当前位置:好文网>实用文>教案>平均数教案

平均数教案

时间:2025-10-24 09:55:15 小英 教案 我要投稿
  • 相关推荐

平均数教案(精选25篇)

  作为一位优秀的人民教师,时常需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案要怎么写呢?下面是小编为大家收集的平均数教案,欢迎大家借鉴与参考,希望对大家有所帮助。

平均数教案(精选25篇)

  平均数教案 1

  教学目标:

  1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。

  2、运用平均数的知识解释简单生活现象、解决简单实际问题的过程专用,进一步积累分析和处理数据的方法,发展统计观念。

  3、在活动中,进一步增强与他人交流的意识与能力,提高合作学习的效率。

  4、在解决实际问题中,能体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

  教学重点:

  理解平均数的意义,学会求简单数据的平均数。

  教学难点:

  理解平均数的意义。

  教学准备:

  课件、练习纸。

  教学过程:

  一、问题引入

  1、出示例3的主题图

  谈话:四年级的男、女生进行套圈比赛,每人套15个圈。你想了解他们的比赛情况吗?

  第一轮:

  课件出示空白的男、女生套圈成绩统计图,谈话:我们来看这两个小组同学的套圈情况,第一个出场的男生是小刚,女生是小燕(分别出示表示两位同学套中个数的直条),他们各套中多少个?(6、4)谁套的准些?你是怎样看出来的?

  谈话:这数字6可以代表男生组的水平,那么女生组的水平可以用?来代替。

  第二轮:

  谈话:第二个出场的男生分别是小明(课件出示直条6),女生是小娟课件出示直条4),(结合手势,表示整体)比较每组中同学的比赛成绩,你认为是男生套的准还是女生套的准些?你是怎样比较出来的?(预设:生1,比总数,生2,比每个人套中的个数)

  提问:这时,你能用哪个数来表示男女生的水平吗?(预设:生1,6、4,生2,12、8)让学生说说分别表示什么意思。

  第三轮:

  谈话:第三、四个出场的男生是小宇和小杰(7、9),第三、四、五个出场的女生分别是小敏、小芸和小芳(7、5、10)(完整出示条形图),现在,你能比较是男生套的准些还是女生啊?你想怎样来比较呢?学生讨论

  提问:我们先来想想,你能用哪个数来表示男女生的一般水平?

  生交流,总结出(28、30)来表示不合适,也就是比较总数不合适。

  那你认为要找哪个数,才能代表男生组的一般水平呢?(这个数要基本反映一组数的一般水平,在数学上,我们把这种数叫做平均数)(板书课题)

  二、探究求平均数的方法

  1、探究男生求平均数的方法

  谈话:我们先来仔细找一找男生组的这个数,男生的`得分各不相同。我们怎么来找这个数呢?套的最多的和最少的能代表整体水平吗?那你觉得这个数应该在什么范围呢?

  给大家3分钟,在练习纸上想办法找到男生组的那个数。(练习纸)

  交流:

  方法一:移多补少(课件演示)

  方法二:先合后分(说说各数表示的意思)

  预设:

  如果只答出方法一:除了像这样局部调整,得出平均数,还有其它调整方法了吗?给大家一个小提示:可以把所有男生的个数先看成一个整体,然后再把这些个数平均分配给他们。

  如果只答出方法二:除了像这样,把他们的得分先加起来,再重新平均分配给他们。还有其它调整方法了吗?给大家一个小提示:能否只移动其中一小部分个数,使得男生的个数一样多。

  交流。

  小结:同学们,刚才我们用两种不同的方法找到了能表示男生组的这个数7,我们来回顾一下。

  一种方法,通过移动来局部调整,把多的一部分,移给少的,从而得到男生的平均个数,你想帮它取个名字吗?(板书“移多补少”);

  另一种方法,通过整体重新分配,先把所有的个数先加起来,再平均分给他们,也得到了男生的平均个数,你也能取个名字吗?(板书“求和平分”)。

  2、揭示课题

  谈话:两种方法都得到了一个新的、能够反映男生组整体情况的数据,就是7个。没错,这个数就是男生组(6、6、7、9)的平均数。

  用课件显示图中平均数画线,直观感知平均数的范围。

  让学生也在练习纸上画线。请你用一条线把这个数7表示到图上来

  提问:得到的这个数7表示什么含义?你觉得这个数是一个怎样的数?能不能说男生组中每人都套中了7个?这个数7与小宇套中的7表示的意思一样吗?平均数比最厉害的个数?比最差的呢?

  3、迁移类推,感悟意义

  谈话:现在,请你们也来找一找女生组的平均数吧。(学生在练习纸上操作并交流)

  说说“6”的意义

  交流,提问:现在可以比较出哪组套的准了吗?(完整板书)

  提问:仔细观察这两组的平均数,你想说些什么?原来的数据和平均数的大小,有什么发现?高于、低于平均数的有几个?(其中的个数有的比平均数高,有的比平均数低,初步感受平均数的范围)

  感受平均数的优势:老师啊觉得平均数真厉害,因为它在人数不等的情况下也能公平的比较出男生和女生哪组的水平高,老师说的对吗?

  三、巩固练习,应用平均数

  1、书本练一练。(课件逐个出示笔筒)

  第1个笔筒有( )枝,第2个有( )枝,第3个笔筒有( )枝。

  怎样移动笔筒中的铅笔,找到平均每个笔筒有多少枝铅笔。(课件动态显示移多补少的过程,然后逐步变化为条形图)我们也可以用条形统计图来表示,这样更直观。(显示移的过程)

  交流:当然,你还可以怎样来解决这个问题?(求和平分)

  如果用求和平分,怎么计算?综合算式?

  2、第一题

  出示丝带图,提问:这时你能用移多补少的方法一下子找出它们的平均数吗?

  估一估,平均长度到哪儿?

  想一想,应该在多少厘米到多少厘米之间?(平均数在最小数和最大数之间)

  算一算,让学生独立列式解答,再交流

  提问:如果每条丝带都增加1厘米,平均长度会有什么变化?(相当于每条丝带的长度增加了1厘米,也就是平均长度在原来的基础上增加1厘米)

  如果把其中一条丝带的长增加3厘米,3条丝带的平均长度是多少厘米?如果减少3厘米呢?(刚刚每条丝带增加1厘米,总体增加了3厘米,那么现在呢?)

  指出:一组数中有一个数据变化了,这组数据的平均数也会发生变化,平均数很敏感。

  3、第4题(假如我当经理)

  先估计一下苹果和橘子平均每天卖出的箱数,再同桌分工计算,然后画出表示平均数的那条线。

  提问:如果你是水果店的经理,看到这样的数据和平均数的情况,你会有什么想法?

  4、第3题(篮球队员的身高)

  提问:李强是学习篮球队队员,他身高155厘米,可能吗?学校篮球队可能有身高超过160厘米的队员吗?

  (出示篮球队5名队员的身高统计表)

  小结:同学们,平均数是反映一组数据整体情况的数,如果只知道平均数,要去推测其中一个数据是多少,这个数据会有很多种可能性,这就体现了依据平均去推测其中一个数据的(不确定性)。

  但是,知道了一组数据的每一个数据,可以用“移多补少”或者“先合后分”明确地得到平均数是多少,体现了求平均数的(确定性)

  思考:如果姚明加入学校篮球队,平均身高会如何变化呢?(图片显示)

  出示现在的平均身高,提问:这时得到的平均身高,具有什么样的特点?为什么增加了姚明,小队员的身高都在平均数一下了?(太高的人,对平均数的影响很大,所以姚明的身高在这组数据中属于极端数据,具有极端数据的话,平均数就变得不一样了)

  介绍:在生活中,也会遇到像这种不一样的平均数,你想知道吗?课件出示“你知道吗?”(生读)

  谈话:通过xx的介绍,我们对平均数又有了一些新的认识,那么我们就带这这个新认识去看看吴萌的诗朗诵比赛吧。

  完成练习八第9题。(口答综合算式)

  四、总结经验,感悟平均数。

  通过这节课,你有什么收获?你对平均数有那些认识?

  总结:通过今天的学习,我们知道平均数在生活中有很大的作用,愿大家能带上今天的学习内容,更好地认识生活中与平均数有关的各种问题。

  平均数教案 2

  教学目标:

  1. 通过活动,初步感知“平均数”的概念。

  2. 了解“平均数”的意义,初步学会求简单数据的平均数,能运用生活经验对“平均数”做出解释。

  3. 能运用“平均数”解决现实中的问题,强化数学在生活中的运用。

  教学准备:

  教具:十个小皮球、两个小筐、多媒体课件

  学具:五个笔筒、十五根铅笔、统计表三张

  教学过程:

  教学环节 设计意图 教学预设

  一、游戏导入,激发兴趣

  师:同学们,我们曾经玩过投球游戏,今天咱们再来一场比赛,好吗?男队、女队各出三人,看哪队能赢。请两队各派一名记录员做好统计。其他同学做裁判。学生进行比赛。赛完后展示统计表进行比较。(游戏开始,老师事前制好统计表,分发给两个统计员,进行记录。比赛两次)

  二、巧设冲突,理解意义

  师:听说亮亮他们也在举行投球比赛呢,咱们一起去看看吧。(多媒体展示书上的两个统计表。)

  咦,怎么吵起来了?喔,原来他们在争执哪组投的成绩好呢。引导学生看课件中的两个统计表,从表中知道了什么?(人数不等及每人投中的个数)请大家帮着兔博士一起给评判一下吧。(最后定为比较平均每人投中的个数公平,多者为胜。)

  师:怎样才能求出平均每人投中的个数呢?(幻灯单独出示第一组的统计表。)

  师:那第一组平均每人投中的数7个,就是这组同学投球的“平均数” 。(板书)

  师:谁能求一下第二组投中球的平均数?

  师:为什么第一组是除以4,而第二组却除以5呢?

  师:现在比较一下,哪组获胜?

  生:第一组获胜。

  三、自主探究,归纳方法

  师:刚才我们用的是求平均数的方法裁决出第一组获胜。看来平均数用处不小啊,这不,亮亮看到妈妈经常使用不能降解的塑料袋买菜,就暗暗做了统计,想用真实的数据来说服妈妈保护环境呢。出示统计表。

  师:请大家帮亮亮算一算,妈妈平均每天丢弃几个塑料袋?

  师:请大家仔细观察我们上边三道题的解答过程,你知道怎样求平均数了吗?(出求平均数的数量关系式: 用总数/份数=平均数)

  师:不过兔博士还有一个问题要问问大家呢。出示“议一议”1.求出的“3个”是每天实际丢弃塑料袋的个数吗?

  生:不是每天丢弃的塑料袋的个数,而是算出的一个平均数。

  师:出示2.求出的 “3个”与星期四妈妈丢的塑料袋3个一样吗?

  不一样,求出的“3个”只是一个平均数,而星期四妈妈丢的塑料袋3个是一个实际的数,是实际丢了3个。

  四、动手操作,巩固验证

  师:看学得这么认真,兔博士决定来个小测验,记住,既要动手又要动脑呀。

  出示做一做。

  下面笔筒中放有根数不同的铅笔,如果要使每个笔筒中放的铅笔根数不同,每个笔筒放几根?

  师:谁来说一说,你是怎样想的、怎样做的'。

  师:大家轻松一下,来一个拍球比赛怎么样?每组为一个队,由组长做好记录,发统计表。最后看哪组平均成绩好,哪组就获胜。比赛。最后表扬优胜小队。

  师:大头蛙有几个问题实在是弄不明白,谁能帮帮它?(判断题)

  1.河北省篮球队队员的平均身高是厘米,a王刚是这个篮球队的队员,他身高185厘米,可能吗?b这个球队有没有身高超过厘米的队员?

  2.小明所在的三年级的平均体重是28千克,小明的体重一定是28千克吗?

  师:兔博士站又添新内容了,想去看看吗?

  出示:

  我国每人平均住房面积:城镇24平方米;农村28平方米。

  我国平均每人年收入为8800元。

  我国平均每人生活用水量每日为208升。

  我国平均每人每年用电量为1081千瓦时。

  我国男性平均身高为1.68米。

  我国女性平均身高为1.54米。

  看完这组数据你想说什么?

  五、学以致用,拓展延伸

  1. 调查自己家水费、电费平均每月要交多少元?

  2. 统计本小组成员假期读书情况,并计算出小组平均每人读书多少本。

  课前让学生亲历一个自己十分感兴趣的游戏,在活动中复习统计的过程,让学生感知到:“人数相等可以比总数”,为后面人数不等求“平均数”的情况埋下伏笔。

  由于人数不同,(再用比较总数的方法就不公平了)所以不能用比较总数的方法来决定胜负,一时找不到解决的方法,激起学生进一步探究的欲望和兴趣,老师把富有挑战性的问题大胆抛向学生,在学生的认知思维冲突中,在解决问题的需要中,自然而然地逼近了平均数,让学生在不经意间感受到了平均数产生的价值和必要。

  通过实际问题,让学生自己感悟,经历求平均数的过程,为理解平均数的意义建立了平台,又从不同的角度探索出求平均数的方法,使解决问题的方法多样化。

  求完平均数提出这一问题的目的是让学生明白总量与份数是要一一对应的,加深学生对平均数计算方法的印象。

  在学生学习平均数的同时进行环保教育,增强学生的环保意识。

  (充分印证求平均数的计算方法)

  让学生在探究的基础上,独立概括出求平均数的数量关系式。训练学生的观察、概括的能力。

  让学生在具体的情境中感悟平均数的意义,知道“3个”不是妈妈某一天丢弃塑料袋的真实个数,而是一个平均数。

  让学生再次明确平均数的意义。与实际数据加以区别。

  通过动手动脑再次验证、巩固求平均数的方法。要给学生充分的操作时间,发挥学生的聪明才智。

  根据认知规律,适当地加入学生熟悉的游戏作为教学资源,使学生能从熟悉的生活中学习平均数。

  让学生进一步明确“平均数”的意义,知道平均数介于最大数和最小数之间。

  设置兔博士站是为了让学生加深理解“平均数”的意义,让学生更加深刻地体会“平均数”在现实问题中的必要性,感受数学与生活的密切联系。

  适时对学生进行节水节电、积极参加体育锻炼的教育。

  用学过的知识来解决实际问题,体会到数学与生活的联系,感受数学的魅力。 师:男生赢还是女生赢?你是怎么裁决的?

  生:男生赢,因为男生一共投进去8个,女生一共投进去了6个,所以男生赢了。

  师:女生服气吗?想不想再玩一次?(第二次两队各加2人参加比赛。)

  师:这次是哪队赢?你是怎么裁决的?

  生:这次男生一共投进了11个球,女生一共投进了12个球,所以是女生赢。(也有可能出现相平的情况)

  师:刚才你们是怎样比较出输赢的?

  生:看哪队一共投中了多少个球。看哪队投中的多。

  师:刚才两个裁判都用比投球总数的方法裁决出了胜利者,这种方法公平吗?

  生:公平。

  生1:第二组成绩好,因为他们投进球的总数多。(受前面评判方法的影响)

  生2:不公平,他们人还多呢。

  生3:第二组成绩好,因为他们组有投球冠军,刘杰一个人就投中9个呢。

  生4:一个人成绩好不代表全组人都好。

  生5:比较平均每人投中的个数就公平了。

  (学生若实在说不出来老师可参与进来。老师:同学们,大家听听老师的方法行不行,我们比较这两个组平均每人投中的个数呢?)

  在求平均每人投中的个数时,可能会出现两种情况:1.移多补少;2.计算

  生:从8里面拿出1给6,那么这四个数都是7了,所以第一组平均每人投中7个。

  生:先求出投中的总数,再除以人数就求出来了:(8+7+6+7)÷4=7(个)

  生:(9+8+5+3+5)÷5=6(个)第二组投中球的平均数是6。

  生:第一组投进球的总数是4个人的总数,所以要除以4;第二组投进球的总数是5个人的总数,所以要除以5

  生:(1+3+2+3+2+6+4)÷7=3(个)

  师:能说说你怎么想的吗?

  生:先算出一周丢弃塑料袋的总个数,再用总个数除以天数,就是平均每天丢弃的塑料袋数。

  生:都是用总数/份数=平均数

  师:对,这就是我们求平均数的方法。板书。

  学生可能会有两种认识:1.认为就是每天丢弃塑料袋的个数;(教师可以让学生再次观察表格明确不是真实的数,从而认识平均数的特点。)2.认为不是每天实际的个数。

  会出现三种方法:1.移多补少;2.求平均数;3.把所有铅笔收到一起,再一根一根地分到笔筒里。

  生:(边演示边叙述)从多的里面拿出来放到少的里面去。每个竹筒放3根。

  生:把所有的铅笔都拿出来,再一根一根的依次分到竹筒里。

  生:用刚学的求平均数的方法来做。(3+4+2+5+1)÷5=3(根)

  平均数教案 3

  教学目标:

  1. 经历用平均数描述一组数据特征的过程,在具体的问题情境中体会平均数的意义,掌握求简单平均数的方法。

  2. 自主探究移多补少及先合后分的求平均数的方法,会估计平均数的范围,能灵活选择合适的方法解决求平均数的实际问题。

  3. 体会平均数在生活中的应用价值,在运用平均数知识解决问题的过程中,增强应用意识,发展统计观念。

  教学重点:

  体会平均数的意义,掌握求平均数的方法.

  教学难点:

  根据平均数的意义,对一些简单事件做出合理的分析和判断.

  教学过程:

  一.问题导学,自主学习:

  1.创设问题情境:

  师: 在光明小学举行的趣味运动会上,二年级第一小组的男女生进行了一场激烈的套圈比赛.让我们一起去看看比赛情况.(课件演示,引导学生观察)

  a.问题:观察男女生套圈成绩统计图,从图中你知道些什么?

  b.设疑:你认为男生套得准一些还是女生套得准一些?

  c.说明:要想判断谁套得准一些,为了体现公平性,就要用到平均数.

  2.揭示课题:认识平均数明确学习目标:

  a.了解平均数的意义.

  b.掌握求平均数的方法.

  3.预习交流:

  [小组内简单交流对平均数含义的理解和求平均数的方法,提出质疑.]

  过渡:

  回归课前的疑问,让我们一起去探究有关平均数的问题.

  4.自主预学:

  a.男生队套圈总数:6+9+7+6=()个

  b.女生队套圈总数:10+4+7+5+4=()个

  思考:

  a.比较男女生套圈总数,这样比,你认为公平吗?为什么?

  b.怎样比才够公平?

  学情分析:

  [能否从男女生参赛人数上的不同去衡量.]

  二.小组合作探究:

  问题:

  1.怎样求男生,女生平均每人套中的个数呢?

  2.你认为先求什么?再求什么?

  学法指导:

  a.明确总数份数和每份数三者之间的关系.

  b.根据求每份数的方法,引导学生探索求平均数的方法.

  三.展示交流,点拨提升:

  1.探究展示:

  学情预设:

  男生:6+9+7+6=28(个)

  28÷4=7(个)

  女生:10+4+7+5+4=30(个)

  30÷5=6(个)

  说明:7和6就是男女生套圈个数的平均数,它反映了一组数据的一般水平,并不表示每个人套中的实际个数.

  2. 质疑:

  分别用套圈的总个数去除以他们的什么?(总人数).

  3. 精要点拨:

  明确:求平均数,要找准和总数对应的份数.

  方法:总数÷份数=平均数

  过渡:

  师:除了用先合后分的方法求平均数,还有其他求平均数的方法吗?

  课件演示:移多补少的方法.

  说明:

  先合后分和移多补少都是求平均数的方法,在计算时,我们可以选用先合后分的方法求平均数,而移多补少的方法适合于操作时使用.

  4. 平均数的范围:

  观察与思考:

  平均数7和6,相比它们所在的一组数据的大小,有什么特点?

  重难点突破:

  明确::在一组数据中,平均数比最大的数小,比最小的数大.

  四.训练检测,总结反思:

  小华家1月~5月用水情况统计表

  1月2月 3月 4月 5月

  13吨 10 吨 11吨 9吨 12吨

  (1).小华家平均每月的用水量在( )吨和( )吨之间.

  (2).算一算:平均每月的用水量是多少吨?

  [学生独立完成,小组内交流]

  想一想:

  1. 怎样确定平均数的取值范围?

  2. 求平均数的方法是什么?你先求的什么?

  归纳与总结:

  a.最大的数>平均数>最小的数

  b.平均数等于总数除以对应的份数

  五.综合实践与应用:

  1.想一想,下面的说法是否正确,简单说明理由。

  ①、小明期中考试语文、数学、英语三门功课的均分是95分,那么他的三门功课一定都是95分.()

  ②、小马过河:河的平均水深为130厘米,小马身高140厘米,小马过河不会有危险。( ) [学生独立思考后,小组里交流判断依据]

  重点明确:

  根据平均数的意义,并不表示:1.每门的成绩都是95分,有的高于95分,有的低于95分.

  2.处处水深130厘米,有的低于130厘米,而有的地方比130厘米深的多.

  2.知识达标:

  同学们收集标本,小红收集了14个,小兰收集了12个,小丽收集了11个,小明收集了15个,平均每人收集多少个标本?

  [进一步巩固求平均数的方法]

  3.智能积累:

  三年级的8名同学分两组向灾区捐款,一组捐了220元,二组捐了180元。

  ①、平均每名同学捐款多少元?

  ②、平均每组同学捐款多少元?

  思考:两道题在解答时,有什么相同点和不同点?

  重点明确:

  相同点:都是先求捐款的总数.

  不同点:各自对应的份数不同.

  知识延伸:

  小力前5次英语测验的平均分是91分,第6次得了97 分,他6次测验的平均分是多少分?

  六.全课总结:

  通过学习,你有什么收获?还有哪些疑惑?

  当堂检测:

  有3条彩带,长度分别是9厘米,17厘米,10厘米,平均每条彩带长多少厘米?

  板书设计:

  认识平均数

  (一)1.移多补少

  2.先合后分 男生:6+9+7+6=28(个)

  28÷4=7(个)

  女生:10+4+7+5+4=30(个)

  30÷5=6(个)

  方法:总数÷份数=平均数

  (二)平均数的特点

  最大的数>平均数>最小的.数

  教学反思:

  “平均数”是苏教版小学数学三年级下册《统计》里面的内容,它与我们的现实生活紧密联系,本课教学把重点放在掌握求平均数的方法上,而难点则是运用平均数的意义分析数据,从而体会到平均数的应用价值。

  “平均数”的概念比较抽象,如何让学生初步理解它的概念并掌握正确的求平均数方法?我一开始就设计了贴近学生生活的熟悉的活动情境,通过引导学生观察统计图,获得数学信息,提出数学问题,自主预学和小组合作探究来解决数学问题,掌握问题解决的多种有效方法,引导学生在解决问题的过程中,让学生体会到平均数在生活中的应用价值,较好的完成了本节课的教学目标。这节课我为学生提供了充分的从事数学活动的时间和空间,让学生参与到知识的发生,发展,形成过程中去,引导学生利用数学知识解决实际问题,提高了学生的综合学习能力。

  平均数教案 4

  一、 复习铺垫,导入新课

  小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。

  出示动物寿命统计表:

  小猫老鼠大象乌龟

  寿命/年6251152 提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)

  谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)

  【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】

  二、 创设情境,自主探索

  1. 呈现套圈情境。

  多媒体演示“套圈比赛”的场景。

  谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。

  2. 引入平均数。

  出示男、女生套圈成绩统计图。

  ①提问:从统计图中,你知道了什么?

  结合学生的想法,相机进行引导。

  想法一:男生有4人,女生有5人。(为比较总数预设)

  想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。

  ②男生套得准一些还是女生套得准一些?你有什么方法?

  和你的同桌说说自己的想法。

  想法一:女生套得准一些,因为套中的最多的是吴燕。

  追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?

  想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。

  ③追问:这种想法的可取之处是已经注意到从整体的.方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。

  可以怎么办呢?

  想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。

  追问:这样比公平吗?(公平)我们就用这种方法试一试。

  【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

  4. 理解平均数。

  ④操作:你知道男生平均每人套中多少个圈吗?

  请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。

  学生可能出现两种方法:一是移多补少;二是先求和再求平均数。

  ⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?

  可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少

  反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。

  ⑥还有其他的方法吗?

  引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?

  28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)

  ⑨你能看出,7比谁套中的个数多?比谁套中的个数少?

  小结:平均数比最大的数小,比最小的数大

  【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

  ⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?

  ⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)

  30÷5=6(个)

  ⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)

  ⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?

  仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。

  提问:现在你能判断男生套得准还是女生套得准吗?

  ⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?

  相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)

  ⑵平均数比最大的数小,比最小的数大大。

  ⑶平均数都是代表了一个整体的水平。

  不同:总数不同,人数不同,平均数也不同。

  平均数教案 5

  一、单元教学内容

  平均数与条形统计图

  二、单元教学目标

  1、理解平均数的含义,学会简单的求平均数的方法,理解平均数在统计学上的意义。

  2、认识复式条形统计图,能根据统计图提出问题并解答,能发现信息并进行简单的数据分析。

  3、在体验数据的收集、整理、描述和分析的过程中,发现信息进行简单的数据分析,并进行有条理的思考。

  4、体会统计在现实生活中的作用,运用已经掌握的知识解决生活中简单的数学问题。

  5、体会数学知识与实际生活的紧密联系,激发学习兴趣,培养细心观察的良好学习习惯。

  6、发展统计观念,培养自主探究的能力及合作意识。

  三、单元教学重、难点

  理解平均数的含义,学会简单的求平均数的方法,理解平均数在统计学上的意义。认识复式条形统计图,能根据统计图提出问题并解答,能发现信息并进行简单的数据分析。

  四、单元教学安排

  3课时

  第1课时

  平均数

  一、教学内容:

  平均数

  二、教学目标

  1、经历探索平均数的过程,学会寻找平均数的方法移多补少、先总后分,理解平均数的含义。

  2、在运用平均数的知识解释简单的生活现象、解决简单的实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  三、教学重难点

  重点:理解平均数的含义。难点:会简单的求平均数的'方法。

  四、教学准备多媒体课件

  五、教学过程

  (一)导入新授

  1、课件出示:班级图书角的书架上层有8本书,下层有4本书。

  提出问题:同学们能帮忙重新整理一下,使每层书架上的书一样多吗?

  2、学生思考,交流讨论。

  师生交流后,教师用课件操作并提问:现在每层都有6本书了,这个6是它们的什么数?(平均数)我们是如何求出平均数6的呢?

  师生交流后明确是通过把上层书本移2本至下层得到的相同数。今天,我们就来深度认识一下“平均数”这个朋友。板书课题:平均数。

  (二)探索发现

  1、教学例1。

  (1)课件出示教材第90页例1统计图:环保小分队的四名同学收集的矿泉水瓶如下(课件出示统计图)。

  师:从统计图中,你能获得哪些数学信息?

  学生交流后反馈:从统计图中,可以知道:小红收集了14个,小兰收集了12个,小亮收集了11个,小明收集了15个。

  师:根据数学信息,你能提出什么数学问题?教师从学生提出的问题中选择求平均数的问题。

  (2)解决问题:平均每人收集了多少个矿泉水瓶?

  师:你是怎样理解“平均每人收集多少个”的?你会解决这个问题吗?如何解决?小组交流探讨。教师巡视指导。

  (3)汇报展示。

  汇报预测:方法一:移多补少,学生汇报,多媒体演示移多补少的过程。

  师:像这样,把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多,这种方法叫移多补少,得到的这个相等的数叫做这几个数的平均数。13是14、12、11,15的平均数。

  方法二:根据总数量÷总份数=平均数,得。(14+12+11+15)÷4=52÷4=13(个)。

  (4)小结:我们可以用移多补少的方法求平均数。也可以用数据的总和除以数据的个数求出平均数。数据较少时,我们可以用移多补少的方法。数据较多时,用先求总数再求平均数的方法计算比较简便。

  (5)教师追问:平均每人收集13个,是不是每个人真的都收集了13个?你是怎么理解“平均每人收集13个”这句话的?

  师生交流后明确:“平均每人收集13个”表示每个人收集的数量可以比13个多,也可以比13个少,也可以刚好是13个。

  (6)区分“平均分”和“平均数”。

  ①把52个矿泉水瓶平均分给4个人,每人分得几个?

  ②每人分到13个和平均每人收集13个,这两个“13”所表示的意义相同吗?师生交流后小结:平均分是实实在在的量,平均数是虚拟的量。2、教学例2。

  (1)创设问题情境。

  四(1)班第4小组男生队和女生队进行踢毽比赛,我们来看看他们的比赛情况。课件出示教材第91页的情境图和两张统计表。

  师:这两张统计表给出了他们踢毽的成绩。观察两张表,你能从中知道些什么?(参加人数、每人的踢键个数等)

  (2)探索解决问题。

  提出问题:你认为是男生队的成绩好一些还是女生队的成绩好一些呢?说说你的理由。让学生充分从多个角度分析表示男、女生队的踢毽情况。在尝试中体会到用平均数能较好地说明问题。

  学生动手列式计算:

  男生队:(19+15+16+20+15)÷5 =85÷5 =17

  女生队:(18+20+19+19)÷4 =76÷4 =19

  (3)全班汇报交流。

  师:为什么男生队除以5而女生队是除以4呢?你认为是男生队还是女生队成绩好?师生交流后明确:因为男生队有5人,所以要除以5,而女生队只有4人,所以除以4。男生队平均每人踢17个,女生队平均每人踢19个,女生队的成绩好一些。

  师:问题解决了吗?你有什么收获?

  师生交流后明确:用求平均数的方法来分析得到的数据,常常能反映一般情况,帮助我们解决问题。

  (三)巩固发散

  1、指导学生完成教材第92页“做一做”。

  学生独立完成,集体交流时说一说自己是如何求出平均数的。

  2、四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了多少棵?

  3、想一想:游泳池的平均水深是120厘米,小明身高130厘米,他在游泳池中学游泳,会不会有危险?为什么?

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  师生交流后总结:求平均数可以采用“移多补少”的方法,也可以先求几个数据的总和再除以这几个数的个数,所得的结果即为平均数。

  (五)板书设计

  六、教学后记

  略

  平均数

  求平均数的方法:

  数据较少:移多补少法常用方法:总数÷份数=平均数

  第2课时

  复式条形统计图

  一、教学内容

  复式条形统计图

  二、教学目标

  1、在数据的收集、整理、描述和分析的过程中,进一步体会统计在生活中的作用,体会数学与生活的密切联系。

  2、认识两种形式的复式条形统计图,能根据统计图提出并回答问题,能发现信息并进行简单的数据分析。

  3、通过对生活事例的调查,激发学习兴趣,培养学生细心观察的良好习惯,以及合作意识和实践能力。

  三、教学重难点

  重点:正确画出复式条形统计图。

  难点:根据统计图发现信息、分析信息,提出并回答简单的实际问题。

  四、教学准备

  多媒体课件、彩笔、直尺、三角板。

  五、教学过程

  (一)导入新授

  你们知道中国有多少人吗?那你们知道自己所在的区有多少人吗?(学生回答)下面我们一起对收集到的信息进行整理和分析。

  (二)探索发现

  1、教学纵向单式条形统计图。

  (1)课件出示教材第95页例3某地区城乡人口统计表。

  提出问题:怎样才能清楚地表示这个地区这几年城镇和乡村的人数变化呢?学生交流后,得出可以制作统计图来表示。让学生根据教师提供的统计表,分别完成某地区城镇和乡村人口的纵向单式条形统计图。

  (2)展示学生绘制的统计图。

  提出问题:从这两个统计图中,你能获得哪些信息?

  师:如果我要很快地知道xx年与xx年中城镇人口与乡村人口的变化情况?那该怎么办?学生讨论,汇报。引导学生把两个统计图并列排放来比较,并思考怎样把它们合并起来。

  2、教学纵向复式条形统计图。

  (1)提出问题:如何才能把两个单式条形统计图合并成一个统计图呢?学生在小组内交流探讨,试着绘制统计图。教师巡视指导。

  (2)展示学生绘制的复式条形统计图。

  讨论交流:复式条形统计图与单式条形统计图有什么区别与联系?让学生先独立思考,然后把自己的想法与小组内其他同学交流。

  (3)全班交流、汇报。

  通过小组合作交流复式与单式条形统计图的联系与区别,使学生认识到为了区分两个内容,采用不同颜色的长方形来表示。

  (4)分析复式条形统计图。

  从这个统计图中你获得了哪些信息?

  小结时可引导学生通过观察统计图发现:该地区近年来城镇人口逐年增加,农村人口逐年下降,人口总数逐年上升,同时对学生进行人口教育。

  3、教学横向复式条形统计图。

  (1)出示教材第96页不完整的横向复式条形统计图。让学生独立把横向复式条形统计图补充完整。

  (2)展示作品。

  请你说一说,横向复式条形统计图应该怎样绘制?

  师生交流后明确:这个统计图中横轴表示人数,纵轴表示的是年份,所以画出的条形是横向的。

  (3)分析横向复式条形统计图。

  从这个统计图中你获得了哪些信息?让学生分别说一说,然后进行小组交流。

  (4)比较纵向与横向复式条形统计图。

  师:我们已经认识了两种复式条形统计图,即:纵向复式条形统计图和横向复式条形统计图,请同学们对比这两种统计图,思考:丙种复式条形统计图有什么区别与联系?

  师生交流后小结:这两种复式条形统计图只是形式上的不同,当数据种类不多,但是每类数据又比较大时,用横向条形统计图表示更方便。

  4、即时练习。

  指导学生完成教材第97页“做一做”。

  学生根据统计表,完成统计图。并回答统计图后的问题。

  (三)巩固发散

  市场甲、乙两种品牌的果汁饮料一、二、三月销售情况如下表。请你动手绘制统计图并回答下列问题。

  2、如果你是超市的经理,下个月应该怎么进货?

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  师生交流后总结:本节课学习并掌握了两种形式的复式条形统计图的绘制方法。

  (五)板书设计复式条形统计图

  六、教学后记

  略

  第3课时

  营养午餐

  一、教学内容

  营养午餐

  二、教学目标

  1、了解营养与健康的常识,培养运用简单的排列组合、统计知识解决问题的能力。

  2、能根据营养专家的建议运用正确的数学思想方法分析调配科学、合理的午餐菜式。

  3、明确科学、合理的饮食的重要性,养成良好的饮食习惯。

  三、教学重难点

  重点:培养学生分析整理数据、运用数据解决问题的能力。难点:科学分析结果,合理安排搭配方案。

  四、教学准备多媒体课件

  五、教学过程

  (一)导入新授

  你们平时喜欢吃哪些菜?这些菜搭配是否合理?今天我们就一起来研究这个问题。板书课题:营养午餐。

  (二)探索发现

  1、自主配餐。

  (1)出示教材第101页情境图。让学生根据要求自主选择一份菜谱。

  (2)全班交流,展示学生的搭配方案。

  2、科学评判。

  (1)介绍科学的配餐要求:我们点的菜是否符合营养学标准呢?“不应低于”、“不超过”是什么意思?用数学符号应该怎样表示?

  (2)了解每份菜中热量、脂肪和蛋白质的含量情况。出示每份菜的热量、脂肪和蛋白质含量表。

  3、小结。

  我们在进行午餐营养判断时既要看热量又要看脂肪,只有两种指标都不超量时才能算是营养的午餐。

  (三)巩固发散

  1、学习合理搭配。

  如果让你动手搭配菜谱,你会了吗?每人只搭配一组就行。要求:在这十种菜中任选三种搭配一起,营养一定要合理。分组讨论,集体汇报。各组派代表汇报本小组的搭配方案。

  2、小结。

  师生共同分析总结营养搭配的要求:荤素搭配,营养均衡。

  3、统计全班同学喜欢的菜谱。

  (1)男女生各选一个代表收集数据,教师记录。

  (2)学生根据统计表完成复式条形统计图。

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  (五)板书设计营养午餐

  热量不低于2926千焦脂肪不超过50g荤素搭配,营养均衡。

  六、教学后记

  略

  平均数教案 6

  一、导入新授:

  通过师生谈话引出两个小组投球比赛成绩的数据。

  二、新授:

  1.出示投球记录:

  第一组 第二组

  姓名 投中个数

  刘杰 9

  杨立 8

  孙梅 5

  王丽 3

  丁鹏 5

  姓名 投中个数

  张华 8

  王云 7

  李英 6

  赵明 7

  2.比较哪组的成绩好。

  (1)让学生进行讨论,学生可能会说出不同的比较方法和想法,重点引导学生考虑怎样比较才是"公平"的。

  (2)如果学生不能说出平均每人投中的个数,教师可以作为参与者提出并让学生讨论。

  3.学生试做。

  4.交流计算结果,并根据平均数比较两组的成绩,说明哪组的'成绩好。

  第一组(8+7+6+7)÷4 第二组(9+8+5+3+5)÷5

  = 28÷4 =30÷5

  =7(个) =6(个)

  7>6

  答:第一组成绩好。

  三、求平均数:

  1.下表是亮亮家一周丢弃塑料袋的情况。

  星期 一 二 三 四 五 六 日

  个数 1 3 2 3 2 6 4

  2.算一算:平均每天丢弃几个塑料袋?

  (1)让学生观察统计表,说一说得到了哪些信息?

  (2)自己试做。

  (3)交流计算的方法和结果。

  3.议一议:求出的"3个"是每天实际丢弃的塑料袋的个数吗?

  四、做一做:

  先让学生想一想,再动手操作。教师注意观察学生的方法。交流操作的过程,有意识的指几名学生说说是怎样想的、怎样做的。

  平均数教案 7

  第一步:引入新课:

  在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)

  第二步:讲授新课:

  1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:

  95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92

  甲小组:X==91(分)

  甲小组做得对吗?有不同求法吗?

  乙小组:

  乙小组的做法可以吗?还有不同求法吗?

  丙小组:先取一个数90做为基准a,则每个数分别与90的差为:

  5、9、-3、0、0、-4、……、2、2

  求出以上新的一组数的平均数X’=1

  所以原数组的平均数为X=X’+90=91

  想一想,丙小组的计算对吗?

  2、议一议:问:求平均数有哪几种方法?

  ①平均数:一般地,如果有n个数x1,x2,……,xn,那么,叫做这n个数的`平均数,读作“x拔”。

  ②加权平均数:如果n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次,(这里f1+f2+……+fk=n),那么,根据平均数的定义,这n个数的平均数可以表示为 这样求得的平均数叫做加权平均数,其中f1,f2,……,fk叫做权。

  ③利用基准求平均数X=X’+a

  问:以上几种求法各有什么特点呢?

  公式(1)适用于数据较小,且较分散。

  公式(2)适用于出现较多重复数据。

  公式(3)适用于数据较为接近于某一数据。

  平均数教案 8

  第一课时

  素质教育目标

  (一)知识教学点

  1.使学生初步了解统计知识是应用广泛的数学内容 .

  2.了解的意义,会计算一组数据的 .

  3.当一组数据的数值较大时,会用简算公式计算一组数据的 .

  (二)能力训练点

  培养学生的观察能力、计算能力 .

  (三)德育渗透点

  1.培养学生认真、耐心、细致的学习态度和学习习惯 .

  2.渗透数学来源于实践,反地来又作用于实践的观点 .

  (四)美育渗透点

  通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

  重点·难点·疑点及解决办法

  1.教学重点:的概念及其计算 .

  2.教学难点:的简化计算 .

  3.教学疑点:简化公式的应用,a如何选择 .

  4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

  教学步骤

  (一)明确目标

  在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

  为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

  甲 7 8 6 8 6 5 9 10 7 4

  乙 9 5 7 8 7 6 8 6 7 7

  1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

  教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

  对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

  (二)整体感知

  解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

  (三)教学过程

  这节课我们首先来学习.

  1.(出示幻灯片)请同学看下面问题:

  某班第一小组一次数学测验的成绩如下:

  86 91 100 72 93 89 90 85 75 95

  这个小组的平均成绩是多少?

  教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求方法,这样做使学生对的计算公式能有深刻的认识 .

  2.的概念及计算公式

  一般地,如果有n个数 .

  那么 ①

  叫做这n个数的, 读作“x拨” .

  这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

  3.计算公式①的应用

  例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

  -6,-5,-7,-6,-4,-5,-7,-8,-7

  求它们的平均气温 .

  让学生动手计算,以巩固计算公式(一名学生板演)

  教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,计算结果保留的位数与原数据相同 .

  例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

  210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

  计算它们的平均质量 .(用投影仪打出)

  引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

  教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的.算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

  学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

  讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;简化计算的结果与前面毛算的结果相同 .

  通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

  3.推导公式②

  一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到

  ,

  那么 ,

  因此,

  即 ②

  为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

  课堂练习:

  教材P148中~P149中1,2,3

  (四)总结、扩展

  知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

  2.求n个数据的的公式① .

  3.的简化计算公式② .这个公式很重要,要学会运用 .

  方法小结:通过本节课我们学到了示一组数据的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

  八、布置作业

  教材P153中1、2、3、4 .

  九、板书设计

  平均数教案 9

  教学内容:

  苏教版小学数学四年级上册第49—50页。

  教材分析:

  本节教学内容是安排在条形统计图的学习之后。通过前面的学习,学生已能准确地从条形统计图中去观察和收集数据,并会作简单的分析、归纳,回答相关的一些问题。本节课的内容是要在学生掌握、比较多组统计图数据的基础上引入平均数的概念。

  学情分析:

  在本节课内容学习之前,学生已经掌握了简单条形统计图的绘制及单个条形统计图内数据的分析、比较。可以通过观察统计图准确地比较出数量的多少及大小。例题中的情景也是学生生活中常见或类似的事情,学生分析起来也没有陌生感。

  教学目标:

  1.继续复习巩固条形统计图的学习。

  2.将条形统计图的认知与平均数的概念有机结合,进一步延伸对多组统计数据的整理、分析及计算。

  3.向学生灌输简单的平均数计算概念,让学生知道生活中很多地方都要用到平均数。平均数可以解决很多实际问题,从而将数学与生活紧密联系起来。

  设计理念:

  统计及分析条形统计图是将简单的统计概念灌输给学生,让学生明白一组或多组复杂的数据我们可以通过分析、整理,绘制成图表来达到直观效果,并根据图表进行计算,从而解决相应的问题。在本节课的教学设计上我充分注意了以下几点:

  1.充分利用学生已有的知识概念。

  2.将新旧知识进行对比,激发学生探究新知的欲望。

  3.引导学生自主学习。通过讨论、动手操作,归纳新知。

  4.将知识延伸到课外,与生活紧密联系,让学生感受到生活中处处有数学,激发学生学习数学的兴趣。

  教学重点:

  学会对多组统计图中的数据进行综合分析比较的方法,会计算平均数。

  教学难点:

  平均数概念的引入及平均数的计算。

  教学具准备

  多媒体课件,每5人一小组准备的十八枝小棒、三个纸盒。

  教学方法:

  创设情景法、启发谈话法、尝试法、启发讲解法等。

  教学过程:

  一、旧知回顾,谈话导入。

  1.请学生说说统计表及条形统计图各有什么特点。

  2.谈话:上学期期末考试,四(1)和四(2)班进行了一场数学小竞赛,最后四(2)班得了第一名。这两个班的人数和每人考的分数都不一样,怎么就知道哪个班考得好呢?老师们是怎么算的呢?(这个过程中可能有学生回答到用“平均分”来计算的。如果提到“平均分”教师可以抓住时机及时板书“平均”两字。)这节课我们就一起来解决这个问题。

  【设计意图:通过复习旧知让学生掌握条形统计图的特点。引入两班考试的`事例让学生想到“平均分”的概念,为后面平均数的学习作铺垫。】

  二、新知探究

  1.课件出示例3情景图,解说图意。

  2.课件出示男生套圈成绩统计图。提问:谁套得最准?同样方法出示女生套圈成绩统计图并提问。

  3.同时出示两组统计图。

  提问:这是男女生的比赛成绩统计图,男生和女谁套得准一些呢?

  【设计意图:先单个出示统计图是为了巩固旧知识,突然同时出现两组统计图并抛出问题是将学生的思维拉回,引起他们对新知识的重视和思考】

  4.引导学生展开讨论,并对学生提出的方法进行归纳,质疑。直到学生说出“求男女生平均每人套中的个数”为止,这其中老师可以用前面讲到的“平均分”概念进行引导。

  5.适时提问:如何求出男生和女生平均每人套中的个数呢?

  【设计意图:学生通过自由讨论会发现自己的方法是否正确科学。“平均分”的概念会给学生很好的启发。】

  6.学生尝试在统计图中通过移动长方块来达到大家都一样的结果。教师巡视引导,并发现方法得当的学生。

  7.请学生发言,畅谈自己的方法及结果。教师根据学生的发言板书。

  【设计意图:这一活动既让学生动了手也动了脑,再加上老师的适时引导,他们会通过移动方块和计算找到最恰当和最简便的方法来找到“平均数”,新知学习也就水到渠成了。】

  8.师总结:可以通过“移多补少”法和计算法得到“平均数”。引入“平均数”概念,并告知学生平均数能较好地反映出一组数据的总体情况,并可对多组数据进行综合比较。

  三、拓展延伸,巩固学习

  动手分一分

  1.将学生5人一组进行分组。让每组学生把十八枝小棒按5、6、7根的要求分别放到三个小纸盒内。

  2.动手分一分,使每个纸盒内的小棒根数相同。看哪组最快最准地完成任务。

  3.让分得好的小组发言总结。

  动手算一算

  1.师问:刚才大家很快就分好了,如果现在是180根小棒按不同的根数插入三个纸盒内再分一样多会怎样?

  2.引导学生思考:可以利用刚才学的知识进行计算。师对两种方法再进行比较,并总结。

  【设计意图:通过补充练习让学生切实感受到了计算“平均数”的方便和重要,也巩固了学生对平均数的计算】

  四、归纳总结

  1.通过今天的分一分,算一算,同学们有什么收获?

  2.现在谁来说一说四(1)班和四(2)的“平均分”是怎么回事?

  板书设计:

  平均数

  男生 女生

  6+9+7+6=28(个) 10+4+7+5+4=30(个)

  28÷4=7(个) 30÷5=6(个)

  平均数: 7 平均数: 6

  平均数教案 10

  教学内容 人教版数学四年级下册第91——92页。

  教学目标 知识与技能:

  1、能对获得的数据进行整理,并用条形统计图表示出来。

  2、 认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  过程与方法:

  1、经历收集、整理、描述和分析数据的过程。

  2、经历读统计图、交流信息、提问题、解决问题的过程。

  情感态度价值观:

  从统计图中获取信息、用统计图表示数据的过程中,体验用统计图表达表达交流数据的特点,认识统计图的价值。

  教学重点 认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  教学难点 能用条形统计图表示数据,能根据给出的数据提问题并解决问题。

  教学方法 尝试教学法 课型 新授课

  教学准 多媒体 教学时数 1

  板书设计

  教学过程:

  一、炫我两分钟

  二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期的对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。

  为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是请来了统计学家,统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家信心十足的说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。

  从这个故事中你知道的统计有什么作用吗?

  【设计意图:炫我两分钟给学生一个自我展示的平台,绽放其生命色彩。能够提高学习数学的情趣,增强学好数学的信心。】

  二、尝试小研究

  尝试小研究:

  研究一:

  1.从上面的统计图中,你得到了哪些信息?

  2.这个统计图一个格表示几个人?你是怎么知道的?

  3.自己提出问题并解答。

  研究二:

  1.完成课本91页,试一试:根据统计表,完成统计图。

  2.交流展示学生完成的统计图。

  三、小组合作探究

  尝试研究一

  出示小组合作交流建议:1、组长组织本组成员有序进行交流,确定好组员的发言顺序。2、认真倾听其他组员的发言,对他的发言内容进行评价,组内达成统一意见。3、组内分工,为班级展示提升做准备。

  【设计意图:给每一个孩子创造一个发言的机会,让学生在思考、交流的过程中对知识进行一个思维的碰撞。】

  四、班内展示交流,建构新知

  1、全班交流,师生评价。

  2、试一试,学生读统计表,谈一谈自己的感受。观察不完整的统计图,找出这幅统计图的特征。(用一个格表示4个人)

  3、学生试着补充完整统计图,师巡视指导,交流时,让学生说明不够整格时怎样想的,是怎样处理的。(生表述自己的发现,关注学生能否发现每个格代表4人,如果学生没有发现教师予以提示。)

  小结:用条形统计图表示数据,当数据比较大时经常采用一格表示多个单位的'方法。

  4、鼓励学生根据统计图提问并解答。交流时,学生提出的问题只要合理,就给予肯定。

  【设计意图:通过交流,学生利用知识的迁移,认识一格表示多个单位的条形统计图。能用条形统计图表示数据,能根据给出的数据提问题并解决问题。这是学生对知识一个内化、提升的过程。】

  五、挑战自我

  1、数学书92页练一练的第1题

  【设计意图:面向全体学生,巩固当堂所学的知识。】

  2、数学书92页练一练的2题。自己设计一张调查表,记录自己一学期读课外书的情况。

  六、盘点收获

  通过这节课的学习你有什么新的收获?

  【谈收获环节是数学课堂上必不可少的一个环节,它既可以是对本节课所学知识点的梳理,能让学生更清晰本节课所学的内容,也可以是对数学学习方法的梳理和数学活动经验的建构,培养学生自主反思建构的良好学习习惯。】

  课后

  反思 引导学生在自主探究的基础上合作交流,并利用现代化的教手段,形象生动地展示了统计图由纵向变为横向条形统计图的过程,学生在合作探究中了理解知识间的联系,不仅充分调动了学生参与学习的积极性,而且使学生对知识的理解逐步升华,应用多种策略解决问题的能力不断提高。

  平均数教案 11

  教学内容:

  苏教版小学数学第六册教科书第9294页。

  平均数是描述一组数据集中趋势的统计特征量。求平均数是分析数据的一种重要方法,在日常生活中,特别是在工农业生产中经常要用到,如平均成绩、平均身高、平均产量、平均速度等。这样的平均数常用于表示统计对象的一般水平,它既可以反映出一组数量的一般情况,也可以用来进行不同组数量的比较,以看出组与组之间的差别。这部分教材是在学生已具有一定的收集和整理数据能力的基础上教学比较简单的求平均数问题。本节课是三年级下册《统计与平均数》的教学,是把已学的统计知识和认识平均数结合起来,学会求平均数的基本方法:移多补少。引导学生进一步体会到求平均数是解决问题的有效方法之一。以帮助学生灵活运用平均数的.知识解决生活中的实际问题,并通过多种练习让学生加深对平均数意义的多角度理解和先求和再平均分的求平均数一般方法的掌握。

  教学目标:

  1、在具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。

  2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  3、进一步增强与他人交流的意识与能力,体会运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

  教学重难点:

  理解平均数的意义,学会求简单数据的平均数。

  教学过程:

  一、创设情境,自主探究

  1.呈现套圈情境。

  多媒体演示套圈比赛场景。 谈话:这是三(1)班第一小队正在进行的套圈比赛,一队是男生,另一队是女生。比赛规则是每人套15个圈,比一比哪一队套得准。下面就请同学们给他们做裁判,好不好?

  2.收集整理数据。

  多媒体依次演示4个男生和5个女生套圈比赛情况,最后将每个选手卡通像与其套圈结果定格组合成一个画面。 要求学生根据男、女生套圈成绩,小组合作利用小方块完成统计图(每小组中男生合作完成男生队成绩的统计,女生合作完成女生队成绩的统计)。

  平均数教案 12

  一、教学目标:

  1、会根据频数分布表求加权平均数,从而解决一些实际问题

  2、会用计算器求加权平均数的值

  3、会运用样本估计总体的方法来获得对总体的认识

  二、重点、难点:

  1、重点:根据频数分布表求加权平均数

  2、难点:根据频数分布表求加权平均数

  三、教学过程:

  1、复习

  组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=(上限+上限)/2.

  因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义.

  应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的.范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010.而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数.所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量.

  为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义.

  2、教材P140探究栏目的意图

  ①、主要是想引出根据频数分布表求加权平均数近似值的计算方法.

  ②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权.

  这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义.

  3、教材P140的思考的意图.

  ①、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题.

  ②、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力.

  4、利用计算器计算平均值

  这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比.一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器.所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单.统计中一些数据较大、较多的计算也变得容易些了.

  5、运用样本估计总体

  要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况.

  平均数教案 13

  一、教学内容:

  《认识平均数》教学设计领导签字

  二、教学目标:

  1、集合具体事例,经历认识平均数、求平均数以及讨论平均数意义的过程。

  2、初步体会平均数的作用,能计算平均数、了解平均数的实际意义。

  3、积极参加数学活动,体会用“平均成绩”说明问题的公平性

  三、教学重点:

  使学生体会用“平均成绩”比较哪个组成绩好的公平性,了解平均数的实际意义,学会计算平均数。

  四、教学难点:

  体会平均数的作用,了解平均数的实际意义。

  五、教学准备:

  多媒体教学时数1

  板书设计认识平均数

  六、教学过程:

  (一)炫我两分钟

  口算练习

  ,560÷40= 240÷60= 420÷7= 150÷30= 54÷9=

  ,960÷6= 88÷8= 76÷4= 85÷5= 810÷9=

  (30+50+80)÷4 (80+80+80+80+85)÷5=

  【设计意图:炫我两分钟的内容要围绕着“目标原则”,即尽量设计成与本课内容相关的,本课重点内容为计算平均数,通过对简单的加法、除法的口算练习,提高学生的运算能力,为这节课计算平均数打下基础。】

  (二)尝试小研究课前尝试小研究

  1、1号笔筒有( )支铅笔2号笔筒有( )支铅笔3号笔筒有( )支铅笔4号笔筒有( )支铅笔5号笔筒有( )支铅笔

  2、上图中一共有( )支铅笔。要使每个笔筒放的铅笔同样多,每个笔筒应放( )支铅笔,动手分一分。

  3、列算式为:

  (三)课上尝试小研究

  1、读上面的统计表,你了解到了哪些信息?

  2、上面两个组哪个组的成绩好?

  3、你能算出每个组的平均成绩吗?

  【设计意图:整个小研究的设计体现了低起点、多层次、深思考、求精炼的原则,课前尝试小研究的设计意在从学生旧有知识,且与本课密切相关的逐渐渡到新知的尝试研究,充分发挥旧知识的迁移作用,为学生的解决尝试新知铺路搭桥。而课上尝试小研究通过计算平均数,加深学生对平均数的理解,展示学生自主学习的成果,感受平均数与日常生活联系紧密,增加学生的生活经验,感受数学在生活中的存在。】

  (四)小组合作探究

  小组讨论交流课上研究(一)(二)。多媒体出示小组合作交流建议:

  1、组长组织本组成员有序进行交流,确定好组员的发言顺序。

  2、认真倾听其他组员的发言,对他的发言内容进行评价,组内达成统一意见。

  3、组内分工,为班级展示提升做准备。

  【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】

  (五)班级展示提升

  1、找一个小组展示本小组对尝试研究问题的讨论结果,其他小组作补充和评价。

  要求:下面的同学也要认真听,看看你同不同意他们的研究方法。一会说出你想问他们的问题,或者对他们的研究方法做出自己的评价,或者对他们的研究方法进行补充。

  2、组长带领全组同学,对老师指定的尝试小研究的内容进行交流汇报。

  在交流汇报的基础上,组长组织全班同学进行评价、补充、质疑。

  组长:哪个同学对我们小组的汇报有评价、补充或提出不懂的问题?

  其他组的学生进行评价、补充、质疑。教师适时点拨,填写评价表格。

  3、教师适时点拨引领:平均数的含义,体会数学与日常生活的密切联系。

  4、互相纠错,小组内同学互相检查尝试题做得是否正确,错误的加以改正。

  【设计意图:班级展示提升是小组内形成统一的观点向全班同学展示交流并引发深入思考的过程,通过小组间思维碰撞,以及老师精彩的点拨引导,使教学重难点得以突破,使知识更加系统化,使学生将知识内化于心】

  (六)挑战自我

  尝试应用,解决平均数问题:

  出示新华小学四年级(1)班第五组和第六组同学体重的统计表,让学生读表,了解表中的信息。交流时关注学生是否发现第五组有7个人,第六组有8个人。

  教师提出:要比较哪组同学的'平均体重重一些,该怎么办?学生可能回答先计算两个组的平均体重,然后进行比较。

  接下来让学生分别求出两个组的平均体重。学生在练习本上计算,教师巡视。指名两名学生进行板演。

  预设:第五组同学平均体重:

  (34+36+42+44+46+50+42)÷7=42(千克)

  第六小组同学平均体重:

  (38+34+54+34+35+41+39+45)÷8=40(千克)

  提出“议一议”中问题“ 42千克、40千克分别表示什么?”组织学生讨论求出的两个平均数的意义。完成比较哪一组平均体重重一些的问题。

  【设计意图】进一步加深学生对平均数意义的理解,使学生感受计算平均数的必要性,获得积极的学习体验。】

  (七)巩固练习,提升学习质量:

  1、独立完成教材中练一练的第二题;

  小军的身高是1米40厘米,他在一个平均水深为1米20厘米的游泳池中(小军不会游泳),问:小军会不会有危险。

  【设计意图】借助此题培养学生的数学眼光和应用数学知识解决问题的能力。】

  (八)拓展延伸:

  小军的身高是1米40厘米,他站在一个平均水深为1米20厘米的游泳池中(小军不会游泳),问:小军会不会有危险。

  课后反思学生掌握了求平均数的方法,课堂气氛活跃。

  平均数教案 14

  教学目标

  知识技能:结合解决问题的过程,使学生理解平均数的含义,初步掌握求平均数的方法,体会平均数的必要性,能根据简单的数据解决一些简单的实际问题。

  过程与方法:在合作探究与交流的过程中体验运用所学知识,理解平均数。

  情感态度:向学生渗透统计思想,使学生感悟到数学知识内在联系的逻辑之美,进而培养好数学的信心。

  教学重点

  明确平均数的意义,掌握求简单平均数的方法。

  教学难点

  通过进一步的操作和思考,运用平均数的相关知识解决问题体会平均数的意义。

  教法学法

  操作法、观察法、自主、合作、探究

  教学准备

  课件,表格。

  教学过程

  一、创设情境,激发兴趣

  游戏导入:同学们看过最强大脑吗?今天这节课,老师想在我们选出属于我们班的.最强大脑,你们想挑战吗?

  出示游戏规则:课件出示数字,学生进行活动,保留游戏结果,待最后揭晓答案。

  设计意图:给学生留有神秘猜想的空间,使学生有浓厚的接受新知的兴趣。

  二、探究交流,解决问题

  (一)认识平均数

  淘气记住几个数字?

  1、引导思考:平均每次记住6个数字是怎么得来的?

  2、学生合作交流,反馈

  A、移多补少

  B、总数÷个数=平均数

  3、引出:平均数是一组数据平均水平的代表。“6”是匀出来的。

  (二)生活中的平均数。

  1、学生举例说

  2、计算平均数,思考极端数对平均数的影响。

  小红语文99分,数学100分,英语95分,平均分多少分?再加一门科学46分,均分会有什么变化?

  思考:平均分在什么范围内?大约是多少?并计算平均分。

  同桌合作交流,全班汇报。

  小结:极端数据会影响平均数的结果。

  设计意图:通过学生熟悉不过的考试分数例子,来内化极端数字对平均数的影响。这样理解起来更容易。

  (三)联系实际,拓展应用

  根据平均数知识,解释现象。

  每小组选做一题,小组合作交流思想,全班汇报。

  1、评委打分;

  2、争做小法官

  3、猜年龄

  师:揭晓答案:38岁、9岁、8岁、11岁、8岁、12岁、8岁、9岁、8岁、9岁

  设计意图:让学生体会平均数是一组数据的平均水平的体现,但每一个数字都会影响平均数。

  4、计算自己记数水平,评选本班最强大脑。

  (四)课堂小结

  谈谈这节课你的收获。

  板书设计

  平均数

  移多补少

  总数÷个数=平均数

  《平均数》 教案这篇文章共2848字。

  平均数教案 15

<title>  从不同方向看</title>

  教案示例

  平均数

  教学目标:

  (一)知识目标:

  1 、掌握算术平均数,加权平均数的概念。

  2 、会求一组数据的算术平均数和加权平均数。

  (二)能力目标:

  1 、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。

  2 、根据有关平均数的问题的解决,培养学生的合作意识和能力。

  (三)情感目标:

  1 、通过小组合作的活动,培养学生的合作意识和能力。

  2 、通过解决实际问题,让学生体会数学与生活的密切联系。

  教学重点算术平均数,加权平均数的概念及计算。

  教学难点加权平均数的概念及计算。

  教学方法讨论与启发性。

  教学过程:

  一、引入新课:

  在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)

  二、讲授新课:

  1 、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:

  95 、 99 、 87 、 90 、 90 、 86 、 99 、 100 、 95 、 87 、 88 、 86 、 94 、 92 、 90 、 95 、 87 、 86 、 88 、 86 、 90 、 90 、 99 、 80 、 87 、 86 、 99 、 95 、 92 、 92

  甲小组:= = 91(分)

  甲小组做得对吗?有不同求法吗?

  乙小组:= = 91(分)

  乙小组的做法可以吗?还有不同求法吗?

  丙小组:先取一个数90做为基准a,则每个数分别与90的差为:5 、 9 、 3 、 0 、 0 、……、 2 、 2,求出以上新的一组数的平均数= 1,所以原数组的平均数为= +90=91

  想一想,丙小组的计算对吗?

  2 、议一议:问:求平均数有哪几种方法?

  (1)算术平均数:= (x 1 +x 2 + …… +x n )或都利用基准求算术平均数= +a

  (2)加权平均数:= (f 1 +f 2 + … +f k = n)

  问:以上几种求法各有什么特点呢?

  公式= (x 1 +x 2 + …… +x n )适用于数据较小,且较分散。

  公式= +a适用于出现较多重复数据。

  公式= (f 1 +f 2 + … +f k = n)适用于数据较为接近于某一数据。

  师:算术平均数与加权平均数有什么联系与区别吗?

  看下面例题:

  某校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。一天,三个班级的各项卫生成绩分别如下:

  (1)小明将黑板、门窗、桌椅、地面这四项得分依次按15% 、 10% 、 35% 、 40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?

  (2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的'卫生成绩最高?与同伴进行交流。

  解:(1)一班的卫生成绩为:

  95 × 15%+90 × 10%+90 × 35%+85 × 40% = 88.75

  二班的卫生成绩为:

  90 × 15%+95 × 10%+85 × 35%+90 × 40% = 88.75

  三班的卫生成绩为:

  85 × 15%+90 × 10%95 × 35%+90 × 40% = 91

  因此,三班的成绩最高。

  (2)分组讨论交流

  小结:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。

  实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权” 。

  平均数教案 16

  教学内容:小学数学第六册第92~94页。

  教学目标:

  知识与技能:

  1、从生活实际中体会平均数的意义,建立平均数的概念。

  2、在理解平均数意义的基础上,理解和掌握求平均数的方法。

  3、初步感受求平均数的作用。

  过程与方法:

  联系学生实际,培养学生选择信息、利用信息的能力;培养学数学、用数学的意识及自主探索、合作交流的意识和能力。

  情感态度价值观:

  激发学生主动参与的热情,培养学生主动探究、合作交流的精神。

  教学重点、难点:

  理解平均数的意义;掌握求平均数的方法;体会求平均数的作用。

  教学过程:

  一、创设情境,提出问题

  昨天的作业,张康、朱星宇、施逸婷做得最好。今天老师带来些铅笔想奖给他们。(三人上台领奖,并告诉同学各自得到的铅笔的支数。)板书:张康11支、朱星宇7支、施逸婷6支。

  你们觉得公平吗?怎样才能公平?

  学生讨论,指名汇报。

  (从1张康手中拿2支给施逸婷,再从张康手中拿1支给朱星宇。这样每人都是8支。)

  很好。谁能给这种方法取个名字?(“移多补少法”。)

  (先把三个人的铅笔全合起来有24支,再平均分给这3个人,这样每个人都是8支。

  这种方法也很好!我们也给它取个名字。(“先合再分”)。

  刚才我们用不同的方法,都能使这三个人铅笔的支数相等,都是8。

  教师指出:这里的“8”就是“11、7、6”这三个数的平均数。板书课题:平均数。

  昨天蔡裕杰同学的作业也很有进步,现在我想也奖给他铅笔,怎样才能让他们四个人得到的铅笔支数相等?(学生上台演示,每人得到6支。)

  提问:这里的“6”就是“11、7、6、0”这四个数的什么?

  通过我们刚才的讨论,你觉得什么是平均数?

  小结:已知几个大小不等的数,在总和不变的条件下,通过把多的移给少的或者先把它们合起来再平均分,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。

  二、寻找方法,解决问题

  说到平均数,老师想起前不久学校举行篮球赛的时候,五(2)班女男生之间发生的一次争执。

  为了备战篮球赛,五(2)班男子篮球队和女子篮球队之间先进行了一次投篮比赛。每人投15个球。这是他们投中个数的统计图。出示两幅条形统计图。

  (略)

  这两幅统计图能看得懂吗?从这两幅统计图上你能知道些什么信息?

  投篮比赛结束了,男子篮球队队员说男生投篮准,女子篮球队队员说女生投篮投得准,争执不下。现在,我想请大家做一个公平的裁判,你们觉得,是男子篮球队整体水平高一些,还是女子篮球队整体水平高一些?。

  指名汇报,说明理由。

  (有3名男生都投中得比女生少,所以女生投得准一些)

  这是你的意见,有不同的意见吗?

  (女生一共投中28个,男生一共投中30个,男生投得准一些)

  可是男生有5个人,女生只有4个人啊!还有不同的意见吗?

  (去掉一个男生。)

  去谁合理呢?能去吗?

  (应该求出女男生投中个数的平均数,然后再进行比较)

  有道理,他们两个队的人数不同,所以我们不能一个人一个人的比较,分别求出他们投中个数的平均数,用平均数来体现他们投篮命中的整体水平,好办法!掌声鼓励。

  那我们应该怎么求他们的.平均数呢?先来求女生投中个数的平均数。

  观察女生投篮成绩统计图,小组讨论,代表汇报。

  (将徐丹多投中的两个分一个给王戈,分一个给赵越,这样,她们每个人都是投中了7个,也就是女生投中个数的平均数是7个。)

  不错,方法很简洁,移多补少法。有不同的方法吗?

  (先求出四个人投中的总个数,再求出平均每人投中的个数。)

  半数:6+9+7+6=28(个)

  28÷4=7(个)

  他用的方法就是——先合再分法。

  看来,大家都非常聪明,男生平均投中的个数会求吗?

  你们觉得这时我们求平均数用哪种方法比较合适?为什么?

  小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少简单;人数多,差距大,用先合再分的方法比较简单。

  学生在练习本上计算,指名板演,集体订正。

  为什么这里求得的总数除以的是5而不是4?

  现在你能帮五(8)班的同学解决他们争论的问题了吗?

  (女生平均每人投中7个,男生平均每人投中6个,所以女生投得更准一些。)

  观察统计图,女生平均每人投中7个,(用直线画出7的水平位置),提问:平均数7比哪个数大,比哪个数小?我们再来看看男生投中的平均数6是不是也有这样的特点?(用直线画出6的水平位置。)

  小结:平均数的大小应该在最大的数和最小的数之间。此外,一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些可能比平均数大,有些可能比平均数小。

  三、应用方法,解决问题

  刚才我们一起认识了平均数,也知道了如何求平均数,接下来我们要遇到的是生活中有关平均数的问题,一起来看一看。

  请大家轻声地把问题读一读,思考之后,可以和同座交流自己的看法。

  挑战第一关:“明辨是非”

  (1)一条小河平均水深1米,小强身高1.2米,他不会游泳,但他下河玩耍池肯定安全。( )

  (2)城南小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()

  (3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。( )

  学校篮球队可能有身高超过160厘米的队员。( )

  (4)四(3)班同学做好事,第一天做好事30件,第二天上午做好事12件,下午做好事15件,四(3)班同学平均每天做好事的件数是(30+12+15)÷3=19(件)。( )

  挑战第二关:“合情推测”

  四(2)班第一小组同学身高情况统计表

  学号 12 3 4 56

  身高(厘米)131 136 138 140 141142

  明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

  平均数的大小应该在最大的数和最小的数之间,这里最大的数就是142,平均数不可能超过142,所以平均身高143厘米是错误的。

  那么我们应该怎么求他们的平均数呢?

  指名列式,老师告诉答案为138厘米。

  由此,你能不能猜测一下,四(2)班全班同学的平均身高大约是多少?

  你想了解我国四年级同学的平均身高吗?

  出示:根据健康网的报道,全国四年级小学生的平均身高约是139厘米。看到全国四年级小学生的平均身高,结合自己的身高,你有什么想法?

  四、学生看书,质疑问难

  五、全课总结,交流收获

  通过今天这节课的学习,你有什么收获?

  六、布置作业,检查反馈

  平均数教案 17

  教学目标

  (一)使学生理解平均数的概念.

  (二)掌握简单的求平均数的方法.

  (三)培养学生分析、概括的能力.

  教学重点和难点

  平均数是个比较抽象的概念,它和平均分的意义不完全一样,平均数实际上每一份不一定一样多,而平均分是指实际上每份都一样多.因此理解平均数的概念是难点,让学生理解并掌握求平均数的方法是教学重点.

  教学过程设计

  (一)复习准备

  口答:

  1.小华4天读完60页书,平均每天读几页?

  2.五一班有42人,平均分成6个组,每个组有多少人?

  3.小明期中测验语文和数学两科成绩共得180分,平均每科成绩多少分?

  师:上述1,2两题都是把一个数平均分成几份,求1份是多少.实际上它们每一份都一样多,而第3题是把两个数的和平均分成两份,每一份是它们的平均数,而不是原来每份实际的数,所以“求几个数的平均数”与“把一个数平均分成几份,求1份是多少”,既有联系又有区别.

  (二)学习新课

  1.新课引入.

  在日常生活、工农业生产中,经常用到平均数的概念,如平均速度、平均成绩、平均产量等.怎样理解平均数的概念,如何求出几个数的平均数呢?这就是我们今天要研究的课题.(板书:平均数)

  2.出示例2.

  用4个同样的杯子装水,水面的高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

  3.分析,教师演示,学生观察、思考.

  教师拿出盛水的4个同样的杯子,标明刻度.

  师:这4个杯子水面高度相等吗?

  生:这4个杯子水面高度不相等.

  师:求4个杯子水面的平均高度是什么意思?

  生:平均高度就是4个杯子里的水面一样高.

  师:怎样才能找出4杯水的平均高度呢?

  出示挂图(即课本中的下图)放在4个杯子后面,指出红线标明的地方(4厘米)就是平均高度.

  教师演示,把水多的杯子倒一些到水少的杯子,使4杯水同样多,得到平均高度.

  师:这平均高度是每杯水的实际高度吗?它是怎样得到的呢?

  通过演示使学生明确,它不是每杯水的实际高度,而是把4个杯子里的水平均分的结果.

  师:如果我们不倒水,能算出这个平均高度吗?

  小组讨论.从而明确:要求4个杯子水的平均高度,要先把4个杯子的水面高度加起来,再除以4,相当于把4个杯子里的水合在一起,再平均倒在4个杯子里,看每个杯子水面的高度是多少.用算式表示就是(6+3+5+2)÷4.

  教师板书:(6+3+5+2)÷4

  =16÷4

  =4(厘米)

  答:4个杯子水面平均高度是4厘米.

  说说括号里求什么?为什么除以4?得到的结果表示什么.

  要强调4厘米是平均数.

  4.做29页上的“做一做”中的第1,2,3题.

  订正时让学生讲出思考过程.

  5.总结规律.

  师:从刚才做的几道题中,你能说一说求平均数的一般方法吗?

  通过学生的回答概括为:求几个数的平均数,先要求出这几个数的总数,然后再找出要把它平均分成的份数,最后用总数除以总份数就可以得到平均数.

  6.出示例3.学生默读例3,理解题意,明确条件和问题.

  师:如何比较哪一组平均身高高一些?怎样计算出高多少?

  启发学生想:如一个一个地比,非常麻烦,而且不容易比清楚.先算出各组的平均身高,就容易比较了.

  让学生运用从例2中学到的方法,自己求出两组各自的平均身高,再求出哪一个组的平均身高高一些,高多少.

  师:如果不求平均身高,直接用各组所有人数的和进行比较行不行?为什么?

  使学生明确,由于两组人数和每人身高不一样,不能直接比较,只能用平均身高进行比较.

  (三)巩固反馈

  1.选择正确列式,并说明理由.

  一辆汽车第一天行53千米,第二天行58千米,第三天上午行30千米,下午行27千米.平均每天行多少千米?

  A.(53+58+30+27)÷3

  B.(53+58+30+27)÷4

  2.光明小学五年级3个班为灾区人民捐款750元,六年级4个班为灾区人民捐款1210元.平均每个年级捐款多少元?这两个年级平均每班捐款多少元?

  小组讨论后得出:

  平均每个年级捐款多少元?

  (750+1210)÷2

  两个年级平均每班捐款多少元?

  (750+1210)÷(3+4)

  强调是把哪几个数平均分、分成多少份,要认真审题,找出所需要的.总数及总份数,再求出它们的平均数.

  (四)作业

  练习七第1,2题.

  课堂教学设计说明

  平均数是统计中的一个重要概念.小学里所讲的平均数一般是指算术平均数,也就是一组数量的和除以这组数量的个数所得的商.因为这个平均数不是实际的数,与过去学的平均分的意义不完全一样,因而平均数的概念比较抽象.在日常工作、生活中要经常用到如平均产量、平均速度等等,因此首先要建立平均数的概念,再分析求平均数的方法.本节课设计既要体现学生的主体作用,又重视学习方法的指导.

  首先通过简单的口答题,初步认识平均数的意义,分清平均数与平均分的联系与区别.为学新课做好铺垫.

  新课分为四个层次.

  第一个层次学习例2.求4个杯子水面的平均高度.通过教师的演示,提问,学生在观察、讨论的基础上,理解平均高度的意义,建立平均数的概念.

  第二个层次是指导列式计算.在实际中,求几个数的平均数,都不可能像杯子倒水那样操作,因此引导学生要通过计算来解决.

  第三个层次,让学生做书上的“做一做”几个题,启发学生总结出求几个数的平均数的一般算法.

  第四个层次,通过例3让学生运用学过的方法类推、自己计算,从而加深对平均数的理解,熟练地掌握计算方法.

  练习的设计有所提高和变化,要让学生分清把哪几个数平均分,分成多少份,为以后学习复杂的求平均数问题打下基础.

  板书设计

  求平均数

  例2 用同样的4个杯子装水,水面的高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

  (6+3+5+2)÷4

  =16÷4

  =4(厘米)

  答:这4个杯子水面的平均高度是4厘米.

  例3 四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表.(单位是厘米)

  eq x(统计表)

  (1)第一组平均身高是多少?

  (136+142+140+135+137+144)÷6

  =834÷6

  =139(厘米)

  (2)第二组平均身高是多少?

  (132+141+133+138+145+135+142)÷7

  =966÷7

  =138(厘米)

  (3)第一组平均身高比第二组高多少?

  139-138=1(厘米)

  答:第一小组平均身高高一些,高1厘米.

  平均数教案 18

  一.教学目标

  (一)教学知识点

  1.会求加权平均数,并体会权的差异对结果的影响.

  2.理解算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题.

  (二)能力训练要求

  1.通过利用平均数解决实际问题,发展学生的数学应用能力.

  2.通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异思维.

  (三)情感与价值观要求

  通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.

  二.教学重点

  1.会求加权平均数,并体会权的差异对结果的影响,认识到权的重要性.

  2.探索算术平均数和加权平均数的.联系和区别.

  三.教学难点

  探索算术平均数和加权平均数的联系和区别.

  四.教学方法

  探讨式教学.

  五.教具准备

  投影片三张:

  第一张:补充练习(记作8.1.2 A);

  第二张:补充练习(记作8.1.2 B);

  第三张:补充练习(记作8.1.2 C).

  六.教学过程

  Ⅰ.创设问题情境,导入新课

  在上节课我们学习了什么叫算术平均数和加权平均数,以及如何求一组数据的算术平均数和加权平均数.本节课我们继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别.

  Ⅱ.讲授新课

  1.例题讲解

  某学校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面.

  平均数教案 19

  设计理念

  为了实现教学目标、有效地突出重点、突破难点,大胆重组教材,在教学中创设情境,引入探究式的教法,以自主探究和小组合作学习的形式,充分调动学生学习的积极性、主动性,让学生有充分的时间和机会。通过"创设情境、引发冲突"、"解决问题,感受意义"、"引导探究,构建方法"、"巩固深化,拓展应用"、"评价反思,感受成功"五个教学环节,让学生充分地动手操作、分析、讨论等方法主动地获取知识,从而培养学生的自主学习意识和创新意识,学会探究问题的方法。

  教学内容

  《义务教育课程标准实验教科书数学》(苏教版)四年级上册第49~51页。

  学情分析

  平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。学生对统计的知识已经有了初步的了解,多次经历统计数据的全过程,但对统计数据的分析观念不是很强,尤其是用平均数对统计图进行分析是第一次。

  教材分析

  本节课是在学生了解平均分与认识条形统计图的基础上,结合对统计数据的分析来理解平均数的意义的。这一知识既是前面所学统计知识的继续,又为以后学习较复杂的求平均数问题及统计图表做准备。教材由套圈比赛双方的人数不相等时如何公正的评判哪个组的实力强,引出了需要计算出平均数,突出了平均数的实际意义与存在价值。学生在动手操作移多补少的过程中感悟和理解平均数的意义,得出计算平均数的方法。

  教学目标

  1、在具体的问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。

  2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  3、感受平均数与日常生活的联系,增强学生在生活中获取信息解决实际问题的能力和应用数学的意识。

  教学重难点:

  重点:理解平均数的意义,学会求简单数据的平均数。

  难点:理解平均数的意义

  对策:创设丰富的问题情境,提供学生自主探索的平台,让学生通过观察、交流,形成求平均数的方法。

  教学准备:多媒体课件、统计图表等。

  教学过程:

  一、创设情境,引发冲突

  1.出示套圈比赛视频。

  师:同学们,你们喜欢玩套圈游戏吗?三五班的同学们正在举行一场套圈比赛,让我们一起去看看吧。

  2.出示一组和二组的成绩统计图。(一组、二组人数相等)

  师提问:从图上你能看出一组和二组,哪一组的套圈的水平高一些?你是怎么想的?

  【学情预设:学生可能说用比总数的方法来判断】

  (引导学生发现:人数相等时,比较两个组各自套圈的总数就可以比出两个组套圈水平的高低。)

  3.出示一组和三组的成绩统计图。(一组、三组人数相等)

  师:一组和二组比一组赢了,那么一组和三组比又会是哪个组赢呢?

  【学情预设:学生畅所欲言表达自己不同的观点,可能说比总数不公平】

  (师结合生活中的实例引导学生明白:在人数不同的情况下,也可以比较两个组套圈的整体水平的高低。)

  师:有什么办法可以比出一组和三组哪个组套的更准一些,水平更高一些呢?

  【设计意图:利用人数不相等的比较,再次激发矛盾,引发争论,学生在据理力争的过程中逐渐理解平均数的真正含义。从而突破难点。】

  二、解决问题,感受意义

  1.学生讨论、交流。

  【学情预设:学生可能会想到让每人套中的的个数一样多,提出可以比较第一组和第三组平均每人套中的个数。】

  1.学生动手操作验证想法。

  师:大家可以在统计图上通过自己亲自动手操作验证自己的想法是否正确。

  2.展示学生"移多补少"的过程。

  3.课件演示"移多补少"的过程。

  (引导学生发现:通过移多补少可以在图上看到第一组每个人套的个数都变成了同样多的7个;第三组每个人套的个数都变成了同样多的6个。所以,第一组的水平高一些。)

  揭示:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。平均数就可以代表一组数据的整体水平。(板书课题:平均数)

  【设计意图:引导学生展开思考、交流讨论寻找解决问题的方案,强化学生对"平均数"的认识。】

  5.深入理解平均数。

  师:一组的'平均数7是指一组每个人实际套中的个数吗?三组的平均数6是指三组每个人实际套中的个数吗?(不是)

  【学情预设:学生从图上很容易看出有的套的比平均数多,有的套的比平均数少,有的和平均数一样多】

  师:仔细观察统计图你发现平均数比哪个数大?比哪个数小?

  (结合课件演示引导学生发现平均数介于一组数据的最大数与最小数之间。)

  师:一组的平均数7和他们小组王宇套中的7个表示的意思一样吗?

  师:平均数7和6可以代表什么?王宇的7个能代表他们小组的套圈水平吗?

  【设计意图:这里通过教师一系列的追问引发学生深入理解平均数的含义。】

  三、引导探究,构建方法

  1.提问

  师:我们用移多补少的方法找到了一组和三组套圈的平均数,并比出了这两个组套圈的整体水平的高低,如果比赛的人数很多的时候用移多补少的方法还能很快的找到一组数据的平均数吗?

  师:你会算出这两个组套圈的平均数吗?

  2.观察(出示第一组移之前和移之后的统计图)

  (引导学生发现移之前和移之后套圈的总数不变,要想让每人套的一样多,就要用总个数除以总人数来得到平均每人套中的个数。)

  3.演示"先求和再平均分"的过程。

  师:你能给这样的方法起个合适的名字吗?(先合后分)

  【设计意图:使学生在应用过程中体会出求平均数最基本的方法,在练习中进一步理解和领悟到知识的一般规律。】

  四、巩固深化,拓展应用

  1.比较三组和二组哪个组套的准的问题。

  师:

  2.生活中的平均数问题

  (1)学校篮球队队员的平均身高是160厘米,李强是篮球队队员,他的身高是155厘米,可能吗?有身高超过160厘米的队员吗?

  (2)小河平均水深130cm,灰太狼身高145cm,他过河有危险吗?

  【设计意图:通过解决生活中的平均数问题,培养学生统计观念和估算能力,进一步加深了学生对平均数的理解】

  五、评价反思,感受成功

  师:同学们,通过今天的学习,你学到了哪些知识,是怎样学到的?你有哪些收获?

  设计思路

  1、准确定位学习目标

  学习目标的定位较好地体现了新课标的理念,淡化术语与纯粹计算,重视理解性学习的。平均数是统计中的一个重要概念。本节课在"学什么"的问题上强调对平均数意义、特点的把握,注重对其统计含义的理解,以及能够在新的问题情境中运用它解决问题,淡化单纯学习学习求平均数的计算方法的比较,目标定位准确。

  2、选择的学习内容要体现数学与生活的密切联系

  本节课的学习内容选取了学生身边和社会生活中有趣的、富有挑战性的素材,如比较两组同学的套圈水平等都较好地体现了数学的应用价值。

  3、注重创设学习情境,让学生经历平均数知识构建的过程

  体现学习自主性,使学生在做中学,在学中练,在练中感,学习平均数的意义时,以拍球活动导入,教师以游戏者的角色介入学习过程,不但为学生创设了一种和谐的学习氛围,而是自然地将平均数的意义不断引向深入。使学生深刻感悟到当两组套圈人数相等时,可以逐个比、比总数或平均数都可以判断哪个组套圈水平高,但当套圈的人数不相等时,只有比较平均数才公平,突出了平均数的比较功能。

  作者简介

  辛慧军,女,小学高级教师,山西省学科带头人。先后荣获"省骨干教师","首届山西省青年教学能手","第七届中小学教学能手","三晋名师"等称号。现任教于山西省宁武县实验小学。

  提醒:

  小学数学试题、知识点、学习方法

  平均数教案 20

  【教学内容】

  北师大版《义务教育教科书数学》四年级(下册)第90页。

  【教学目标】

  (一)知识与技能:

  1、使学生理解“平均数”的含义,初步掌握求平均数的方法,使学生能根据简单的统计表求平均数,培养学生分析问题的能力和操作能力。

  2、结合解决问题的过程初步认识平均数,体会平均数的必要性,并能根据统计图表解决一些简单的实际问题,在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。

  (二)过程与方法:

  采用“自主合作,相互交流”的方法更好地理解平均数。在解决实际问题的过程中,进一步积累分析和处理数据的办法,发展统计观念。

  (三)情感态度、价值观:

  向学生渗透事物间联系的思想和统计思想,使学生感悟到数学知识内在联系的逻辑之美,提高学生审美意识。

  【教学重点】

  明确“平均数”的含义;掌握求“平均数”的方法。

  【教学难点】

  感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。

  【教学准备】

  多媒体课件

  【教学过程】

  一、创设情境、激情导入

  师:刚才短片中,石正小学让你印象最深刻的是什么?

  生1:美丽的校园。

  生2:是一所有特色的足球学校。

  师:401班的小力、小林、小刚也非常热爱足球。就在上星期,他们三人还约我进行了一场“点球挑战赛”。每轮踢10球,看谁进球多。怎么样,想不想了解现场的比赛情况

  生:(很兴奋地)想啊。

  师:现在就请我们一起看看当时的比赛情况!

  设计谈话导入,一方面拉近了师生间的关系激起了学生的认知兴趣,另一方面也为学生探究活动的开展指明了方向。

  二、合作交流、建立概念

  1、初步感知

  师:首先出场的是小力,他第一轮进了5个球。可是,小力对这一成绩似乎不太满意,觉得好像没有发挥出自己的真实水平,想再踢两次。如果你是刘老师,你会同意他的要求吗

  生1:我不同意。万一他后面两次踢进的多了,那我不就危险啦!

  生2:我会同意的。做老师的应该大度一点。

  师:呵呵,还真和我想到一块儿去了。不过,小力后两次的成绩很有趣。

  (师出示小力的后两次点球成绩:5个,5个。生会心地笑了)

  师:小力三轮都踢进了5个。现在看来,要表示小力3轮点球进了的'个数,用哪个数比较合适

  生:5

  师:为什么?

  生:他每轮都踢进了5个,所有用5来表示他的成绩最合适。

  师:说的有理!小林出场了,三次成绩各不相同。这一回,又该用哪个数来表示小林的成绩比较合适呢(3、4、5)

  能不能通过移一移的办法使到小林三次点球的成绩看起来一样多?

  2、展示交流,理解求平均数的两种方法

  数学上,像这样从多的里面移一些补给少的,使得每轮个数都一样多。这一过程就叫“移多补少”。移完后,小林每轮看起来都踢进了几个(4个)

  小刚也踢了三轮,成绩又怎样?(3、7、2)

  讨论交流:现在,又该用几来表示他的成绩同学们先独立思考,然后看看除了移动补少的方法外有没有更快、更好的方法来解决?你有什么发现?学有困难的同学也可以自学课本90页。

  像这样先把每轮踢进的个数合起来,然后再平均分给这三轮(板书:合并、平分),能使每一轮看起来一样多吗

  3、引出课题:平均数

  数学上,我们把通过移多补少或计算后得到的每一轮同样多的这个数,就叫做原来这几个数的平均数。(板书:平均数)

  这里的平均数4是表示小刚的最高水平?是最低水平?那表示的是?(板书:平均水平)

  4、理解平均数的意义

  正式比赛前,我主动提出踢四轮的想法。前三轮射门已经结束,怎么样,想不想看看(师呈现前三轮成绩:4个、6个、5个)

  猜猜看,三位同学看到我前三轮的成绩,可能会怎么想

  5、体会平均数的取值范围。

  出示4次成绩(4、6、5、1)凭直觉,刘老师最后的平均数可能是几个

  感知最后的平均成绩应该比最大的数6小,比最小的数1大。

  [生列式计算,并交流计算过程:4+6+5+1=16(个),16÷4=4(个)]

  6、体会平均数的特点——敏感性

  失败乃成功之母,你觉得老师输在哪里?

  试想一下:如果老师最后一轮踢进9个,比赛结果又会如何呢

  看来,要使平均数发生变化,只需要改变其中的几个数

  其实呀,平均数很敏感,善于随着每一个数据的变化而变化,任何一个数据的“风吹草动”都会使它改变,这正是平均数的一个重要特点。

  三、巧设练习,巩固新知

  1、计算平均数

  出示20xx年平远县3月12-18日平均最高气温统计表。

  你能计算这一周的平均最高气温是多少摄氏度吗?平均数是一个知冷暖的“人”。

  2、为了使同学们对平均数有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影)画面中的人,相信大家一定不陌生。

  没错,这是以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,中国男子篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米平均数只反映一组数据的一般水平,并不代表其中的每一个数据。平均数是一个很善变的“人”。

  3、好了,探讨完身高问题,我们再来看看池塘的平均水深。(师出示图)

  平均水深110cm,小明身高140 cm下河游泳不会有危险!您认同吗?

  生:不认同,最深的地方有200 cm,下河游泳还是有危险的。

  师:看来,平均数还是个危险的“人”。

  4、体会极端数据对平均数的影响。

  你们知道在实际的一些比赛中是如何计算平均分的吗?刘老师带来了中央电视台青歌赛的视频请看!

  去掉最高分和最低分的目的是什么?平均数是一个严谨的“人”。

  5、看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。

  20xx年5月14日综合外媒报道,世界卫生组织(who)13日发布了2015年版《世界卫生统计》报告。报告指出,从总体上看,全世界人口的寿命都较以往有所增加。中国在此次报告中的人口平均寿命为:男性74岁,女性77岁。

  一位73岁的老伯伯看了这份资料后,不但不高兴,反而还有点难过。这又是为什么呢

  假如我就是那位73岁的老伯伯,你们打算怎么劝劝我

  平均数是一个会开玩笑的“人”。

  四、畅谈收获、回顾总结

  平均数是一个怎样的“人”?您懂他了吗?

  五、回应课本、课后延伸

  今天我们学习的是课本第90页的内容,请大家翻开书看看内容,有没有不明白的地方?发现重点可以用笔划起来。

  板书设计

  平均数

  平均数是一组数据平均水平的代表

  移多补少

  一样多

  合并平分

  (4+6+5+1)÷4=4(个)

  1

  平均数教案 21

  教学要求:

  1.使学生进一步掌握求平均数的数量关系和解题思路,能正

  确地解答求平均数问题,进一步加深对统计表里数量之间关系的

  认识和理解。

  2.进一步培养学生分析推理等思维能力。

  教学过程:

  一、揭示课题

  今天这节课,我们练习求平均数。(板书课题)请大家想一想,求平均数的数量关系是什么?(板书:平均数=总数÷总份数)

  说明:根据求平均数的数量关系式,如果在题里总数和总份

  数是来知的,就要先求出来再求平均数。

  二、基本题练习

  1.做练习十九第5题。

  指名学生读题,说出条件和要求的问题。

  提问:这道题可以怎样想?你估计平均每平方米产小麦的千

  克数在哪个范围内?

  指名学生板演,其余学生做在练习本上。

  集体订正,让学生说明每一步求的是什么。

  提问:求总数为什么是两积相加的和?为什么用800加160

  的和做除数,而不除以27

  指出:要根据问题,正确地算出题里的总数量和总份数,才能

  求出平均数。

  2.做练习十九第6题。

  让学生先估计平均数的范围。

  指名学生板演,其余学生做在练习本上。

  集体订正。’

  提问:这道题是先求什么,再求平均数?为什么要先求总价

  和总千克数?

  求总千克数为什么要三个数量相加的和?

  3.练习十九第7题。

  提问:谁能说一说这道题里的条件和问题?

  谁来说一说这道题可以怎样列综合算式?(板书算式)

  这是根据什么数量关系列式的?

  指出:凡是要求平均数,都要用总数除以总份数。解题时要

  注意条件是什么,正确地先求出总数和总份数,再求平均数。

  提问:你能用自己的方法来说明统计表的数据吗?(估计这

  个村学生平均年龄大约9岁多一点;或大约一半学生是10岁;或

  大多数的.学生是9岁和10岁,少数学生是8岁等。)

  三、变式练习

  1.做练习十九第8题。

  读题,说出条件和问题。

  提问:这道题的条件和前面的题有什么不同?

  请同学们把这道题做在练习本上。

  学生口答算式,老师板书。

  提问学生每一步求的什么。

  追问:为什么求总千米数只要直接相加?

  2.做练习十九第9题。

  提问:这道题叙述的条件与上一道题又有什么不同的地方?

  指名板演,其余学生做在练习本上。

  集体订正,提问每一步求的什么。

  结合提问:求总数时,为什么前16天的总米数直接用380,后

  14天的总米数要用35X147

  四、课堂小结

  这节课练习的什么内容?你有哪些收获?

  五、课堂作业

  平均数教案 22

  教学目标:

  1、结合具体实例,理解平均数的实际意义,探索求“平均数”的基本方法,初步学会根据具体情况运用平均数分析与解决实际问题,根据统计结果做出简单的判断和预测。

  2、在具体情境中,培养学生整理数据、分析数据的意识和能力,体会统计的作用及其价值。

  3、在统计过程中,形成自主探索与合作交流的意识和能力。

  教学重难点:

  理解平均数的意义。

  教学过程:

  一、创设情境,激发兴趣。

  师:你们认识姚明吗?姚明是干什么的?

  师:姚明在美国NBA球赛中有非常棒的表现。一支出色的球队除了要有优秀的运动员,还要有一名优秀的教练员。

  师:你想不想当回小教练?今天,老师就请同学们当回小教练,咱们去参加一场小篮球比赛。

  二、自主合作、探索新知。

  1、感受平均数产生的必要性。

  课件出示篮球比赛情境图,师叙述:赛场上,蓝、红两队比赛异常激烈,比分在交替上升,正打到关键时刻,蓝队眼看就要追上红队,突然,蓝队的一名中锋受伤了,急需换人。蓝队只有两名替补中锋:7号和8号,换谁上场呢?

  师:7号和8号两名篮球运动员到底该换谁上场呢?你作为一名小教练,你应该怎样选呢?

  师:看来换谁上场,要考虑的因素很多,今天,我们就从“运动员的得分”角度上考虑该换谁上场的问题,好吗?

  课件出示7号、8号小组赛成绩统计表:

  师:这是7号和8号运动员前面几场比赛的得分情况。请同学们观察统计表仔细分析他们两人得分情况,考虑一下应该换谁上场呢?说明你的理由。

  学生交流。

  师:可以比两个人平均每场得分数。 “平均每场的得分”什么意思?

  (就是每场得分一样多。把多的和少的放在一块匀一匀,让它每场得分一样多。把不一样多的,变成一样多的;把多的匀给少的一些。)

  师:看来你过去的知识学得真不错。“平均每场的得分”就是让每场得分一样多。(板书:一样多)

  师:那么,小教练们,你们觉得用“比平均每场得分”的方法合理吗?

  2、探究求平均数的策略与方法。

  (1)引导探索“7号队员每场的平均得分”。

  师:那么我们来求一求7号、8号队员的平均得分各是多少?

  (2)自主探究,合作交流。

  请同学们按导学案中要求完成任务。

  ★请同学们根据统计表信息,独立完成1、2题。

  ★对子交流,小组交流。把自己的想法说给小伙伴听一听。

  ★班内大展。小组展示求平均数的多种方法,其余组质疑、补充。

  (3)教师总结,精讲两种方法。

  一种方法:把多的移动出来补给少的`才能让每场得分一样多(课件出示)。这种把多的移动出来补给少得的方法叫做移多补少。(板书)

  第二种方法:7号:9+11+13=33(分),33/3=11(分)

  8号:(6+14+12+8)÷4=10(分)

  师:这是一种“先求总数,再求平均数”的方法。

  两种方法都求出了7号、8号运动员的平均得分。

  3、理解“平均数”的意义。

  师:“10”是哪一场比赛的得分?

  10是把四场比赛的比分匀活匀活得到的。 “10”是6、14、12、8的平均数。(板书)师:11是谁的平均数?

  师:小教练们,现在你能确定派谁上场了吗?说说你的理由。

  师:7号的平均分高决定了7号的整体水平要高一些。

  4、教师小结:

  同学们通过当“小教练”的活动,在分析、“统计”的过程中认识了平均数,学会了用移多补少和计算的方法求平均数。现在我们到篮球场下看看有没有平均数。

  三、自主大闯关

  独立完成导学案中自主大闯关内容,然后对子交流,重点问题一起解决。

  四、布置作业

  课后根据自己的兴趣搜集一些有关平均数的信息,把它记录下来,跟全班同学交流。

  平均数教案 23

  教学目标

  知识与技能:会求加权平均数,体会权的差异其平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题。

  过程与方法:通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力。

  情感态度与价值观:通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

  教学重点:让学生感受算术平均数与加权平均数的练习和区别

  教学难点:利用算术平均数与加权平均数解决问题

  教学过程:

  第一环节:情境引入 (3分钟,复习导入,学生回顾)

  内容:请同学们回忆:什么是算术平均数?什么是加权平均数?

  请同学们各举一个有关算术平均数和加权平均数的实例,并解决之。

  在学生的复习交流中引入课 题:本节课将继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别。

  第二环节 :合 作探究(25分钟,小组合作 探究,教师指导)

  内容:1.做一做[

  我校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面。一天,三个班级的各项卫生成绩分别如下:

  黑板 门窗 桌椅 地面

  一班 95 90 90 85

  二班 90 95 85 90

  三班 85 90 95 90

  (1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%,10%,35%,40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?

  (2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的方案,哪一个班的卫生成绩最高?

  对于第(1)问,让每一位学生动手计算,然后教师抽取几个不同层次的学生做的结果投影展示,进行评价。正确的答案是:

  一班的卫生成绩为:9515%+9010%+9035%+8540% = 88.75

  二班的卫生成绩为:9015%+9510%+8535%+9040% = 88.75

  三班的卫生成绩为:8515%+9010%+9535%+9040% = 91

  因此,三班的成绩最高。

  对于第( 2)问,让学生先在小组内各抒己见,然后在全班交流体会:

  以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响。

  内容:2.议一议

  小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年 增长39%,3%,6%,小颖家今年的总支出比去年增长的百分数是多少?

  以下是小明和小亮的两种解法,谁做得对?说说你的理由。

  小明: (9%+30%+6%)= 15%

  小亮:

  学生分组讨论,全班交流,说明理由:

  由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率地位不同,它们对总支出增长率的影响不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的权,从而总支出的`增长率为小亮的解法是对的。

  第三环节:运用提高(10分钟,学生独立完成,全班交流)

  内容:1.小明骑自行车的速度是15千米/时 ,步行的速度是5千米/时。

  (1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?

  (2)如 果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?

  2. 某校招聘学生会干部一名,对A,B,C三名候选人进行了四项素质测试,他们的各项测试成绩如下表所示:

  测试项目 测 试 成 绩

  A B C

  语 言 85 95 90

  综合知识 90 85 95

  创 新 95 95 85

  处理问题能力 95 90 95

  根据实际需要,学校将语言、综合知识、创新、处理问题能力按20%、30%、30%、20%的比例计算成绩,此时谁将被录用?

  第四环节:课堂小结(2分钟,学生总结0

  内容:说说算术平均数与加权平均数有哪些联系与区别?

  教师引导学生比较、议论、交流、总结出结论:

  算术平均数是加权平均数各项的权都相等的一种特殊情况,即算术平均数是加权平均数,而加权平均数不一定是算术平均数。

  由于权的不同,导致结果不同,故权的差异对结果有影响。

  第五环节:布置作业

  课本习题8.2。A组(优等生)1、2、3 B组(中等生)1、2

  C组(后三分之一)1、2

  平均数教案 24

  教学目标

  知识技能:结合解决问题的过程,使学生理解平均数的含义,初步掌握求平均数的方法,体会平均数的必要性,能根据简单的数据解决一些简单的实际问题。

  过程与方法:在合作探究与交流的过程中体验运用所学知识,理解平均数。

  情感态度:向学生渗透统计思想,使学生感悟到数学知识内在联系的.逻辑之美,进而培养好数学的信心。

  教学重点

  明确平均数的意义,掌握求简单平均数的方法。

  教学难点

  通过进一步的操作和思考,运用平均数的相关知识解决问题体会平均数的意义。

  教法学法

  操作法、观察法、自主、合作、探究

  教学准备

  课件,表格。

  教学过程

  一、创设情境,激发兴趣

  游戏导入:同学们看过最强大脑吗?今天这节课,老师想在我们选出属于我们班的最强大脑,你们想挑战吗?

  出示游戏规则:课件出示数字,学生进行活动,保留游戏结果,待最后揭晓答案。

  设计意图:给学生留有神秘猜想的空间,使学生有浓厚的接受新知的兴趣。

  二、探究交流,解决问题

  (一)认识平均数

  淘气记住几个数字?

  1、引导思考:平均每次记住6个数字是怎么得来的?

  2、学生合作交流,反馈

  A、移多补少

  B、总数÷个数=平均数

  3、引出:平均数是一组数据平均水平的代表。“6”是匀出来的。

  (二)生活中的平均数。

  1、学生举例说

  2、计算平均数,思考极端数对平均数的影响。

  小红语文99分,数学100分,英语95分,平均分多少分?再加一门科学46分,均分会有什么变化?

  思考:平均分在什么范围内?大约是多少?并计算平均分。

  同桌合作交流,全班汇报。

  小结:极端数据会影响平均数的结果。

  设计意图:通过学生熟悉不过的考试分数例子,来内化极端数字对平均数的影响。这样理解起来更容易。

  (三)联系实际,拓展应用

  根据平均数知识,解释现象。

  每小组选做一题,小组合作交流思想,全班汇报。

  1、评委打分;

  2、争做小法官

  3、猜年龄

  师:揭晓答案:38岁、9岁、8岁、11岁、8岁、12岁、8岁、9岁、8岁、9岁

  设计意图:让学生体会平均数是一组数据的平均水平的体现,但每一个数字都会影响平均数。

  4、计算自己记数水平,评选本班最强大脑。

  (四)课堂小结

  谈谈这节课你的收获。

  板书设计

  平均数

  移多补少

  总数÷个数=平均数

  《平均数》 教案这篇文章共2848字。

  平均数教案 25

  教学目标:

  1.学生在具体的情境中,感受平均数是解决一些实际问题的需要,体会平均数的意义,学会计算简单数据的平均数。(结果是整数)

  2.运用平均数的知识解释简单的生活现象,能解决简单的实际问题。

  3.操作、交流的过程中,建立学习数学的信心,发展统计观念。

  教学重点:

  理解平均数的意义,学会求简单数据的平均数。

  学具准备:

  移动学具板 、作业纸

  教具准备:

  移动示范板 、 课件

  教学过程:

  一、放情景录像,预设认知冲突

  1.谈话导入、回顾情景。

  2.读懂统计图,获取相关信息

  从这两幅图中你能知道哪些信息?

  3.提出预设问题

  这一组同学在套圈比赛中,谁获得了胜利?是男生套得准一些,还是女生套得准一些呢?

  二、自主探索方法,理解平均数的意义

  1.引起争议,探求公正的策略

  当两组人数不相等时,怎样判断哪组套的更准一些?你们有没有公平的办法?

  2.萌发求平均数的.需求,得出有效途径求平均成绩

  3.小组动手操作,探索求平均数的方法

  那我们应该怎样求男生、女生各组的平均成绩呢?

  4.全班交流,感知方法

  (1)移多补少

  (2)一般方法

  男生:6+9+7+6=28(个) 284=7(个)

  女生:10+4+7+5+4=30(个) 305=6(个)

  男生组算式中的9、6、7、6和28各代表什么呢 ?

  为什么女生求出的总数30除以5,而不是除以4呢?

  5.理解平均数的意义

  我们求出男生组平均每人套中7个 ,是不是每个男生都套中7个,女生组平均每人套中6个,是不是每个女生都套中6个呢?那7和6分别是指什么?

  小结:7是男生组的平均成绩,也就是6、9、7、6这组数的平均数。6是女生组的平均成绩,也就是10、4、7、5、4这组数的平均数。

  6.新课小结,揭示课题 ,体会求平均数是解决这类问题的有效方法之一

  三、感受平均数与生活的联系,体会平均数的作用

  平均数的用途可大了;我们的学习、生活、工作中,处处要用到平均数,你们瞧!这里是有关平均数的一些资料。

  1.盐城去年全年平均气温在18摄氏度。

  2.盐城市某小学三年级有10个班,平均每班人数为47人。

  3.小明的语、数、外,三门考试,平均成绩为92分。

  4.盐城市某小学三( 5 )班同学平均年龄为8岁。

  现在我们就带着新朋友平均数,来解决我们生活中的实际问题吧!

  四、巩固强化,拓展应用

  1.移铅笔 (93页第1题)

  目的:体会移多补少的思想,加深对平均数意义的理解。

  2.三条丝带的平均长度 (94页第2题)

  目的:体会一般方法的优越性,上升数学的真正特征,自主领悟平均数一定在最大值和最小值之间。

  3.辨析题(第94页 第3题)

  目的:加深理解平均数的意义

  4.综合性训练:

  目的:进一步理解平均数的意义,训练学生根据问题收集相关信息、分析数据、有根据预测的能力。

  五、全课总结(略)

【平均数教案】相关文章:

平均数教案04-12

《平均数》教案08-27

《平均数》 教案05-30

《平均数》教案15篇11-28

平均数数学教案05-27

《平均数》教案(15篇)07-12

(荐)《平均数》 教案15篇05-30

三年级平均数教案10-17

《平均数》的教学反思07-02

平均数的教学反思08-22