直”的含义.

  3.教学过程中可以给出一些判别给定图形是不是角的练习,帮助学生理解角的相关概念.同时将角的知识与学生的生活实践紧密的结合起来.可以充分发挥多媒体教学的优势,结合图片、动画、课件辅助教学.

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.理解角、周角、平角及角的顶点、角的边等概念.

  2.掌握角的表示方法.

  (二)能力训练点

  1.通过由学生观察实物图形抽象出角的定义,培养学生的抽象概括能力.通过学生独立阅读总结角的几种表示方法,培养学生的阅读理解能力.

  2.通过角的两个定义的得出,培养学生多角度分析考虑问题的能力.

  (三)德育渗透点

  1.通过日常生活中具体的角的形象概括出角的定义,说明几何来源于生活,又反过来为生产、生活服务.鼓励学生努力学好文化知识,为社会做贡献.

  2.通过旋转观点定义角,说明事物是不断变化和相互转化的,我们不能用一成不变的观点去看待某些事物.

  (四)美育渗透点

  通过学习角使学生体会几何图形的对称美和动态美,培养学生的审美意识,提高学生对几何的学习兴趣.

  二、学法引导

  1.教师教法:引导发现,尝试指导与阅读理解相结合.

  2.学生学法:主动发现,自我理解与阅读法相结合.

  三、重点·难点·疑点及解决办法

  (一)重点

  角的概念及角的表示方法.

  (二)难点

  周角、平角概念的理解.

  (三)疑点

  平角与直线、周角与射线的区别.

  (四)解决办法

  通过演示法使学生正确理解平角、周角的概念,适当加以解释,简明扼要,条理清楚即可,不必做过多的解释.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪(电脑、实物投影)、三角板、圆规、自制胶片.

  六、师生互动活动设计

  1.教师创设情境,学生进入.

  2.教师步步设问,提出问题,学生在回答问题、自己画图、观察图形的过程中掌握角的静态定义.

  3.教师指导,学生阅读、归纳四种表示角的方法.

  4.教师用电脑直观演示展示角的旋转定义.

  5.反馈练习.

  6.师生讨论总结.

  7.测试.

  七、教学步骤

  (一)明确目标

  使学生能正确认识角的两种定义及相关概念,掌握角的表示方法,正确理解平角、周角的概念,并能从图形上进行识别.

  (二)整体感知

  以现代化教学为手段,调动学生主动参与的积极性,使学生在动手过程中自觉地掌握知识点.

  (三)教学过程

  创设情境,引出课题

  师:前几节我们具体研究了小学时初步认识的直线、射线、线段.另外,小学时我们还认识了另一种几何图形??角.你能说出几个日常生活中给我们角的形象的物体吗?(学生会很快说出周围的课桌、门窗、墙壁的角;圆规张开两脚;钟表的`时针与分针间形成的角等等.)

  【教法说明】为了更形象、更直观用实物投影显示一些实物图形.

  让学生说出口常生活中给我们角的形象的物体,充分发挥学生的想像力,培养其观察事物的习惯,同时,活跃课堂气氛,调动学生学习积极性.也培养了学生从具体实物图形中抽象出几何图形的能力.

  师:的确如此,在我们日常生活中,角的形象可以说无处不在.因此,一些图案的设计;机械零件的制图等等,常常用到角的画法、角的度量、角的大小比较等知识.从这节课开始我们就具体地研究角.希望同学们认真学习,掌握真本领,将来为社会做贡献.

  探究新知

  1.角的静止观点定义的得出

  提出问题:通过以上举例和小学时你对角的认识,你能画出几个不同形状的角吗?

  学生活动:在练习本上,画出几个不同形状的角,找一个学生到黑板上画图.可能出现下列情况:

  师:根据小学所学你能指出所画角的边和顶点吗?(学生结合自己理解和小学所学,会很快指出角的边和顶点.)

  师:同学们请观察,角的两边是前面我们学过的什么图形?它们的位置关系如何?你能否根据自己的理解和刚才老师的提问,描述一下怎样的几何图形叫做角吗?

  学生活动:学生讨论,然后找代表回答.

  教师在学生回答的基础上,给予纠正和补充,最后给出角的正确定义.

  [板书]角:有公共端点的两条射线组成的图形叫做角,这个公共端点叫角的顶点,这两条射线叫角的两边.

  (出示投影1)

  指出以上图形,角的顶点和角的边.

  提出问题:角的大小与角两边的长短有关系吗?

  学生讨论并演示:拿大小不同的两副三角板或学生的三角板与教师的三角板对比演示.让学生尽可能地发表自己的看法和观点.不要拘泥于课堂上的形式,充分调动学生回答问题的积极性.

  教师对学生的回答给予肯定或否定后小结:角的两边既然是射线,则可以向一方无限延长,所以角的大小与所画角的两边长短无关,仅与角的两边张开的程度有关.

  【教法说明】角的定义的得出,不是教师以枯燥的形式强加给学生,而是让学生自己在画图、观察图形的过程中,由教师引导提出问题,步步追问,自觉地去认识.在问题解决的过程中,在复习旧知识中,不知不觉学到了新知识??角.这样缩短了新旧知识间的距离,减轻了学生心理上的压力,使他们感到新知识并不难,在轻松愉快中学到了知识.同时也会感受到新旧知识之间的联系.对发展学生用普遍联系的观点看待事物有很好的作用.

  2.角的表示方法

  师:研究角,像直线、射线、线段一样,可以用字母表示.下面我们阅读课本第25负第三自然段,总结角的表示方法有几种,你能否准确地表示一个角并读出来.

  学生活动:学生看书,可以相互讨论,然后归纳出角的几种表示方法.

  【教法说明】角的四种表示方法,课本中用一自然段说明,语言通俗,很易理解,学生完全可以通过阅读,分出四个层次,四种表示角的方法.因此教师要大胆放手,培养学生阅读理解能力,归纳总结能力.

  学生阅读后,多找几个学生回答.最后通过不断补充、完善,归纳整理得出角的四种表示方法,教师整理板书.

  [板书]

  图1图2图3

  【教法说明】总结以上四种表示方法时,对前两种表示方法,应注意的问题要加以强调.第一种表示方法必须注意:顶点字母在中间.第二种表示方法只限于顶点只有一个角.这是以后学生书写过程中最易出错的地方.另外,让学生区分角的符号与小于号.这些应注意的问题最好由学生讨论,学生发现后归纳总结.

  反馈练习:投影打出以下题目

  指出图中有几个角,并用适当的方法表示它们.

  3.用旋转的观点定义角

  师:同学们看老师从另一个角度提出新问题.前面我们给角下过定义,是在静止的情况下,观察角是由怎样的两条射线组成.下面,我们从运动的观点观察一下角的形成.

  图1

  演示:教师由电脑显示一条射线,然后射线绕其端点旋转,到另一个位置停止则形成一个角,如图1所示.举例帮助学生理解:钟摆看成一条射线,从一个位置摆到另一个位置则形成一个角.

  学生讨论并试述定义:学生叙述不会太严密,教师纠正、补充后板书.

  【板书】角:角还可以看成是一条射线从一个位置旋转到另一个位置所形成的图形.

  说明:射线旋转时,经过的部分是角的内部.让学生说明平面内除了角的内部外还有几部分,分别是什么?(角的边与角的外部)

  【教法说明】角的旋转观点的定义是教学中的一个难点,学生不易理解.因此,结合电脑的显示,举出实例等手段加强教学的直观性.

  4.平角、周角的概念

  师:角可以看成是一射线绕其端点旋转所形成的图形.那么,旋转时有无特殊情况呢?

  由电脑演示并说明:

  射线绕点旋转,终止位置和起始位置成一条直线时,所成的角叫平角,如图2所示.同样可表示为,顶点,两边为射线和射线.继续旋转,回到起始位置时,所成的角叫做周角,如图3所示.周角的顶点为,两边重合成一条射线.

  图2

  师说明:(1)平角与直线、周角与射线是两个不同的概念,它们的图形表面上看一样,但本质上不同.如:直线上取点表示点在直线上的位置,而平角是由顶点和边组成的角这一几何图形.

  (2)在这一书中,所说的角,除非特殊注明,都是指没有旋转到成为平角的角.

  【教法说明】平角、周角概念学生不容易理解,所以要通过直观演示后教师加以解释,但也不要解释得过多.否则,学生会更糊涂,简明扼要,条理清楚即可.

  反馈练习:投影显示

  1.指出图中以为顶点的平角的两边

  2.指出图中(包含平角在内)的角有几个,并分别读出它们

  对以上练习发现问题及时纠正.

  变式练习,培养能力

  投影出示:

  1.如图1:可以记作吗?为什么?

  图1

  2.如图2:、分别是、上的点

  ①与是同一个角吗?

  ②与是同一个角吗?

  3.如图3:是什么角?顶点、边分别是什么?

  图2图3

  【教法说明】为活跃课堂气氛,以上练习可以抢答.

  (四)总结、扩展

  学生看书,回答本节学了哪些主要内容,同桌可以相互讨论.最后教师按学生的回答归纳出本节知识脉络.投影显示:

  八、布置作业

  预习下节内容.

  九、板书设计

  同七、(四)中的格式,在表示方法中加上图形.

七年级数学教案8

  教学目的

  1、了解一元一次方程的概念。

  2、掌握含有括号的一元一次方程的解法。

  重点、难点

  1、重点:解含有括号的一元一次方程的解法。

  2、难点:括号前面是负号时,去括号时忘记变号。

  教学过程

  一、复习提问

  1、解下列方程:

  (1)5x—2=8(2)5+2x=4x

  2、去括号法则是什么?“移项”要注意什么?

  二、新授

  一元一次方程的概念。

  如44x+64=328 3+x=(45+x)y—5=2y+1问:它们有什么共同特征?

  只含有一个未知数,并且含有未知数的.式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。

  例1、判断下列哪些是一元一次方程

  x= 3x—2 x—=—1

  5x2—3x+1=0 2x+y=1—3y =5

  例2、解方程(1)—2(x—1)=4

  (2)3(x—2)+1=x—(2x—1)

  强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“—”号,注意去掉括号,要改变括号内的每一项的符号。

  补充:解方程3x—[3(x+1)—(1+4)]=1

  说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

  三、巩固练习

  教科书第9页,练习,1、2、3。

  四、小结

  学习了一元一次方程的概念,含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。

  五、作业

  1、教科书第12页习题6。

  2、第1题。

七年级数学教案9

  教学目标

  1.使学生理解的意义;

  2.使学生掌握求一个已知数的;

  3.培养学生的观察、归纳与概括的能力.

  教学重点和难点

  重点:理解的意义,理解的代数定义与几何定义的一致性.

  难点:多重符号的化简.

  课堂教学过程 设计

  一、从学生原有的认知结构提出问题

  二、师生共同研究的定义

  特点?

  引导学生回答:符号不同,一正一负;数字相同.

  像这样,只有符号不同的两个数,我们说它们互为,如+5与

  应点有什么特点?

  引导学生回答:分别在原点的两侧;到原点的距离相等.

  这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

  3.0的是0.

  这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

  三、运用举例 变式练习

  例1 (1)分别写出9与-7的;

  例1由学生完成.

  在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

  引导学生观察例1,自己得出结论:

  数a的是-a,即在一个数前面加上一个负号即是它的

  1.当a=7时,-a=-7,7的是-7;

  2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.

  3.当a=0时,-a=-0,0的是0,因此,-0=0.

  么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;

  例2 简化-(+3),-(-4),+(-6),+(+5)的符号.

  能自己总结出简化符号的规律吗?

  括号外的'符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

  课堂练习

  1.填空:

  (1)+1.3的是______; (2)-3的是______;

  (5)-(+4)是______的; (6)-(-7)是______的

  2.简化下列各数的符号:

  -(+8),+(-9),-(-6),-(+7),+(+5).

  3.下列两对数中,哪些是相等的数?哪对互为?

  -(-8)与+(-8);-(+8)与+(-8).

  四、小结

  指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.

  五、作业

  1.分别写出下列各数的:

  2.在数轴上标出2,-4.5,0各数与它们的

  3.填空:

  (1)-1.6是______的,______的是-0.2.

  4.化简下列各数:

  5.填空:

  (1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;

  (3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.

  课堂教学设计说明

  教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

  探究活动

  有理数a、b在数轴上的位置如图:

  将a,-a,b,-b,1,-1用“<”号排列出来.

  分析:由图看出,a>1,-1

  解:在数轴上画出表示-a、-b的点:

  由图看出:-a<-1

  点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

七年级数学教案10

  教学目标:

  1、了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题

  2、培养学生的空间观念,学会用运动的观点分析问题。

  重点:平移的概念和作图方法。

  难点:平移的作图。

  教学过程

  一、观察图形形成印象

  生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案。

  观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明。

  二、提出新知实践探索

  平移:

  (1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

  (2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点。

  (3)连接各组对应的线段平行且相等。图形的这种变换,叫做平移变换,简称平移

  探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的.图案

  引导学生找规律,发现平移特征

  三、典例剖析深化巩固

  例如图,(1)平移三角形ABC,使点A运动到A`,画出平移后的ΔABC

  先观察探讨,再通过点的平移,线段的平移总结规律,给出定义

  探究活动可以使学生更进一步了解平移

  四、巩固练习

  课本33页:1,2,4,5,6,7

  五、小结:

  在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上。2利用平移的特征,作平行线,构造等量关系是接7题常用的方法。

  六、作业

  课本P30页习题5。4第3题

七年级数学教案11

  一、素质 教育 目标

  (一)知识 教学 点

  1.会列出三元一次方程组解简单的应用题.

  2.会用待定系数法解题.

  (二)能力训练点

  培养学生分析问题、解决问题的能力.

  (三)德育渗透点

  1.使学生进一步了解代数方法的优越性、实用性.

  2.渗透特定系数法这一重要的思想方法.

  3.了解我国古数学的光辉成就.

  (四)美育渗透点

  学习列三元一次方程组及用待定系数法解题,渗透解题的简捷性与奇异的数学美.

  二、学法引导

  1. 教学 方法:讲解法、谈话法、师生共同分析、发现问题.

  2.学生学法:列三元一次方程组解应用题的关键在于迅速寻找出三个相等关系,故尖增强分析问题的能力.

  三、重点?难点?疑点及解决办法

  (一)重点

  1.根据简单应用题的题意列出三元一次方程组.

  2.用待定系数法解题的方法.

  (二)难点

  正确找出表示应用题全部含义的'三个相等关系,并把它们表示成三个方程.

  (三)疑点

  如何正确地寻找相等关系.

  (四)解决办法

  反复读题、审题,用简洁的语言概括出相等关系.

  四、课时安排

  一课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  1.通过提问,复习列二元一次方程组解应用题的步骤.

  2.通过例6的审题,让学生分析出如何求三种球的相等关系. 教师 规范 板书 过程以便学生的模仿.

  3.通过反馈练习,强化对列三元一次方程组解应用题的训练,以便能掌握相关的一些变式训练.

  七、 教学 步骤

  (一)明确目标

  本节课主要学习列三元一次方程组解应用题.

  (二)整体感知

  列三元一次方程组解应用题的关键在于寻找出正确的相等关系,因而应仔细审题,合理分析,以达迅速求解的目的.

  (三) 教学 过程

  1.开门见山,导入新课

  前面,我们学习了列二元一次方程组解应用题,哪位同学能简单说一下列二元一次方程组解应用题的步骤?

  (设、找、列、解、答)

  实际上,有的应用题中未知数的个数不只两个,这节课,我们来学习三元一次方程组的应用.

  2.探索新知,讲授新课

  例6? 学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,求三种球各有多少?

  题中有几个未知数?要找到几个相等关系?用简洁的语言概括相等关系.

  学生活动:分析、思考、回答老师的问题;有三个未知数、三个相等关系.

  相等关系:(1)篮球数=2×排球数-3

  (2)足球数:排球数=2:3即:2×排球数=3×足球数

  (3)三种球数的和=总球数

  学生活动:根据刚才的分析解答例1,一个学生板演.

  解:设篮球有 个,排球有 个,足球有 个,根据题意

  得

  ①代入③,得    ④

  由④,得      ⑤

  把⑤代入②,得

  把 分别代入①、⑤,得

  ∴

  答:篮球有21个,排球有12个,足球有8个.

  强调:(1)解方程组的过程可以写在练习本上.

  (2)得到结果检验是否正确、合理.

  【教法说明】例6采用与二元一次方程组类似的方法进行分析,学生接受不会感到困难.通过比较,可使学生进一步了解代数方法的优越性.

  尝试反馈:P38  1、2.两个学生板演.

  3.变式训练,培养能力

  P41? 17.在公式 中,当 时, ;当 时, ,求当 时, 的值.

  【教法说明】 教师 首先介绍这个公式的实际意义,再启发学生根据已知条件先求待定系数 、 ,然后把 代入,求 .

  (四)总结、扩展

  列三元一次方程组解应用题的步骤、关键是什么?

  八、布置作业

  (一)必做题:P40~P41 14,16.

  (二)选做题:P41 B组1,4.

  (三)思考题:课本第42页“想一想”

  (四)复习本章内容

  参考答案

  略.

  九、 板书 设计

  例5

  变式

  练习

  十、背景知识与课外阅读

  一个水池装有甲、乙进水管和丙出水管,若打开甲管4小时,乙管2小时和丙管2小时,则水池中余水5吨;若打开甲管2小时,乙管3小时,丙管1小时,则池中余水1吨,求打开甲管22小时,乙管5小时,丙管11小时,池中余水多少吨?

  分析和解:设甲、乙、丙三管每小时的流水量分别为 吨,依题意得

  通过观察分析方程组的特有形式,可用独特的整体相乘,整体相减法求解

  ①×7-②×3得

七年级数学教案12

  教学建议

  (一)教材分析

  1、知识结构

  2、重点、难点分析

  重点:找出命题的题设和结论。因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础。

  难点:找出一个命题的题设和结论。因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题。但有些命题的题设和结论不明显。例如,“对顶角相等”,“等角的余角相等”等。一些没有写成“如果……那么……”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点。

  (二)教学建议

  1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假。

  2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:

  (1)假命题可分为两类情况:

  ①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题。

  ②题设有多种情形,其中至少有一种情形的结论是错误的。例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行。整体说来,这是错误的命题。

  (2)是否是命题:

  命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断。即命题是判断某一件事情的句子。在语法上,这样的句子叫做陈述句,它由“题设+结论”构成。

  另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线。”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题。

  (3)命题的组成

  每个命题都是由题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果…,那么…”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

  有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显。对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式。

  另外命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。

  教学设计示例:

  教学目标

  1、使学生对命题、真命题、假命题等概念有所理解。

  2、使学生理解几何命题的组成,能够区分命题的.题设和结论两部分,并能将命题改写成“如果……,那么……”的形式。

  3、会判断一些命题的真假。

  教学重点和难点

  本节的重点和难点是:找出一个命题的题设和结论。

  教学过程设计

  一、分析语句,理解命题

  1、教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:

  (1)我是中国人。

  (2)我家住在北京。

  (3)你吃饭了吗?

  (4)两条直线平行,内错角相等。

  (5)画一个45°的角。

  (6)平角与周角一定不相等。

  2、找出哪些是判断某一件事情的句子?

  学生答:(1),(2),(4),(6)。

  3、教师给出命题的概念,并举例。

  命题:判断一件事情中,每句话都判断什么事情。所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说。(不要让说过的再说)

  如:的句子,叫做命题,分析(3),(5)为什么不是命题。

  教师分析以上命题

  (1)对顶角相等。

  (2)等角的余角相等。

  (3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线。

  (4)如果a>0,b>0,那么a+b>0。

  (5)当a>0时,|a|=a。

  (6)小于直角的角一定是锐角。

  在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题。

  (7)a>0,b>0,a+b=0。

  (8)2与3的和是4。

  有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解。

  4、分析命题的构成,改写命题的形式。

  例两条直线平行,同位角相等。

  (l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论。已知事项为“题设”,由已知推出的事项为“结论”。

  (2)改写命题的形式。

  由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等。”

  请同学们将下列命题写成“如果……,那么……”的形式,例:

  ①对顶角相等。

  如果两个角是对顶角,那么它们相等。

  ②两条直线平行,内错角相等。

  如果两条直线平行,那么内错角相等。

  ③等角的补角相等。

  如果两个角是等角,那么它们的补角相等。(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等。)

  以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等。”

  提示学生注意:题设的条件要全面、准确。如果条件不止一个时,要一一列出。

  如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:

  “如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直。”

  二、分析命题,理解真、假命题

  1、让学生分析两个命题的不同之处。

  (l)若a>0,b>0,则a+b>0

  (2)若a>0,b>0,则a+b<0

  相同之处:都是命题。为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论。

  不同之处:(1)中的结论是正确的。,(2)中的结论是错误的。

  教师及时指出:同学们发现了命题的两种情况。结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题。

  2、给出真、假命题定义

  真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。

  假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题。

  注意:

  (1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”。显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题。

  (2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。

  (3)注意命题与假命题的区别。如:“延长直线AB”。这本身不是命题。也更不是假命题。

  (4)命题是一个判断,判断的结果就有对错之分。因此就要引入真假命题,强调真假命题的大前提,首先是命题。

  3、运用概念,判断真假命题。

  例请判断以下命题的真假。

  (1)若ab>0,则a>0,b>0。

  (2)两条直线相交,只有一个交点。

  (3)如果n是整数,那么2n是偶数。

  (4)如果两个角不是对顶角,那么它们不相等。

  (5)直角是平角的一半。

  解:(1)(4)都是假命题,(2)(3)(5)是真命题。

  4、介绍一个不辨真伪的命题。

  “每一个大于4的偶数都可以表示成两个质数之和”。(即著名的哥德巴赫猜想)

  我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确。我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”。即已经证明了“1+2”,离“1+1”只差“一步之遥”,所以这个命题的真假还不能做最好的判定。

  5、怎样辨别一个命题的真假。

  (l)实际生活问题,实践是检验真理的唯一标准。

  (2)数学中判定一个命题是真命题,要经过证明。

  (3)要判断一个命题是假命题,只需举一个反例即可。

  三、总结

  师生共同回忆本节的学习内容。

  1、什么叫命题?真命题?假命题?

  2、命题是由哪两部分构成的?

  3、怎样将命题写成“如果……,那么……”的形式。

  4、初步会判断真假命题。

  教师提示应注意的问题:

  1、命题与真、假命题的关系。

  2、抓住命题的两部分构成,判断一些语句是否为命题。

  3、命题中的题设条件,有两个或两个以上,写“如果”时应写全面。

  4、判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明。

  四、作业

  1、选用课本习题。

  2、以下供参选用。

  (1)指出下列语句中的命题。

  ①我爱祖国。

  ②直线没有端点。

  ③作∠AOB的平分线OE。

  ④两条直线平行,一定没有交点。

  ⑤能被5整除的数,末位一定是0。

  ⑥奇数不能被2整除。

  ⑦学习几何不难。

  (2)找出下列各句中的真命题。

  ①若a=b,则a2=b2。

  ②连结A,B两点,得到线段AB。

  ③不是正数,就不会大于零。

  ④90°的角一定是直角。

  ⑤凡是相等的角都是直角。

  (3)将下列命题写成“如果……,那么……”的形式。

  ①两条直线平行,同旁内角互补。

  ②若a2=b2,则a=b。

  ③同号两数相加,符号不变。

  ④偶数都能被2整除。

  ⑤两个单项式的和是多项式。

七年级数学教案13

  教学目的:

  (一)知识点目标:

  1.了解正数和负数是怎样产生的。

  2.知道什么是正数和负数。

  3.理解数0表示的量的意义。

  (二)能力训练目标:

  1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

  2.会用正、负数表示具有相反意义的'量。

  (三)情感与价值观要求:

  通过师生合作,联系实际,激发学生学好数学的热情。

  教学重点:

  知道什么是正数和负数,理解数0表示的量的意义。

  教学难点:

  理解负数,数0表示的量的意义。

  教学方法:

  师生互动与教师讲解相结合。

  教具准备:

  地图册(中国地形图)。

  教学过程:

  引入新课:

  1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

  内容:老师说出指令:

  向前两步,向后两步;

  向前一步,向后三步;

  向前两步,向后一步;

  向前四步,向后两步。

  如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

  [师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

  讲授新课:

  1.自然数的产生、分数的产生。

  2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

  3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

  举例说明:3、2、0.5、等是正数(也可加上“十”)

  -3、-2、-0.5、-等是负数。

  4、数0既不是正,也不是负数,0是正数和负数的分界。

  0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

  5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。

  巩固提高:练习:课本P5练习

  课时小结:这节课我们学习了哪些知识?你能说一说吗?

  课后作业:课本P7习题1.1的第1、2、4、5题。

  活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。

  (1)美美得95分,应记为多少?

  (2)多多被记作一12分,他实际得分是多少?

七年级数学教案14

  教学目标

  1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3, 体验分类是数学上的常用处理问题的方法。

  教学难点 正确理解分类的标准和按照一定的标准进行分类

  知识重点 正确理解有理数的概念

  教学过程

  探索新知

  在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的'数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:

  按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练

  1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。

  思考:

  问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  创新探究

  问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

  小结与作业

  到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

七年级数学教案15

  教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质

  过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,

  增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点:同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)=105.

  2.引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?(2)等号两边的'底数有什么关系?

  (3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  三、应用提高

  活动内容:1.完成课本“想一想”:a?a?a等于什么?

  2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3.独立处理例2,从实际情境中学会处理问题的方法。

  4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  四、拓展延伸

  活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

  (5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542

  2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

  (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

  五、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  六、布置作业

  1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2.完成课本习题1.4中所有习题。

  1.2幂的乘方与积的乘方(一)

【七年级数学教案】相关文章:

初中七年级的数学教案02-02

七年级数学教案11-03

七年级下册数学教案02-16

七年级上册数学教案11-23

人教版七年级数学教案11-06

七年级数学教案(15篇)02-20

七年级上册数学教案优秀12-08

七年级数学教案合集15篇02-24

七年级上册数学教案15篇02-01