当前位置:好文网>实用文>教案>《平均数》 教案

《平均数》 教案

时间:2024-05-30 14:41:55 教案 我要投稿

(荐)《平均数》 教案15篇

  作为一位优秀的人民教师,总不可避免地需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那要怎么写好教案呢?以下是小编为大家整理的《平均数》 教案,欢迎大家分享。

(荐)《平均数》 教案15篇

《平均数》 教案1

从不同方向看

  教案示例

  平均数

  教学目标:

  (一)知识目标:

  1 、掌握算术平均数,加权平均数的概念。

  2 、会求一组数据的算术平均数和加权平均数。

  (二)能力目标:

  1 、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。

  2 、根据有关平均数的问题的解决,培养学生的合作意识和能力。

  (三)情感目标:

  1 、通过小组合作的`活动,培养学生的合作意识和能力。

  2 、通过解决实际问题,让学生体会数学与生活的密切联系。

  教学重点算术平均数,加权平均数的概念及计算。

  教学难点加权平均数的概念及计算。

  教学方法讨论与启发性。

  教学过程:

  一、引入新课:

  在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)

  二、讲授新课:

  1 、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:

  95 、 99 、 87 、 90 、 90 、 86 、 99 、 100 、 95 、 87 、 88 、 86 、 94 、 92 、 90 、 95 、 87 、 86 、 88 、 86 、 90 、 90 、 99 、 80 、 87 、 86 、 99 、 95 、 92 、 92

  甲小组:= = 91(分)

  甲小组做得对吗?有不同求法吗?

  乙小组:= = 91(分)

  乙小组的做法可以吗?还有不同求法吗?

  丙小组:先取一个数90做为基准a,则每个数分别与90的差为:5 、 9 、 3 、 0 、 0 、……、 2 、 2,求出以上新的一组数的平均数= 1,所以原数组的平均数为= +90=91

  想一想,丙小组的计算对吗?

  2 、议一议:问:求平均数有哪几种方法?

  (1)算术平均数:= (x 1 +x 2 + …… +x n )或都利用基准求算术平均数= +a

  (2)加权平均数:= (f 1 +f 2 + … +f k = n)

  问:以上几种求法各有什么特点呢?

  公式= (x 1 +x 2 + …… +x n )适用于数据较小,且较分散。

  公式= +a适用于出现较多重复数据。

  公式= (f 1 +f 2 + … +f k = n)适用于数据较为接近于某一数据。

  师:算术平均数与加权平均数有什么联系与区别吗?

  看下面例题:

  某校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。一天,三个班级的各项卫生成绩分别如下:

  (1)小明将黑板、门窗、桌椅、地面这四项得分依次按15% 、 10% 、 35% 、 40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?

  (2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?与同伴进行交流。

  解:(1)一班的卫生成绩为:

  95 × 15%+90 × 10%+90 × 35%+85 × 40% = 88.75

  二班的卫生成绩为:

  90 × 15%+95 × 10%+85 × 35%+90 × 40% = 88.75

  三班的卫生成绩为:

  85 × 15%+90 × 10%95 × 35%+90 × 40% = 91

  因此,三班的成绩最高。

  (2)分组讨论交流

  小结:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。

  实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权” 。

《平均数》 教案2

  【教学内容】:

  九年义务教育课本数学五年级第一学期(试用本)P31

  Ⅰ:教案

  【教学目标】

  知识与技能:

  1、通过具体的事例让学生初步了解平均数的概念;

  2、知道求“平均数”的一个基本方法——平均数=总和÷个数;

  3、知道平均数是个“虚拟”的数,它的取值范围在该组数据的最小值和最大值之间。

  过程与方法:

  1、从生活实际出发,让学生通过观察、比较、主动探索的过程中,了解和掌握求平均数的意义与方法,2、培养学生一定的估测能力,能对平均数的结果做出简单的推断和预测。

  3、培养学生具有合作交流的意识和能力。

  情感、态度与价值观:

  体会“平均数”在现实生活中的实际意义及广泛用途,在学习过程中让学生享受学习的快乐。

  【教学重点与难点】

  重点:理解平均数的概念,知道求“平均数”的方法。

  难点:理解平均数的概念。

  【教学准备】

  教具准备:夹玻璃球的用具、课件。

  【教学过程】

  一、游戏导入:

  1、师:老师这里有200个玻璃球,要平均分给我们五个小组,每个小组能分到几个玻璃球?怎么算出来的?为什么要用除法来做?

  生:200÷5=40(个)平均分

  2、师:接下来,我们就一起来玩夹玻璃球的游戏,先听清游戏规则

  (1、不能用手拿2、掉在桌上和地上的不算,时间:30秒钟。好,谁愿意来做裁判,帮大家看时间?我也加入一组玩。)

  3、请小组长负责统计每组夹玻璃球的总数。

  按组汇报板书

  【教学策略说明:从夹玻璃球的游戏导入新课,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。】

  二、探究新知:

  1、比一比每组夹玻璃球水平的高低是怎样的?

  2、师:就请大家把自己这组平均每人夹的个数算一算。

  生:汇报各组平均每人夹的个数。

  师:这些表示各个组平均每人夹玻璃球的个数叫作“平均数”,也就是这节课我们要学习的内容——出示课题

  师:算出了平均数,现在可以比出夹玻璃球水平高低的名次了吗?

  3、师:在平时的生活中像这样的事还有很多,下面请同学们一起来做一个公正的裁判,出示:

  同学们跳集体舞得分统计表

  年龄低年级组中年级组高年级组总分760588480人数865

  师:你能给他们排出名次吗?

  4、通过第一个游戏和为集体舞比赛排名,谁能说说求平均数的方法是什么?

  板书:总和÷个数=平均数

  5、例题教学

  师:同学说得很好,现在来看看这几座大桥,你们都认识吗?

  师:现在老师把五座大桥的长度告诉你们,请你们用计算器帮忙算出五座大桥的平均长度是多少?

  师:完成后翻开书P31进行校对并读一读书上是怎样介绍平均数的。

  师:(媒体上)在这道算式上,括号里的一组加法运算表示的是什么?5表示什么?得到的最后结果叫什么?

  师:这个平均数6584。6米又表示什么意思?那么这五座大桥的长度有没有等于这个平均数的?说明平均数不是一个实际的数,它是一个“虚拟数”。

  师:再来看看我们一开始做的两组题,200÷5=40是平均分,40是一个什么数?而右边一列算出每组夹玻璃球的平均数是个什么数?

  6、了解了平均数的一些知识后我们来看这道题

  有一篮子鸡蛋,每个鸡蛋的重量如下:

  56g,55g,54g,58g,55g,53g,54g

  先请同学估计一下这篮子鸡蛋平均一个有多重?你是怎么想的?

  生:试做并交流(56+55+54+58+55+53+54)÷7=55 (g)

  师:请将平均数55与每个鸡蛋的实际重量比一比,结果怎样?这道题算出的平均数与条件中一些数据会一样,是不是平均数就变成实际数了?为什么?

  师:观察平均数和每个鸡蛋的重量,你发现了什么?

  7、小结:今天我们学了什么知识,怎样来求平均数?还明白了哪些道理?

  【教学策略说明:比一比每组夹玻璃球水平的高低引出要“算出每组平均每人夹的个数比”,初步感知平均数的意义。让同学们根据跳集体舞得分统计表来排名,是为了使学生进一步加深理解平均数在日常生活中的意义和实际作用以及计算的方法:总和÷个数=平均数的结论。】

  三、巩固练习:

  1、选择题:

  学校篮球队队员的平均身高是160cm,李强是学校篮球队队员中是最矮的一位。下面表述正确的是()。

  (1)他的身高是160 cm 。

  (2)他的身高是160 cm以下。

  (3)他的身高是160 cm以上。

  (4)他的'身高以上三种情况都有可能。

  2、拓展题:

  有3包糖,第一包35个糖,第二包有40个糖,第三包有45个糖

  有3组小朋友,第一组12人,第二组有8人,第三组有10人

  怎样分糖,比较合理?

  四、总结:

  你们今天学会了什么?有什么不懂要问的吗?

  Ⅱ:教案设计说明

  随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“平均数”安排为统计中的一个重要学习领域,强调发展学生的统计观念。本单元是由平均数的认识,平均数的计算和平均数的应用三个部分组成。本课则是第1课时,让学生认识理解平均数的概念并掌握平均数的计算方法。

  平均数是统计工作中常用的一种特征数,它能反映统计对象的集中趋势,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”和过去学过的“平均分”的结果是不同的,要弄清“虚拟数”和“实际数”是教学的难点。

  (一)从夹玻璃球的游戏导入新课

  1、先让学生将200个玻璃球,要平均分给五个小组,引出200÷5=40(个)平均分的意义。

  2、接着组织学生玩夹玻璃球的游戏。

  3、请小组长负责统计每组夹玻璃球的总数,按组汇报结果

  这个开头既很快的复习了平均分的意义,又非常吸引学生,大大地调动了他们的积极性。游戏其实就是“数学化”的过程,它对于培养学生用数学的眼光观察、思考问题有着实际的意义。由熟悉的生活情景引入,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。

  (二)、探究新知。

  1、比一比每组夹玻璃球水平的高低引出问题——因为每组人数的不同,看夹球的总数比哪组夹玻璃球的水平高,有学生认为是不合理的,由此引发——“怎么比才合理”,通过学生的讨论问题最终获得解决的方法,“算出每组平均每人夹的个数比”初步感知平均数的意义。

  2、让同学们根据跳集体舞得分统计表来排名,是为了使学生进一步加深理解平均数在日常生活中的意义和实际作用以及计算的方法。在两个生活实例的引导下,学生就比较内容能够得出总和÷个数=平均数的结论。

  3、有了上面两道题的铺垫,书上P31的例题我就让学生去体验求平均数的完整过程与方法。

  4、了解了平均数的一些知识后让我让学生来看这道题“有一篮子鸡蛋,每个鸡蛋的重量如下:

  56g,55g,54g,58g,55g,53g,54g

  先请同学估测这篮子鸡蛋平均一个有多重?再计算”。这道题是例题下的试一试,因为数字比较小而且较接近,所以我利用学生估测的结果和实际的平均数引发讨论出“平均数”是个虚拟数的的意义所在之处。以实例来证明,有利于学生的理解。

  (三)、巩固练习

  安排了基础题和拓展题,基本题就是选择题,让学生理解平均数的真正含义,也是检测本课知识目标是否达标的有效方法。

  拓展题让学生悬念顿生,迫使他们自觉产生思维碰撞,多角度思考问题,鼓励学生充分发表意见,从而进一步理解平均数的意义和一般方法。

  总之,这堂课力求使既定的三维目标都能达到并且使学生感受到数学的应用价值,树立应用意识,能够初步形成解决日常生活工作中的数学问题的能力,并通过这一应用过程学会用数学的眼光看社会,从而获得必要的发展。

  Ⅲ:教学反思

  “平均数”是本册教材第三单元“统计”教学的主要内容,涉及的知识点包括平均数的意义,计算简单数据的平均数等。粗略地看,这部分内容好像无异于传统小学数学的教学内容,但仔细品味,我们可以发现,虽然知识还是这些知识,但通过这些知识所要传递的理念和思想,已经发生了重大变化,平均数的教学应该呈现出新的气象。本学期,我就以“平均数的认识”开了一堂课,颇有感触。

  一、让学生在具体的活动中体会平均数的意义,起到了很好的作用。对小学生来说,平均数是表示“集中量数”,这样的专业术语是难于理解的。所以,在教学中我创设了如下情景:分小组在30秒内,玩夹玻璃球的游戏,然后统计每个小组夹玻璃球的总个数,最后进行比较哪组夹得多。因为我将每组的人数安排的有多有少,所以学生在比较时提出看夹球的总数比是不公平的,引起争论,为解决问题大家经过讨论想起了算出每组平均每人夹的个数来比就公平的,从而我很自然的介绍了平均每个人的夹球数又叫做“平均数”。运用统计知识解决实际问题的过程中,体会平均数的本质内涵,把握平均数的意义。这个教学情景的创设,调动了不同层次的所有学生共同参与,有趣的游戏吸引了每一位学生的注意力,这样的过程使每一个学生都乐在其中,整个学习活动没有一位学生是等待状态的。多变的练习,让学生对“平均数”得到多方面的感受。

  二、练习在学生的数学学习过程中是必须的,但新课程的背景下,练习也要注入新的内涵,在进行基本训练的同时,努力让学生得到多方面的感受。本节课在练习设计中,我大幅删减了纯粹的技能训练,每个练习题在保证基本的双基训练功能的前提下,都力图呈现各具不同的侧重点,引导学生通过练习在知识技能以外的其他方面得到提升。

《平均数》 教案3

  教学内容:

  教学目的:

  1.使学生初步认识数据整理的方法,初步会看简单的统计表和条形统计图。

  2.使学生会进行简单的数据整理,能把整理的数据填入简单的统计表,并能在条形统计图中表示出来。

  3.使学生能根据统计表或条形统计图回答简单的问题。

  4.培养学生整理数据能力和根据统计表、统计图的问题进行分析综合的能力。

  5.对学生渗透初步的统计思想、实事求是的调查研究思想。

  教学重、难点:使学生初步认识简单的统计表和条形统计图,能根据统计表或统计图回答简单问题。把不完整的统计表或统计图补充完整。

  教学过程:

  一、引入新课

  结合时事,根据当前生活中一些热点问题的有关数据,引出在日常生活中经常需要调查统计一些事物的数目,这些事物的数目通常叫做数据(板书“数据”一词)。数据往往都是从生活实际中,通过认真的调查核实,一个一个地数出来的,是国家进行进一步统计、汇总,进而制订有关方针政策的原始依据,必须真实。而数据因为直接来自于生活,往往比较零乱,没有次序,显示不清主次多少。为了把调查结果表示得更清楚明了,就需要对数据进行一定的整理,今天我们就共同研究一下“简单的数据整理”(板书,把课题补充完整)

  二、探究新知

  1.出示例1,学生分布的挂图或小黑板。

  教师指出这张图是调查了四年级某班学生居住情况后制成的,通过这张图,一眼就可看出哪条街,哪条巷有这班学生,很形象,很直观。

  2.老师进一步引导,每条街,每道巷分别住了多少同学?哪条街,哪道巷住的人多?最多的比最少的多几个?全班共多少同学?这时如果只看图,要准确回答以上几个问题,很不容易。

  组织学生讨论,怎样做能使回答方便?

  学生汇报讨论结果:先逐街,逐巷数出人数,记住,再进行比较,回答出问题。

  3.教师指出:只看图不容易进行下一步的`研究。我们先数一数各街巷的同学数,在图上标注上数字。数出的各街各巷的同学数,就叫做数据(渗透特点:来自于生活实际,是真实的。)

  启发学生:这些数据真实可信,但是比较零乱。我们能不能想一个办法把这些数据简单明了地表示出来,使别人不用再看图,就能一眼看出各街各巷住了多少学生,全班一共有多少学生呢?(组织学生分组讨论)

  4.学生汇报讨论结果。(讨论结果可能多种多样,只要有道理,就应加以肯定。从中再选出统计表的方案。)

  教师:以上各方法实际上都是对数据进行整理。

  我们先用画表的方法进行整理。出示下表(空表框)

  教师指出:第一栏不填写具体街巷名称,一般留作合计(一共多少人)。从第二栏起,逐一写街巷名。

  5.组织学生根据原始图填写,老师先带领学生填写两个街巷的数据,再让学生在其它街巷对应地方填写数据。学生先填写在书上23页的不完整统计表。然后问一共多少人,在合计栏中填出,形成完整的统计表。指出这样的表叫统计表。

  6.组织学生根据表回答问题:(投影出示问题)

  哪条街巷住的人最多,是多少?

  哪条街巷住的人最少,是多少?

  全班共多少人?

  7.认识条形统计图

  有时为更加形象直观表示数据的多少,也常用条形统计图来表示、条形统计图是用长方形来表示数据的。

  出示画有小方格的小黑板,说明每一格代表一个人,有几个人,就用几个小格表示,可以把这几个小格涂上色。

  老师先在纵向上注明人数0、5、10(单位:人)。再在横向上标明街巷名称,标注时相邻街巷名称间要空一格,以求容易区别和美观。然后根据学生口述,老师在相应地方涂色,制成课本24页上部的条形统计图。

  8.看条形统计图,回答课本24页五个问题。

  9.反馈练习:在教师带领下完成课本24页做一做。

  教师先出示原题,指导学生弄清题意后,带领学生完成小芳的成绩:

  问:每一小格代表几米?小芳的成绩是多少米?应该涂几个小格?确定14个小格怎样确定较好?(找出15所对应的高度,向下数1格即可。不必从1数)

  其它同学的成绩要求同学们在书中填空完成,确定一名学生板演,集体订正,同桌间互相检查涂色是否准确。然后组织学生据条形统计图回答书中问题。

  [由于条形统计图是新接触,学生涂色有困难,从学生认知特点出发,教学时教师的引导示范不能太少。练习时,教师要先示范,后放开由学生自己完成。]

  三、巩固发展

  1.练习六第1题

  教师引导学生分组完成。重点引导:合计栏应该怎样填写?

  学生分组完成时,可以互相讨论研究。教师巡视时重点辅导学习有困难的学生。

  2.练习六第3题

  提示:先统一单位。并利用此题复习“平均”的含义,为下节课学习“求平均数”做铺垫。

  四、课堂小结:引导学生总结,知道了什么是数据,怎样整理数据,还学习了怎样填写统计表、统计图。

  五、布置作业:练习六第4题、第2题。(要求学生亲自去调查各班人数,独立完成。)让学有余力的学生试做第5*题。

  活动性作业:

  以学习小组为单位,利用周日时间进行专项公益劳动(如擦玻璃),分别记录每人擦的块数,然后把小组擦玻璃的情况制成统计表。要求统计表中能反映出每人擦的块数和小组擦的总块数。

《平均数》 教案4

  教学目标:

  1.知道平均数的含义和求法。

  2.加强学生对平均数在统计学上意义的理解。

  3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

  教师重点和难点:理解平均数的含义,掌握求平均数的方法。

  教具/学具准备:多媒体、长方形。

  一、创设情境、激趣导入

  1.谈话引入:(出示幻灯教师家的书架)

  师:这是老师家的书架,咱们一起来看看。现在我的书架上上层有8本书,下层有4本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。你有什么办法?

  2.感知

  (1)学生思考,想象移的过程。

  生:把上层书架上的8本书 ,拿2本放在下层书架上,现在每层书架上的书就一样多了。

  (2)教师操作并问:现在每层都有几本书了?(6本)

  (3)师:像这样把多的移给少的,解决问题的方法,我们给它起个名字叫:移多补少。

  (4)师:你还有什么方法?

  生:把上层书架上的书和下层书架上的书先合起来,再平均放在两层书架上,这样每层书架上的书就一样多了。

  师:像这种把几个不同的数先合并起来,再平均分成这样的几份的到相同的数,解决问题的方法我们也给它起个名字叫:先合后分。

  (5)师:现在每层书架上的书一样多了吗?

  生:一样多了。

  师:都是几本?(6本)

  师:它是我们通过什么方法得到的数?(或者:谁来说一说我们可以通过什么方法来得到这个数?)

  生:用的是移多补少和先合后分的方法。

  师:像这样得到的数,它也有自己的名字—平均数。

  师:所以6就是8和4的平均数。谁再来说说6是谁和谁的平均数?(生说)

  (6)师:今天,我们就来认识一下“平均数”这个新朋友,好吗? (板书:平均数)

  二、合作探究,深化理解

  1、师:老师又新增添了一层书架,第三层书架上有几本书了?

  生:第三层书架上有3本书了.

  师:用我们刚才解决问题的方法,你能求出这三层书架上书的本数的平均数吗?

  师:请拿出学具,来摆一摆,注意摆时要一一对应。

  摆完把你的想法讲给你的同伴听一听。(学生活动,教师巡视。)

  师:谁来说一说,你的方法。

  学生汇报:

  生:从8本书里拿出1个放在第二层4本书里,再从第一层拿出2本书放在第三层书里,这样他们每层就一样多了。

  师:现在每层有几本书了?

  生:现在每层有5本书了。

  师:5就是8、4、3的什么数?

  生:5就是8、4、3的平均数。

  师:还有其他方法吗?

  生:先把三层书合起来,在平均分成3层。

  师:你能有算式表示表示出来吗?

  生:(8+4+3)÷3=5(本)(师板书)

  师:8+4+3表示什么?为什么要除以3?5表示什么?

  (1) 找2-3人来汇报。

  (2) 把这个算是各部分表示什么?同伴之间互相说一说。

  2、师:下面我们来解决一个生活中的小问题。(出示统计图)

  (1)师:仔细观察这幅统计图,你获得了那些数学信息?

  生:小红收集了47个矿泉水瓶。小兰收集了33个矿泉水瓶。小亮收集了25个矿泉水瓶。小红收集了35个矿泉水瓶。

  师:根据数学信息,你能提出一个跟我们今天学习有关的数学问题吗?

  生:这一小队平均每人收集了多少个矿泉水瓶?

  师:怎样求出这一小队平均每人收集了多少个矿泉水瓶?

  师:你先独立思考一下,把自己的想法和同伴交流交流,再把自己的想法用算式表示出来。

  学生活动,教师巡视。

  组织汇报:

  生:(47+33+25+35)÷4

  =(80+60)÷4

  =140÷4

  =35(个)

  答:这一小队平均每人收集了35个矿泉水瓶。

  师:观察这个算式,哪部分体现了合?哪部分体现了分?哪个数是平均数?

  生:47+33+25+35体现了合, ÷4体现了分, 35是平均数。

  师:35是哪些数的平均数?

  生:35是47、33、25、35平均数。

  师:有用移多补少的方法的吗?

  师:你们怎么不用这种方法呢?

  生:数太大不好操作。

  师:好,老师把这种方法放到了上了,我们一起来看一下吧。(放,学生体验一本一本的移比较麻烦)。

  师小结:看起来,真像同学们说的一样,用“移多补少”的方法解决这个问题真是不方便。我们以后在遇到问题时,一定要根据不同问题选择合适的方法来解答。

  (2)师:老师把平均数也放到了统计图中,请你用这个平均数与这四位同学实际的收集的矿泉水瓶个数比一比,你发现了什么?(看情况,让学生小组交流)

  生:小红收集的个数比平均数多;小兰和小亮收集的个数比平均数少;小明收集的个数与平均数同样多。

  师:它是每个人实际收集到的.矿泉水瓶吗?

  生:不是。

  师:它只是反应了这组数据的总体情况。

  三、应用知识,解决问题

  师:看来同学们已经对平均数有了较深的认识,那我要出几道题考考大家。

  1、判断并说明理由

  学校篮球队队员的平均身高是160厘米。

  (1)李强是学校篮球队队员,他身高155厘米,可能吗?(生判断。)说说你的理由。

  师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一道题。

  (2)学校篮球队可能有身高超过160厘米的队员吗?

  师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数,那么。。。。

  生:那就一定有人身高不到平均数。

  师:没错。看来,平均数只反映一组数据的总体水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看小马过河的问题。

  2、有一匹小马要过河,可是河上没有桥,河边有个告示牌:平均水深120厘米,请注意安全!小马想:我的身高是140厘米,比平均水深要高,一定能安全过河。

  师:同学们,你们说小马能安全过河吗?和你的同伴讨论讨论。

  学生们判断并说明理由。

  师:看来小马能否安全过河是不确定的,小马听了你们的分析,一定会谨慎从事的,谢谢同学们。

  3、在一次采摘活动中,小明摘了52个苹果,小刚摘了56个苹果,小红和小兰共摘了84个苹果,他们平均每人摘了多少个苹果?(列 综合算式)

  学生独立解决,集体订正。

  四、小结:通过今天的学习,你有哪些新的收获?

  五、师总结:同学们,刚才我们利用平均数解决了这么多的问题,走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。

《平均数》 教案5

  【教学内容】

  北师大版《义务教育教科书数学》四年级(下册)第90页。

  【教学目标】

  (一)知识与技能:

  1、使学生理解“平均数”的含义,初步掌握求平均数的方法,使学生能根据简单的统计表求平均数,培养学生分析问题的能力和操作能力。

  2、结合解决问题的过程初步认识平均数,体会平均数的必要性,并能根据统计图表解决一些简单的实际问题,在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。

  (二)过程与方法:

  采用“自主合作,相互交流”的方法更好地理解平均数。在解决实际问题的过程中,进一步积累分析和处理数据的办法,发展统计观念。

  (三)情感态度、价值观:

  向学生渗透事物间联系的思想和统计思想,使学生感悟到数学知识内在联系的逻辑之美,提高学生审美意识。

  【教学重点】

  明确“平均数”的含义;掌握求“平均数”的方法。

  【教学难点】

  感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。

  【教学准备】

  多媒体课件

  【教学过程】

  一、创设情境、激情导入

  师:刚才短片中,石正小学让你印象最深刻的是什么?

  生1:美丽的校园。

  生2:是一所有特色的足球学校。

  师:401班的小力、小林、小刚也非常热爱足球。就在上星期,他们三人还约我进行了一场“点球挑战赛”。每轮踢10球,看谁进球多。怎么样,想不想了解现场的比赛情况

  生:(很兴奋地)想啊。

  师:现在就请我们一起看看当时的比赛情况!

  设计谈话导入,一方面拉近了师生间的关系激起了学生的认知兴趣,另一方面也为学生探究活动的开展指明了方向。

  二、合作交流、建立概念

  1、初步感知

  师:首先出场的是小力,他第一轮进了5个球。可是,小力对这一成绩似乎不太满意,觉得好像没有发挥出自己的真实水平,想再踢两次。如果你是刘老师,你会同意他的要求吗

  生1:我不同意。万一他后面两次踢进的多了,那我不就危险啦!

  生2:我会同意的。做老师的应该大度一点。

  师:呵呵,还真和我想到一块儿去了。不过,小力后两次的成绩很有趣。

  (师出示小力的后两次点球成绩:5个,5个。生会心地笑了)

  师:小力三轮都踢进了5个。现在看来,要表示小力3轮点球进了的个数,用哪个数比较合适

  生:5

  师:为什么?

  生:他每轮都踢进了5个,所有用5来表示他的成绩最合适。

  师:说的有理!小林出场了,三次成绩各不相同。这一回,又该用哪个数来表示小林的成绩比较合适呢(3、4、5)

  能不能通过移一移的办法使到小林三次点球的成绩看起来一样多?

  2、展示交流,理解求平均数的两种方法

  数学上,像这样从多的里面移一些补给少的,使得每轮个数都一样多。这一过程就叫“移多补少”。移完后,小林每轮看起来都踢进了几个(4个)

  小刚也踢了三轮,成绩又怎样?(3、7、2)

  讨论交流:现在,又该用几来表示他的成绩同学们先独立思考,然后看看除了移动补少的方法外有没有更快、更好的方法来解决?你有什么发现?学有困难的同学也可以自学课本90页。

  像这样先把每轮踢进的个数合起来,然后再平均分给这三轮(板书:合并、平分),能使每一轮看起来一样多吗

  3、引出课题:平均数

  数学上,我们把通过移多补少或计算后得到的每一轮同样多的这个数,就叫做原来这几个数的平均数。(板书:平均数)

  这里的平均数4是表示小刚的最高水平?是最低水平?那表示的是?(板书:平均水平)

  4、理解平均数的意义

  正式比赛前,我主动提出踢四轮的想法。前三轮射门已经结束,怎么样,想不想看看(师呈现前三轮成绩:4个、6个、5个)

  猜猜看,三位同学看到我前三轮的成绩,可能会怎么想

  5、体会平均数的取值范围。

  出示4次成绩(4、6、5、1)凭直觉,刘老师最后的平均数可能是几个

  感知最后的平均成绩应该比最大的数6小,比最小的数1大。

  [生列式计算,并交流计算过程:4+6+5+1=16(个),16÷4=4(个)]

  6、体会平均数的特点——敏感性

  失败乃成功之母,你觉得老师输在哪里?

  试想一下:如果老师最后一轮踢进9个,比赛结果又会如何呢

  看来,要使平均数发生变化,只需要改变其中的几个数

  其实呀,平均数很敏感,善于随着每一个数据的`变化而变化,任何一个数据的“风吹草动”都会使它改变,这正是平均数的一个重要特点。

  三、巧设练习,巩固新知

  1、计算平均数

  出示20xx年平远县3月12-18日平均最高气温统计表。

  你能计算这一周的平均最高气温是多少摄氏度吗?平均数是一个知冷暖的“人”。

  2、为了使同学们对平均数有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影)画面中的人,相信大家一定不陌生。

  没错,这是以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米平均数只反映一组数据的一般水平,并不代表其中的每一个数据。平均数是一个很善变的“人”。

  3、好了,探讨完身高问题,我们再来看看池塘的平均水深。(师出示图)

  平均水深110cm,小明身高140 cm下河游泳不会有危险!您认同吗?

  生:不认同,最深的地方有200 cm,下河游泳还是有危险的。

  师:看来,平均数还是个危险的“人”。

  4、体会极端数据对平均数的影响。

  你们知道在实际的一些比赛中是如何计算平均分的吗?刘老师带来了中央电视台青歌赛的视频请看!

  去掉最高分和最低分的目的是什么?平均数是一个严谨的“人”。

  5、看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。

  20xx年5月14日综合外媒报道,世界卫生组织(who)13日发布了20xx年版《世界卫生统计》报告。报告指出,从总体上看,全世界人口的寿命都较以往有所增加。中国在此次报告中的人口平均寿命为:男性74岁,女性77岁。

  一位73岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢

  假如我就是那位73岁的老伯伯,你们打算怎么劝劝我

  平均数是一个会开玩笑的“人”。

  四、畅谈收获、回顾总结

  平均数是一个怎样的“人”?您懂他了吗?

  五、回应课本、课后延伸

  今天我们学习的是课本第90页的内容,请大家翻开书看看内容,有没有不明白的地方?发现重点可以用笔划起来。

  板书设计

  平均数

  平均数是一组数据平均水平的代表

  移多补少

  一样多

  合并平分

  (4+6+5+1)÷4=4(个)

  1

《平均数》 教案6

  教学内容:

  课本第52---53页练习八第5---10题和“你知道吗”。

  教学目标:

  1、使学生加深对平均数意义的认识和理解,进一步掌握根据统计数据求平均数的方法,能估计一组数据的平均数;初步了解抽样估计的方法。

  2、使学生经历用平均数解释简单生活现象、解决简单的平均数实际问题的过程,进一步感受平均数的意义和有关特点,提高解决平均数问题的能力,积累分析和处理数据的方法,发展数据分析观念和估计意识。

  3、使学生获得应用平均数知识的成功体验,体会学习平均数在日常生活中的作用,感受数学服务于生活;能够在他人的指导下,发现数学活动中的错误并及时改正。

  教学重点:

  加深理解平均数的意义,解决简单的平均数实际问题。

  教学过程:

  一、回顾整理,深化理解。

  1、回顾、交流。

  (1)引导:举出一个平均数的例子,说说怎样求几个数的平均数。

  (2)揭示课题;平均数能比较好地反映一组数据的总体情况的数,它介于这组数据最多的和最少的数之间。两种方法:移多补少 先合再分。

  2、联系实际,加深理解。

  出示练习八第5题,引导学生读一读三小题的说法。

  引导:哪些是合理的,哪些是不合理的`?为什么?你是怎样想的。

  小结:平均数不是指一组数据的每个数都是这个数,而是有些数据比平均数大,有些数据比平均数小。平均数是移多补少匀得同样多得到的数,它的范围在最大和最小的数之间。

  二、解决问题,掌握方法。

  1、做练习八第6题。

  (1)思考口答。

  学生阅读条件和统计图,交流知道了些什么。

  引导:根据统计结果,你想到了些什么?

  你估计平均每个小组植树多少课,是怎样想的?

  (2)计算交流。

  引导:这四个数据的平均数究竟是几棵呢,算一算,比一比,看看估计得怎么样。

  交流:这“8”是哪几个数据的平均数。

  2、做练习八第7题。

  学生阅读题目,说说知道什么,要解决什么问题。

  要求:先算出平均每个橘子重多少克,再算出这箱橘子大约多少克,是多少千克?

  交流:怎样算的?

  追问:这里最后解决了什么问题?为什么说“大约”多少克?

  为了得出这箱橘子大约多少克,题里是怎样做的?为什么要任意取5个,不是挑选5个呢?

  3、做练习八第8题。学生了解每人每场得分情况。

  估计:你觉得谁平均每场的得分最高?你是怎样估计的?

  学生计算各人每场得分情况,比较结果。

  交流:强调求平均数可以先求出一组数据的和,再用除法计算平均数。

  提问:计算的结果谁平均每场得分最高,和你估计一样吗?

  追问:平均数可以怎样计算?

  4、做练习八第9题。

  (1)说说每个评委老师打出的分数。

  口答第(1)题,估计平均得分。

  了解计算比赛平均分的规则,按规则完成计算得出平均得分。

  交流:选手的最后得分是怎样计算的?

  (2)阅读“你知道吗”

  谈话:比赛时的平均分为什么压平先去掉一个最高分和一个最低分再计算呢?

  交流:你知道比赛时为什么要这样计算平均分吗?说说你知道了什么。

  5、做练习八第10题。

  把收集的时间填写在第10题的统计表里。 学生计算这一周做家庭作业时间的平均数,填在表格里。

  提问:对于合理安排时间,你有哪些体会。

  三、课堂总结,交流收获。

  你对平均数的内容有了哪些更深的认识?还有哪些新的收获和体会。

《平均数》 教案7

  教学内容:小学数学第六册第92~94页。

  教学目标:

  知识与技能:

  1、从生活实际中体会平均数的意义,建立平均数的概念。

  2、在理解平均数意义的基础上,理解和掌握求平均数的方法。

  3、初步感受求平均数的作用。

  过程与方法:

  联系学生实际,培养学生选择信息、利用信息的能力;培养学数学、用数学的意识及自主探索、合作交流的意识和能力。

  情感态度价值观:

  激发学生主动参与的热情,培养学生主动探究、合作交流的精神。

  教学重点、难点:

  理解平均数的意义;掌握求平均数的方法;体会求平均数的作用。

  教学过程:

  一、创设情境,提出问题

  昨天的作业,张康、朱星宇、施逸婷做得最好。今天老师带来些铅笔想奖给他们。(三人上台领奖,并告诉同学各自得到的铅笔的支数。)板书:张康11支、朱星宇7支、施逸婷6支。

  你们觉得公平吗?怎样才能公平?

  学生讨论,指名汇报。

  (从1张康手中拿2支给施逸婷,再从张康手中拿1支给朱星宇。这样每人都是8支。)

  很好。谁能给这种方法取个名字?(“移多补少法”。)

  (先把三个人的铅笔全合起来有24支,再平均分给这3个人,这样每个人都是8支。

  这种方法也很好!我们也给它取个名字。(“先合再分”)。

  刚才我们用不同的方法,都能使这三个人铅笔的支数相等,都是8。

  教师指出:这里的“8”就是“11、7、6”这三个数的平均数。板书课题:平均数。

  昨天蔡裕杰同学的作业也很有进步,现在我想也奖给他铅笔,怎样才能让他们四个人得到的铅笔支数相等?(学生上台演示,每人得到6支。)

  提问:这里的“6”就是“11、7、6、0”这四个数的什么?

  通过我们刚才的讨论,你觉得什么是平均数?

  小结:已知几个大小不等的数,在总和不变的条件下,通过把多的移给少的或者先把它们合起来再平均分,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。

  二、寻找方法,解决问题

  说到平均数,老师想起前不久学校举行篮球赛的时候,五(2)班女男生之间发生的一次争执。

  为了备战篮球赛,五(2)班男子篮球队和女子篮球队之间先进行了一次投篮比赛。每人投15个球。这是他们投中个数的统计图。出示两幅条形统计图。

  (略)

  这两幅统计图能看得懂吗?从这两幅统计图上你能知道些什么信息?

  投篮比赛结束了,男子篮球队队员说男生投篮准,女子篮球队队员说女生投篮投得准,争执不下。现在,我想请大家做一个公平的裁判,你们觉得,是男子篮球队整体水平高一些,还是女子篮球队整体水平高一些?。

  指名汇报,说明理由。

  (有3名男生都投中得比女生少,所以女生投得准一些)

  这是你的意见,有不同的意见吗?

  (女生一共投中28个,男生一共投中30个,男生投得准一些)

  可是男生有5个人,女生只有4个人啊!还有不同的意见吗?

  (去掉一个男生。)

  去谁合理呢?能去吗?

  (应该求出女男生投中个数的平均数,然后再进行比较)

  有道理,他们两个队的人数不同,所以我们不能一个人一个人的比较,分别求出他们投中个数的平均数,用平均数来体现他们投篮命中的整体水平,好办法!掌声鼓励。

  那我们应该怎么求他们的平均数呢?先来求女生投中个数的平均数。

  观察女生投篮成绩统计图,小组讨论,代表汇报。

  (将徐丹多投中的两个分一个给王戈,分一个给赵越,这样,她们每个人都是投中了7个,也就是女生投中个数的平均数是7个。)

  不错,方法很简洁,移多补少法。有不同的方法吗?

  (先求出四个人投中的总个数,再求出平均每人投中的个数。)

  半数:6+9+7+6=28(个)

  28÷4=7(个)

  他用的方法就是——先合再分法。

  看来,大家都非常聪明,男生平均投中的个数会求吗?

  你们觉得这时我们求平均数用哪种方法比较合适?为什么?

  小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少简单;人数多,差距大,用先合再分的方法比较简单。

  学生在练习本上计算,指名板演,集体订正。

  为什么这里求得的总数除以的是5而不是4?

  现在你能帮五(8)班的同学解决他们争论的问题了吗?

  (女生平均每人投中7个,男生平均每人投中6个,所以女生投得更准一些。)

  观察统计图,女生平均每人投中7个,(用直线画出7的水平位置),提问:平均数7比哪个数大,比哪个数小?我们再来看看男生投中的平均数6是不是也有这样的特点?(用直线画出6的水平位置。)

  小结:平均数的大小应该在最大的数和最小的数之间。此外,一组数的.平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些可能比平均数大,有些可能比平均数小。

  三、应用方法,解决问题

  刚才我们一起认识了平均数,也知道了如何求平均数,接下来我们要遇到的是生活中有关平均数的问题,一起来看一看。

  请大家轻声地把问题读一读,思考之后,可以和同座交流自己的看法。

  挑战第一关:“明辨是非”

  (1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。( )

  (2)城南小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()

  (3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。( )

  学校篮球队可能有身高超过160厘米的队员。( )

  (4)四(3)班同学做好事,第一天做好事30件,第二天上午做好事12件,下午做好事15件,四(3)班同学平均每天做好事的件数是(30+12+15)÷3=19(件)。( )

  挑战第二关:“合情推测”

  四(2)班第一小组同学身高情况统计表

  学号 12 3 4 56

  身高(厘米)131 136 138 140 141142

  明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

  平均数的大小应该在最大的数和最小的数之间,这里最大的数就是142,平均数不可能超过142,所以平均身高143厘米是错误的。

  那么我们应该怎么求他们的平均数呢?

  指名列式,老师告诉答案为138厘米。

  由此,你能不能猜测一下,四(2)班全班同学的平均身高大约是多少?

  你想了解我国四年级同学的平均身高吗?

  出示:根据健康网的报道,全国四年级小学生的平均身高约是139厘米。看到全国四年级小学生的平均身高,结合自己的身高,你有什么想法?

  四、学生看书,质疑问难

  五、全课总结,交流收获

  通过今天这节课的学习,你有什么收获?

  六、布置作业,检查反馈

《平均数》 教案8

  [教学内容]苏教版〈义务教育课程标准实验教科书·数学〉三年级下册第92-94页。

  [教学目标]

  1.在具体问题情境中,理解平均数的意义。

  2.探索求平均数的方法,鼓励解决问题策略的多样化。

  3.联系实际,灵活运用平均数解决些问题,培养学生学好数学的信心。

  [教学过程]

  一、创设情境,激趣导入

  师:小猴子最喜欢吃桃了,一天,猴妈妈摘了一些又大又红的桃子,分给它的3个孩子,老大2个,老二3个,老三4个。(贴图片)同学们,你对猴妈妈的分法有什么看法呢?

  生:不公平,老大少了,老三多了。

  师:那怎样就公平呢?生把这些桃合起来再平均分给3个孩子,每人3个。

  生:老大少了,老三多了,把老三的桃拿一个给老大。

  师:谁愿意上来分一分?

  (教师根据学生的移动过程板书:)

  师:大家看,现在就——(公平了),平均每个孩子——(3个桃)。这个“3”,在数学上就叫2,3、4这一组数的平均数。在生活中经常要用到平均数,同学们,我们今天就来探索研究平均数。

  评析:从故事情境中引入学习内容,既符合学生的年龄特点和认知心理规律,又让学生在已有知识经验的基础上初步感悟到平均数的意义。这样的导入,不仅激活了学生想学平均数的欲望,焕发了学习情智,而且为一节课的顺利进行创设了良好的环境。

  二、自主探究,理解新知

  师:三年级第一小组的4个男生和5个女生进行套圈比赛,每人套15个圈,把套中的个数用统计图表示出来。(屏幕显示例题图)看一看,你从图中知道了什么?

  生……

  师:你们都有双善于发现的眼睛,真了不起!既然是比赛,老师就想问:是男生套得准一些,还是女生套得准些?猜猜看。

  生:女生。

  师:都说是女生,可是猜想毕竟是猜想,到底事实情况怎样?我们必须想个方法来验证,请你们开动脑筋,有了想法后相互交流。(交流中出现了两种意见)

  意见l算出女生共套中多少个和男生一共套中多少个,进行比较。

  意见2算出男生平均每人套中多少个,女生平均每人套中多少个,然后再比较。 (两种不同的方法,引发了争论……)

  师:在刚才的争论中,我们明白了参加比赛的人数不样多,算总数不好比,也不公平,就不能用这种方法,只有求出男生平均每人套中多少个圈,女生平均每人套中多少个圈,才能一比胜负。

  评析:以学生喜欢的有着活动经验的比赛情境作为背景,设计有趣的问题,引导学生讨论、争论、辩论,最终得出求平均数是解决问题的行之有效的方法,让学生感受到学习平均数的作用,体验了自主学习过程的快乐。

  师:男生平均每人套中多少个圈呢?先独立思考,然后交流。

  生:把张明的9个移1个给李小钢,1+6=7,张明还有8个,再移1个给程晓杰,1+6=7,最后大家都是7个。

  师:想到这种方法或在他的启发下明白了这种方法的请举手。(都举起了手)都很了不起|这是一种好方法,老师把它写下来:

  通过把多的移一些补给少的,使平均每个人都一样多。谁能给这种方法起个名字,让我们记住这种方法?

  生:移多补少。

  师:多形象啊!还有不样的方法吗?

  生;6+9+7+6=28 (个),28+4=7(个)。

  师:这种方法是先求出什么,再怎样的?

  生:先求出总数,再除以人数,得到平均每人套中的个数。

  师:我们把这种方法叫做"先求和再平均分"。(齐读)

  师:不管用什么方法,最后都求出了男生平均每人套中7个圈,反映了男生套中的平均水平。那么女生平均每人套中多少个圈呢?请你们独立解决。

  生:1+4+7 + 5+4=30(个),30+5=6(个)。

  师:刚才男生中用总数除以4,到了女生中,怎么就除以57呢?

  生:因为女生是5个人。

  师;一语中的,解释得真好1因为女生是5个人套中的个数相加,所以要除以5。都是这样做的吗?为什么不用移多补少的方法呢?

  生:不好移。

  师:是啊|刚才我发现有几位同学开始想用移多补少的方法,可是移来移去不好移,后来又选择了先求和再平均分的.方法。确实,数学的思考要从实际出发,灵活选择解决问题的方法。

  师,女生平均每人套中6个圈。这个6表示每个女生真的都套中6个吗?

  (生摇头)

  师:都摇头,认为不是,那你怎么理解这个6的意思呢?

  生:6是平均数。

  师:6确实不表示每个女生真的都套中6个圈,是1、4、 7、5、4这一组数的平均数,反映了女生套中的平均水平。通过算平均成绩,现在你能比较出是男生套得准些还是女生套得准一些了吧|

  生:男生。

  师:什么理由?

  生:因为7>6。

  师:同学们,回想这道题,由于参加比赛的人数不等,算总数不好比,也不公平,后来是谁帮了我们的忙啊?

  生:平均数。

  师:现在你想对平均数说什么?

  生:平均数真公平。

  生:人数不等时,可以用平均数比较。

  生:平均数的作用很大。

  评析:启发学生自主探索求平均数的不同方法,鼓励多渠道解决问题,既有利于抓住本质去思考问题,也有利于理解记忆。通过疑问、解释的过程,既让学生学会灵活选择方法求平均数,又加深了对平均数意义的理解。整个过程学生主动参与、善于思考,学得朴实有效。

  师:是啊,老师从生活中收集了些平均数的信息,和你们一起来分享。

  师:三年级女生平均身高130厘米,男生平均身高12厘米。(追问三年级所有女生身高都是130厘米,所有男生身高都是132厘米吗?)

  生:不是。

  师:那你怎么理解?

  生:这是平均数,实际上可能有一个女生身高是128厘米呢!

  生:还有可能有一个男生身高135厘米呢!

  师:理解得真透彻!再请看(多媒体出示画面),我们通过调查、统计、测算,发现严重缺水地区平均每人每天用水量约3千克,而我们这儿的小明家平均每人每天用水量约85千克。同学们,两者相比,相差多大呀,此时此刻你有什么心里话要说?

  生:小明家太浪费水了。

  生:我发现两地平均每人每天的用水量相差很大,有的地方严重缺水。

  生:我们要节约用水。

  师:说得真好|希望你们从自身做起,节约每一滴水。其实,我们国家正在搞"南7北调"的工程,南边水资源丰富,北边严重缺水,"南水北调",目的是让更多地方的人都能喝上用上好的水。

  师:平均数在生活中的应用这么广泛,说说你在哪儿遇到过或用过平均数

  生:我家平均每月用水8吨。

  生:我们班期中考试语文平均成绩是93.5分,数学平均成绩是93分。

  师:只要你们留心观察生活,发现平均数就在我们身边。

  评析:通过举例,让学生在实例中进一步理解平均数的意义,并向学生有机渗透节约的思想,同时让学生感受到数学与生活的联系,促使学生以后学好数学,关注生活。

  三、联系生活,灵活运用

  1.用合适的方法求平均数。(93页第1题和94页第2题)

  2.判断。投篮比赛,在规定的时间内

  红队5人,每人投中的个数分别为1、12、15、18、20,平均每人投中1个。( )

  蓝队4人,每人投中的个数分别为:1、15、20、22,平均每人投中22个。( )

  (判断并说理后,请学生估计平均数的值,在交流过程中学生初步感知到了平均数比一组数中最小的数大,比最大的数小,而旦最接近中间大小的那个数。)

  师:我们对平均数又有了更加深刻的了解,请带着你的智慧走进生活。

  (1)95页第1题。(运用平均数的意义,联系生活实际解释问题)

  (2)下面是王老板卖出苹果和椅子的数量。

  师:王老板平均每天卖出苹果和桶子各多少箱?请你们独立解决。

  生:王老板平均每天卖出苹果16箱,卖出桶子12箱。

  师:根据这两个数据,你对王老板有什么建议?

  生:建议王老板多进一些苹果,因为每天卖出的苹果多。

  师:是啊!通过算平均数,知道平均每天卖出的苹果多,就建议王老板多进一些苹果。说明平均数对我们做决策或预测未来事件的发展有着非常重要的作用。

  评析:有层次地设计练习,让学生进一步掌握知识,形成技能,发展智力。注重练习的新颖性,让学生的思维不停留在简单的重复练习中,而是通过判断、说理、估算、解释、推测等思维活动,让学生对平均数加深理解,丰富内涵,从中促进了创造性思维的发展。

  四、总结提升,质疑拓展

  师:今天学习了平均数,请你们静静地想一想,你有哪些收获?

  生:……

  师:老师想问一个问题目在我校五节歌咏比赛时,各位评委为参加比赛的选手打分,最后去掉一个最高分和一个最低分,再算出选手的平均得分。这是为什么呢?(学生茫然)

  师:这个问题,我们把它延伸到课后,请你们和家长一起研讨,可以举出些数据来揭开其中的奥秘。

  师:今天,我们认识了平均数,知道平均数在生活中有很大的作用,希望你们在生活中学会利用平均数解决问题,同时也希望你们像平均数样,堂堂正正做人,公平公正做事。

  评析:在总结回想中,提升认识。一方面让学生对所学知识有清晰的认识;另一方面培养学生质疑问难的精神;再者让学生在情感、态度、价值观方面受到良好的教育,让学生感受到既要学会学习,又要学会做人,促进学生情智并进,和谐发展。

  [总评]

  教学的基本出发点是促进学生全面、持续、和谐的发展。学生只有动情地、积极地投入到学习中,才能入目、入耳、入脑。为此,教者为学生创设了愉悦和谐的环境,启发他们或静静思考、或神情飞扬、或切磋商讨、或争论不休……促进他们的情感、知识、智慧交互生成,多元智力并进发展。具体有以下几点感触:

  一、营造了愉悦和谐的氛围

  学生在良好的环境下学习,心理安全、自由,敢于大胆地发表自己的意见,能说出心里话,有利于形成真实有效的课堂。在课的导入中,教者以故事激趣;在新知的教学中,以问题激疑;在巩固练习中,题型新颖,让学生亲近数学。每一个环节的设计和教学语言都讲究艺术,营造种愉悦和谐的氛围,努力去感染和激励学生,使他们产生求知欲,使课堂达到事半功倍的效果。

  二、构建了互动交流的方式

  教者在课堂上充分以学生为主体,多给学生提供机会,经常通过启发性的语言,如“你知道吗”“你有不一样的方法吗”“你有什么心里话要说”等,使学生感受到自己是学习的主人,增强参与的主动性,不断地去思考、探索、讨论、交流,在经历知识的形成过程中,不断休验成功的快乐,在认知与情感的交互作用下,学得积极主动,形成一个真实有效的课堂。

  三、设计了丰实有效的练习

  认知心理学认为:学生的学习过程,是一个把教材知识结构转化为自己认知结构的过程。完成这个过程,仅靠新课的教学是不够的,还要通过有效的练习,才能把新知识同原有知识结构更加紧密地融为一体,并贮存下来,从而使所形成的认识结构更加充实完善。教者把平均数和生活联系起来,通过有层次的设计练习,让学生在练习中丰富了对平均数内涵的深刻理解,既让学生学得扎实灵活,又让学生的创造性思维得到发展,让他们既长知识,又长智慧。

《平均数》 教案9

  教学设计教学目标:

  1、使学生理解平均数的含义,初步学会简单的求平均数的方法。

  2、理解平均数在统计学上的意义,感受数学与生活的联系。

  3、发展学生解决问题的能力。

  重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。

  教学过程:

  一、理解平均数

  1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?

  2、老师(出示两个笔筒)分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。

  3、引入平均数象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。

  4、学生讨论:你们喜欢刚才谁的方法?导入板书课题。

  二、探究体验

  1、出示情景图:说说老师和同学们在干什么?

  2、出示统计图:引导学生收集信息。

  3、引导学生运用移多补少的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。

  4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?

  5、小组讨论解决的'方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。

  6、小结求平均数的方法。

  三、实践应用

  1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?请你算一算。

  2、根据统计表算一算,三年段平均每班踢几下?

  班级 三(1) 三(2) 三(3) 三(4)

  踢的次数 632 654 668 646

  3、生独立完成练习十一第2题。

  四、全课总结

  1、通过今天的学习,你学到了什么新的知识?

  2、师总结。

  平均数 教学设计

  共4课时 总第23课时

  教学目标:

  1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

  2、使学生认识统计与生活的联系,发展学生的实践能力。

  3、巩固求平均数的计算方法。

  教学过程:

  一、情景导入

  1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别倒入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?

  2、学生动手解决,并交流解决的方法。

  3、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?

  (1)组织交流解决的方法。

  (2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。

  二、探究体验

  1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。

  2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。

  3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。

  4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?

  5、组织交流计算的方法与结果。

  6、组织讨论:从刚才的这件事,你有什么发现?

  7、小结:平均数能较好地反映一组数据的总体情况。

  三、实践应用

  1、说说生活中还有哪些事要通过求平均数来解决问题。

  2、生独立完成练习十一第4、5题。

  四、全课总结

  1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

  2、师总结。

《平均数》 教案10

  第一课时

  素质教育目标

  (一)知识教学点

  1.使学生初步了解统计知识是应用广泛的数学内容 .

  2.了解的意义,会计算一组数据的 .

  3.当一组数据的数值较大时,会用简算公式计算一组数据的 .

  (二)能力训练点

  培养学生的观察能力、计算能力 .

  (三)德育渗透点

  1.培养学生认真、耐心、细致的学习态度和学习习惯 .

  2.渗透数学来源于实践,反地来又作用于实践的观点 .

  (四)美育渗透点

  通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

  重点·难点·疑点及解决办法

  1.教学重点:的概念及其计算 .

  2.教学难点:的简化计算 .

  3.教学疑点:简化公式的应用,a如何选择 .

  4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

  教学步骤

  (一)明确目标

  在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

  为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

  甲 7 8 6 8 6 5 9 10 7 4

  乙 9 5 7 8 7 6 8 6 7 7

  1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

  教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

  对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

  (二)整体感知

  解决类似上述的问题要用到统计学的.知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

  (三)教学过程

  这节课我们首先来学习.

  1.(出示幻灯片)请同学看下面问题:

  某班第一小组一次数学测验的成绩如下:

  86 91 100 72 93 89 90 85 75 95

  这个小组的平均成绩是多少?

  教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求方法,这样做使学生对的计算公式能有深刻的认识 .

  2.的概念及计算公式

  一般地,如果有n个数 .

  那么 ①

  叫做这n个数的, 读作“x拨” .

  这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

  3.计算公式①的应用

  例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

  -6,-5,-7,-6,-4,-5,-7,-8,-7

  求它们的平均气温 .

  让学生动手计算,以巩固计算公式(一名学生板演)

  教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,计算结果保留的位数与原数据相同 .

  例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

  210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

  计算它们的平均质量 .(用投影仪打出)

  引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

  教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

  学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

  讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .

  通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

  3.推导公式②

  一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到

  ,

  那么 ,

  因此,

  即 ②

  为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

  课堂练习:

  教材P148中~P149中1,2,3

  (四)总结、扩展

  知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

  2.求n个数据的的公式① .

  3.的简化计算公式② .这个公式很重要,要学会运用 .

  方法小结:通过本节课我们学到了示一组数据的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

  八、布置作业

  教材P153中1、2、3、4 .

  九、板书设计

《平均数》 教案11

  教学目标:

  1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。

  2、运用平均数的知识解释简单生活现象、解决简单实际问题的过程专用,进一步积累分析和处理数据的方法,发展统计观念。

  3、在活动中,进一步增强与他人交流的意识与能力,提高合作学习的效率。

  4、在解决实际问题中,能体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

  教学重点:

  理解平均数的意义,学会求简单数据的平均数。

  教学难点:

  理解平均数的意义。

  教学准备:

  课件、练习纸。

  教学过程:

  一、问题引入

  1、出示例3的主题图

  谈话:四年级的男、女生进行套圈比赛,每人套15个圈。你想了解他们的比赛情况吗?

  第一轮:

  课件出示空白的男、女生套圈成绩统计图,谈话:我们来看这两个小组同学的套圈情况,第一个出场的男生是小刚,女生是小燕(分别出示表示两位同学套中个数的直条),他们各套中多少个?(6、4)谁套的准些?你是怎样看出来的?

  谈话:这数字6可以代表男生组的水平,那么女生组的水平可以用?来代替。

  第二轮:

  谈话:第二个出场的男生分别是小明(课件出示直条6),女生是小娟课件出示直条4),(结合手势,表示整体)比较每组中同学的比赛成绩,你认为是男生套的准还是女生套的准些?你是怎样比较出来的?(预设:生1,比总数,生2,比每个人套中的个数)

  提问:这时,你能用哪个数来表示男女生的水平吗?(预设:生1,6、4,生2,12、8)让学生说说分别表示什么意思。

  第三轮:

  谈话:第三、四个出场的男生是小宇和小杰(7、9),第三、四、五个出场的女生分别是小敏、小芸和小芳(7、5、10)(完整出示条形图),现在,你能比较是男生套的准些还是女生啊?你想怎样来比较呢?学生讨论

  提问:我们先来想想,你能用哪个数来表示男女生的一般水平?

  生交流,总结出(28、30)来表示不合适,也就是比较总数不合适。

  那你认为要找哪个数,才能代表男生组的一般水平呢?(这个数要基本反映一组数的一般水平,在数学上,我们把这种数叫做平均数)(板书课题)

  二、探究求平均数的方法

  1、探究男生求平均数的方法

  谈话:我们先来仔细找一找男生组的这个数,男生的得分各不相同。我们怎么来找这个数呢?套的最多的和最少的能代表整体水平吗?那你觉得这个数应该在什么范围呢?

  给大家3分钟,在练习纸上想办法找到男生组的那个数。(练习纸)

  交流:

  方法一:移多补少(课件演示)

  方法二:先合后分(说说各数表示的意思)

  预设:

  如果只答出方法一:除了像这样局部调整,得出平均数,还有其它调整方法了吗?给大家一个小提示:可以把所有男生的个数先看成一个整体,然后再把这些个数平均分配给他们。

  如果只答出方法二:除了像这样,把他们的得分先加起来,再重新平均分配给他们。还有其它调整方法了吗?给大家一个小提示:能否只移动其中一小部分个数,使得男生的个数一样多。

  交流。

  小结:同学们,刚才我们用两种不同的方法找到了能表示男生组的这个数7,我们来回顾一下。

  一种方法,通过移动来局部调整,把多的一部分,移给少的,从而得到男生的平均个数,你想帮它取个名字吗?(板书“移多补少”);

  另一种方法,通过整体重新分配,先把所有的个数先加起来,再平均分给他们,也得到了男生的平均个数,你也能取个名字吗?(板书“求和平分”)。

  2、揭示课题

  谈话:两种方法都得到了一个新的、能够反映男生组整体情况的数据,就是7个。没错,这个数就是男生组(6、6、7、9)的平均数。

  用课件显示图中平均数画线,直观感知平均数的范围。

  让学生也在练习纸上画线。请你用一条线把这个数7表示到图上来

  提问:得到的这个数7表示什么含义?你觉得这个数是一个怎样的数?能不能说男生组中每人都套中了7个?这个数7与小宇套中的7表示的意思一样吗?平均数比最厉害的个数?比最差的呢?

  3、迁移类推,感悟意义

  谈话:现在,请你们也来找一找女生组的平均数吧。(学生在练习纸上操作并交流)

  说说“6”的意义

  交流,提问:现在可以比较出哪组套的准了吗?(完整板书)

  提问:仔细观察这两组的平均数,你想说些什么?原来的数据和平均数的大小,有什么发现?高于、低于平均数的有几个?(其中的个数有的比平均数高,有的比平均数低,初步感受平均数的范围)

  感受平均数的优势:老师啊觉得平均数真厉害,因为它在人数不等的情况下也能公平的比较出男生和女生哪组的水平高,老师说的对吗?

  三、巩固练习,应用平均数

  1、书本练一练。(课件逐个出示笔筒)

  第1个笔筒有( )枝,第2个有( )枝,第3个笔筒有( )枝。

  怎样移动笔筒中的铅笔,找到平均每个笔筒有多少枝铅笔。(课件动态显示移多补少的过程,然后逐步变化为条形图)我们也可以用条形统计图来表示,这样更直观。(显示移的过程)

  交流:当然,你还可以怎样来解决这个问题?(求和平分)

  如果用求和平分,怎么计算?综合算式?

  2、第一题

  出示丝带图,提问:这时你能用移多补少的方法一下子找出它们的平均数吗?

  估一估,平均长度到哪儿?

  想一想,应该在多少厘米到多少厘米之间?(平均数在最小数和最大数之间)

  算一算,让学生独立列式解答,再交流

  提问:如果每条丝带都增加1厘米,平均长度会有什么变化?(相当于每条丝带的长度增加了1厘米,也就是平均长度在原来的`基础上增加1厘米)

  如果把其中一条丝带的长增加3厘米,3条丝带的平均长度是多少厘米?如果减少3厘米呢?(刚刚每条丝带增加1厘米,总体增加了3厘米,那么现在呢?)

  指出:一组数中有一个数据变化了,这组数据的平均数也会发生变化,平均数很敏感。

  3、第4题(假如我当经理)

  先估计一下苹果和橘子平均每天卖出的箱数,再同桌分工计算,然后画出表示平均数的那条线。

  提问:如果你是水果店的经理,看到这样的数据和平均数的情况,你会有什么想法?

  4、第3题(篮球队员的身高)

  提问:李强是学习篮球队队员,他身高155厘米,可能吗?学校篮球队可能有身高超过160厘米的队员吗?

  (出示篮球队5名队员的身高统计表)

  小结:同学们,平均数是反映一组数据整体情况的数,如果只知道平均数,要去推测其中一个数据是多少,这个数据会有很多种可能性,这就体现了依据平均去推测其中一个数据的(不确定性)。

  但是,知道了一组数据的每一个数据,可以用“移多补少”或者“先合后分”明确地得到平均数是多少,体现了求平均数的(确定性)

  思考:如果姚明加入学校篮球队,平均身高会如何变化呢?(图片显示)

  出示现在的平均身高,提问:这时得到的平均身高,具有什么样的特点?为什么增加了姚明,小队员的身高都在平均数一下了?(太高的人,对平均数的影响很大,所以姚明的身高在这组数据中属于极端数据,具有极端数据的话,平均数就变得不一样了)

  介绍:在生活中,也会遇到像这种不一样的平均数,你想知道吗?课件出示“你知道吗?”(生读)

  谈话:通过xx的介绍,我们对平均数又有了一些新的认识,那么我们就带这这个新认识去看看吴萌的诗朗诵比赛吧。

  完成练习八第9题。(口答综合算式)

  四、总结经验,感悟平均数。

  通过这节课,你有什么收获?你对平均数有那些认识?

  总结:通过今天的学习,我们知道平均数在生活中有很大的作用,愿大家能带上今天的学习内容,更好地认识生活中与平均数有关的各种问题。

《平均数》 教案12

  一、情境激趣,引出问题。

  师:同学们,在欢庆节日的时候,我们总喜欢挂上气球,渲染出浓浓的节日气氛,今天,我们来进行一次吹气球比赛,怎么样?

  生:好!

  师:一、二组作一队,三、四组作一队,你们商量起个名字吧。

  一、二组:我们叫希望队。

  三、四组:我们叫英雄队。

  师:怎么比呢?

  生:两队同学都来吹,在规定的时间里,哪队吹的气球多,哪队就获胜。

  师:可老师没带那么多气球来,怎么办?

  生:每队选几个代表吧。

  师:各选几人?

  生:选两人。

  师:好,各队再派两个人拿好他们吹的气球,时间为一分钟。比赛结果:希望队:4个6个。英雄队:5个3个,希望队(欢呼起来):我们赢了。

  师:你们是怎么知道胜负的?

  生:比总数,希望队共有10个,而英雄队一共只有8个。

  师:还有别的比较办法吗?

  生:从希望队的6个里拿出1个,将4个补齐5个,就正好与英雄队的5个相等,而希望队剩下的5个比英雄队剩下的3个多,所以希望队赢了。

  师:你真了不起!想出了移多补少的办法。现在我正式宣布:希望队获得冠军。(希望队非常得意,齐说一声“ye”,英雄队有些不甘心。)

  师:看英雄队的小华跃跃欲试的样子,就让他也来参加吹气球吧。比赛再次开始。

  师:算出结果。

  生:希望队共有10个,英雄队共有12个。师(热情洋溢地)宣布:英雄队获得冠军。(英雄队欢呼起来。)

  希望队(=地说):不行,不行,他们队多一个人,我们队也要加一个人。

  师:看来人数不相等,用比总数的方法来决定胜负是不公平的,那么怎样比较才公平呢?

  生:我们队也多加人。

  师:不增加人,有什么好办法吗?

  二、解决问题,探求新知。

  生:把希望队两个人吹的气球总数除以2,把英雄队3个人吹的气球总数除以3,再进行比较。

  师:为什么?

  生:这实际上是求出各队平均每人吹的气球数。

  师:能列出算式吗?

  生:10÷2=5(个)12÷3=4(个)。

  师:哪队赢了?能说出理由吗?

  生:希望队。因为希望队平均每人有5个气球,而英雄队平均每人只有4个气球,所以说希望队赢。

  师:英雄队虽然输了,但也不要气馁,你们课后还可以再比。

  师:希望队中“5个”气球是谁吹的?

  生:谁的也不是,“5个”表示平均每人吹的气球数。

  师:这队中最多的是几个?最少的又是几个?5个与它们相比怎么样?

  生:最多的是6个,最少的是4个,5个大于4个,小于6个。

  师:可见,“5个”表示的既不是希望队的水平,也不是最低水平,而是表示处在这个和最低之间的一个平均水平,咱们就把表示平均水平的这个数叫做平均数。学生归纳求平均数的方法,即:总数÷份数=平均数。

  三、自主探索,合作交流。

  1、求出小组的平均年龄。

  (1)各组同学将自己的年龄填入教师发的表格,求出小组的平均年龄。

  (2)请各小组汇报,比较出年龄组和最低年龄组,估算出全班平均年龄。

  2、情境判断。

  (1)江宁一组的平均年龄是10岁,所以江宁一定是10岁。

  (2)小青的年龄是全班最小的,所以他的年龄一定小于他们组的平均年龄。

  (3)张俊一组的平均年龄是9岁,小禹一组的平均年龄是8岁,所以张俊的年龄一定大于小禹。

  四、联系实际,拓展深化。

  1、尝试练习。

  师:课前,同学们都收集了家里拥有的'家用电器的件数,请各组同学记在分发的统计表上,并算出每组家庭平均拥有的家用电器数。

  师:这是第三组同学家拥有的家用电器情况统计表,请同学们算一下,他们组平均每户家庭拥有几件家用电器。

  师:从第三组中平均每户家庭拥有的家用电器件数,你想到了什么?

  生:家用电器进入千家万户,人民生活水平提高了。

  生:人们拥有的家用电器越来越多,耗电量也越来越大,我们要节约用电。

  师:你们的想法真好,家用电器为我们带来了方便,但也消耗了大量的电力资源,节约用电要从我做起。

  2、灵活求平均数。

  师:同学们,我想请我们班的歌手——方瑞为大家高歌一曲,你们现场打分,满分是10分,每一组亮一个分。

  师:现在有8个分,你们认为哪个分最合适呢?

  生:要计算平均分。师说明在实际生活中,为了反映真实水平,有时计算平均分要去掉一个分和一个最低分,再算平均分。

  生:去掉一个分10分和一个最低分7分,列式计算是:(10+10+8+9+8+9)÷4。

  师:方弯池塘平均水深110厘米,咱们班的小飞身高135厘米,不会游泳,如果他去那里学游泳,会不会有危险?

  生:我认为小飞能去游泳,因为小飞身高135厘米,而湖水深度只有110厘米。

  生:我认为小飞不能去游泳,因为湖水的平均深度是110厘米,最深处可能大于135厘米,所以小飞去游泳有危险。

  五、总结评价、自布作业。

  师:在这节课的学习中,你有什么收获或遗憾?你准备给自己布置什么样的作业?

  生:我学会了什么是平均数,如何求平均数。

  生:令我遗憾的是:生活中还有许多求平均数的问题,这节课没有做,课后我要去做一样。

  生:我要求出我前几个单元的数学平

  生:我要求出我们小组同学的平均身高。

《平均数》 教案13

  教学目标

  (一)进一步理解求平均数的意义,掌握较复杂的求平均数的方法。

  (二)通过题目设计,对学生进行思想品德教育。

  (三)培养学生灵活计算的能力和解决实际问题的能力。

  教学重点和难点

  求平均数的意义及较复杂的求平均数的方法。

  较复杂的求平均数的方法。

  教学用具

  教具:电脑软件、投影片。

  学具:判断卡。

  教学过程设计

  (一)复习准备

  1.口算。

  ①小明有12本书,小军有20本书,小明和小军平均每人有几本书?

  ②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每组投中多少个?

  由学生自己解答(列式计算)针对第③题提问:

  ①说出这道题的问题是什么?

  ②求平均数必须知道什么条件?

  ③说一说你是怎样计算的?

  板书:投中总个数÷组数。

  (二)学习新课

  1.出示例 1:

  五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?

  读题后,学生分组讨论思考题。(投影片)

  ①例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑。)②要求全班平均每人投中多少个,必须先知道什么条件?

  在学生回答基础上,板书:投中总个数÷全班总人数。

  教师:投中总个数和全班总人数题目中给了吗?怎么办?

  ②投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?

  尝试自己列式,然后讨论订正。

  板书:

  (1)全班一共投中多少个?

  28+33+23=84(个)

  (2)全班一共有多少人?

  10+11+9=30(人)

  (3)全班平均每人投中多少个?

  84÷30=2.8(个)

  教师:综合算式怎样列?(学生试列式,再讨论订正。)

  板书:(28+33+23)÷(10+11+9)=2.8(个)

  答:全班平均每人投中2.8个。

  教师:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?

  2.出示例2:(投影片)

  下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数)

  教师:例2和例1比较,有什么异同?

  明确:例1和例2的问题一样,但已知条件不同。

  教师:要求全班平均每人投中多少个,要知道什么条件?(学生试做,然后说出自己的列式和思路,充分讨论,如果有不同意见互相交换,最后弄清怎样是对的。)

  板书:

  (1)全班一共投中多少个?

  2.5×12+3×11+3.2×10=95(个)

  由学生完成。

  (2)全班一共有多少人?

  ________________________

  (3)全班平均每人投中多少个?

  ________________________

  答:全班平均每人投中________个。

  教师:你能列出综合算式吗?

  板书:(2.5×12+3×11+3.2×10)÷(12+11+10)。

  讨论:对比例2和例1有什么不同?解答时应该注意什么问题?

  教师:求平均数时,有时不能除尽,这时需要根据具体情况取近似值。

  (三)巩固反馈

  1.做一做:

  小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页。小亮这一星期平均每天看多少页?(先说思路,再列式计算。)

  2.判断正误并说明理由。

  ①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?

  [ ]

  A.(28+36)÷(3+2);

  B.(28 × 2+36 × 3)÷(3+2);

  C.(28+36)÷2。

  ②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?

  [ ]

  A.(60+56)÷(5+3);

  B.(60+56)÷2;

  C.(60×5+56×3)÷(5+3)。

  (四)课堂总结(学生总结)

  教师:解答求平均数应用题应注意哪些问题?

  ①明确问题求的是什么平均数;

  ②总数量÷总份数=平均数。

  (五)布置作业 课本P15:1,2,3,4,5。

  课堂教学设计说明

  本节课是在较简单的.求平均数应用题的基础上进行的。重点是让学生理解并巩固平均数的意义以及求平均数应用题的解题思路和方法,其中加权算术平均数的计算方法是难点。通过准备题与例1的对比突出重点,学生掌握求平均数的方法,同时培养学生分析、比较的能力。让学生充分讨论、尝试例2,培养学生独立解答问题的能力,从而突破了难点。

  本节新课教学分为三部分。

  第一部分,教学例1,加深对平均数应用题的解题方法的理解,共分3层。

  第一层:由准备题与例1对比,找出异同点;

  第二层:由问题出发找出解决问题的方法;

  第三层:列出分步和综合算式。

  第二部分:教学例2,强调根据题意确定算法,可分3层。

  第一层:出示例2,审题找出与例1的异同点;

  第二层:分组讨论解题方法;

  第三层:列出分步、综合算式。

  第三部分:对比例1、例2,找出异同点,从而加深对平均数应用题解题方法的理解。

  板书设计(略)

《平均数》 教案14

  教学目标

  1、使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。

  2、初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。

  3、在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学规律的兴趣,积累积极的数学学习体验。

  教学重点:

  掌握求平均数的方法,“移多补少”先合并再平分“的实际意义和应用。

  教学难点:

  理解平均数在统计学上的意义,灵活运用平均数的相关知识解决简单的实际问题。

  教学准备:

  多媒体课件

  教学过程:

  一、创设情境、生成问题

  师:今天上课前我想考考大家。

  (课件出示)一次数学测验中,班级平均分是90分,你猜猜这个班的马莉莉同学可能会得多少分?为什么?(小组学生讨论,全班交流)

  师:班级平均分是马莉莉的实际分数吗?如果不是,你知道“班级平均分是90分”是什么意思吗?

  师:生活中还有很多地方用到平均数,(播放例子)那什么是平均数呢?怎样求平均数呢?(板书:平均数)

  二、探索交流,解决问题。

  1、平均数的意义和求法。

  (课件出示教材第90页例1情境图)

  师:读情境图,你能找到哪些已知条件和所求问题?(学生独立完成,小组交流,全班汇报)

  生1:从情景图中可以读出小红、小兰、小亮、小明分别收集了

  14、

  12、11和15个塑料瓶。

  生2:所解答的问题是平均每人收集了多少个。

  师:你能解释“平均每人收集了多少个”的意思吗?(小组交流,全班汇报)

  生:“平均每人收集了多少个”意思是把收集到的这些塑料瓶按照人数进行平均分配。也就是把收集瓶子数量较多的转移给数量较少的,最后达成每人收集的个数同样多。

  师:你能理解“同样多”是什么意思吗?在情景图中会表示出“同样多”吗?

  师:你是怎样表示出“同样多”的?

  生:通过“移多补少”的方法,达到每人收集的个数同样多。

  师:每人收集的个数同样多还可以怎样说?

  生:每人收集的个数同样多就是平均每人收集到的塑料瓶的个数。

  师:像这样,通过把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多,这种方法叫“移多补少”,得到的这个相等的数叫做这几个数的平均数。

  师:还有其他方法吗?

  生:观察上图发现,还可以先求出塑料瓶的`总数量,然后进行平均分配,可以求出平均每人收集的塑料瓶的个数。

  师:请用算式表示出来。

  生:

  (14+12+11+15)÷4 =52÷4 =13(个)答:平均每人收集了13个。

  师:谁能总结一下平均数的求法?

  生:平均数=总数量÷总份数

  师:这种求平均数的方法叫先合后分计算。

  2、进一步强调平均数的意义和计算方法。(出示教材第91页情境图和统计表)

  师:读图表,你能找出已知条件和所求问题吗?(学生独立完成,小组交流,全班汇报)

  生1:已知第4小组男生队和女生队踢毽比赛成绩表。

  生2:所求的问题是男、女两队,哪个队成绩好?

  师:“哪个队成绩好?”是什么意思?用什么成绩来比较?(预设答案,既可以用平均数来比,页可以用总数来比)

  生:如果比较两队的总成绩,有失公平,因为两队的人数不同,所以比较两队的平均成绩比较公平些。

  师:你能说出总成绩、每队人数和每队的平均成绩之间的关系吗?

  (学生独立完成,小组交流,全班汇报)

  生:每队的总成绩除以每队的总人数等于每队的平均成绩

  师:怎样列式解答呢?(学生独立完成,小组交流,全班汇报)

  生:男生队平均每人踢毽个数

  女生队平均每人踢毽个数

  (19+15+16+20+15)÷5(18+20+19+19)÷4 =85÷5=76÷4 =17(个)=19(个)17<19

  答:女生队的成绩好些。

  三、巩固应用,内化提高。

  练习二十二第1—3题

  四、回顾整理反思提升

  师:通过本课学习,你有哪些收获?

《平均数》 教案15

  教学内容 人教版数学四年级下册第91——92页。

  教学目标 知识与技能:

  1、能对获得的数据进行整理,并用条形统计图表示出来。

  2、 认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  过程与方法:

  1、经历收集、整理、描述和分析数据的过程。

  2、经历读统计图、交流信息、提问题、解决问题的过程。

  情感态度价值观:

  从统计图中获取信息、用统计图表示数据的过程中,体验用统计图表达表达交流数据的特点,认识统计图的价值。

  教学重点 认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  教学难点 能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  教学方法 尝试教学法 课型 新授课

  教学准 多媒体 教学时数 1

  板书设计

  教学过程:

  一、炫我两分钟

  二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期的对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。

  为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是请来了统计学家,统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家信心十足的说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。

  从这个故事中你知道的统计有什么作用吗?

  【设计意图:炫我两分钟给学生一个自我展示的平台,绽放其生命色彩。能够提高学习数学的情趣,增强学好数学的信心。】

  二、尝试小研究

  尝试小研究:

  研究一:

  1.从上面的统计图中,你得到了哪些信息?

  2.这个统计图一个格表示几个人?你是怎么知道的?

  3.自己提出问题并解答。

  研究二:

  1.完成课本91页,试一试:根据统计表,完成统计图。

  2.交流展示学生完成的统计图。

  三、小组合作探究

  尝试研究一

  出示小组合作交流建议:1、组长组织本组成员有序进行交流,确定好组员的发言顺序。2、认真倾听其他组员的发言,对他的发言内容进行评价,组内达成统一意见。3、组内分工,为班级展示提升做准备。

  【设计意图:给每一个孩子创造一个发言的机会,让学生在思考、交流的过程中对知识进行一个思维的碰撞。】

  四、班内展示交流,建构新知

  1、全班交流,师生评价。

  2、试一试,学生读统计表,谈一谈自己的感受。观察不完整的统计图,找出这幅统计图的特征。(用一个格表示4个人)

  3、学生试着补充完整统计图,师巡视指导,交流时,让学生说明不够整格时怎样想的,是怎样处理的。(生表述自己的发现,关注学生能否发现每个格代表4人,如果学生没有发现教师予以提示。)

  小结:用条形统计图表示数据,当数据比较大时经常采用一格表示多个单位的方法。

  4、鼓励学生根据统计图提问并解答。交流时,学生提出的'问题只要合理,就给予肯定。

  【设计意图:通过交流,学生利用知识的迁移,认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。这是学生对知识一个内化、提升的过程。】

  五、挑战自我

  1、数学书92页练一练的第1题

  【设计意图:面向全体学生,巩固当堂所学的知识。】

  2、数学书92页练一练的2题。自己设计一张调查表,记录自己一学期读课外书的情况。

  六、盘点收获

  通过这节课的学习你有什么新的收获?

  【谈收获环节是数学课堂上必不可少的一个环节,它既可以是对本节课所学知识点的梳理,能让学生更清晰本节课所学的内容,也可以是对数学学习方法的梳理和数学活动经验的建构,培养学生自主反思建构的良好学习习惯。】

  课后

  反思 引导学生在自主探究的基础上合作交流,并利用现代化的教手段,形象生动地展示了统计图由纵向变为横向条形统计图的过程,学生在合作探究中了理解知识间的联系,不仅充分调动了学生参与学习的积极性,而且使学生对知识的理解逐步升华,应用多种策略解决问题的能力不断提高。

【《平均数》 教案】相关文章:

平均数教案04-12

《平均数》 教案03-18

《平均数》教案03-29

平均数教案02-06

《平均数》 教案05-30

《求平均数》教案03-05

《平均数》教案15篇03-31

《平均数》教案(15篇)03-31

平均数数学教案05-27

《求平均数》教案14篇03-06