- 相关推荐
圆数学教案
作为一名教学工作者,时常需要用到教案,教案有利于教学水平的提高,有助于教研活动的开展。那要怎么写好教案呢?下面是小编精心整理的圆数学教案,希望对大家有所帮助。

圆数学教案1
一、教学目标
(一)知识与技能
根据生活实际,通过观察、操作、自学教材等活动认识圆,掌握圆的特征,了解圆的各部分名称并能用字母表示对应的名称。
(二)过程与方法
了解可以应用不同的工具画圆,掌握用圆规画圆的方法,会用圆规正确地画圆。运用画、折、量等多种手段,理解同圆或等圆中半径和直径的特征和关系。
(三)情感态度和价值观
通过对圆的了解,进一步体会数学和日常生活的密切联系,提高数学学习的兴趣。
二、教学重难点
教学重点:圆的'各部分名称和特征,用圆规正确地画圆。
教学难点:归纳并理解半径和直径的关系。
三、教学准备
多媒体课件、学具(圆规、尺子、剪刀、绳、钉子、各种物体表面有圆形的实物等)。
四、教学过程
(一)情境创设,揭示课题
1.谈话引入。
教师:我们学过的平面图形有哪些?
(1)学生回忆交流:有长方形、正方形、三角形、平行四边形、圆……
(2)今天我们要更深入地来认识“圆”。(板书课题:圆的认识。)
2.列举生活实例。
教师:在生活中,圆形的物体随处可见。
(1)展示教材图片:从奇妙的自然界到文明的人类社会,从手工艺品到各种建筑……到处都可以看到大大小小的圆。
(2)教师:你能说说自己所见过的圆吗?(学生列举回答。)
【设计意图】通过简短的“平面图形有哪些”的谈话直接引出课题,简洁明了,同时无形中也巩固了“圆是平面图形”这一知识点;学生对圆已有一定的认识,因此通过主题图欣赏生活中的圆,让学生找找自己生活中见过的圆,使学生对圆有了初步的了解,激发了进一步学习圆的兴趣。
(二)利用素材,尝试画圆
1.尝试运用不同的工具画圆。
教师:如果请你在纸上画出一个圆,你会怎样画?
预设:
(1)利用圆形的实物模型的外框画圆;
(2)用线绕钉子旋转画圆;
(3)用三角尺;
(4)用圆规……
2.运用圆规画圆。
(1)认识圆规。
课件出示圆规图片,帮助学生认识圆规。
圆规的组成:一只“带有针尖的脚”,一只“装有铅笔的脚”。
(2)用圆规画圆。
学生自己尝试画圆,边尝试边小结方法:定好两脚间的距离——把带有针尖的脚固定在一点上——把装有铅笔的脚旋转一周,就画出一个圆。
教师:说说用圆规画圆要注意什么?
预设:
①固定住针尖;
②两只脚之间的距离不随意改变。
【设计意图】学习画圆的过程让学生充分经历了自主尝试的过程,从最初的利用实物外框、三角尺等工具画圆,让学生经历了从实物抽象出平面图形的过程;运用圆规画圆,重点说说画圆时的注意事项,更是培养了学生自主解决问题的数学素养。
圆数学教案2
一,教学目标
1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。
2,培养学生的观察,比较,概括和动手操作能力。
3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
二,教学重点
掌握并理解圆的周长,公式推导过程。
三,教学难点
理解圆周率的意义。
四,教学过程
一,创设情境,提出问题
1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。
2,你们知道这圈花边的边长是什么 (生:圆的周长。)
3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法
二,师生共同提出假设
1,请学生回忆正方形周长和边长的关系。(边长×4)
2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢
生:半径,直径……
3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么
学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。
4,师:你估计圆的周长是其直径的几倍
生猜想:3倍左右。
5,师:你有办法验证吗 生讨论
教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。
三,合作交流,发现规律
1,学生思考后可能出现的以下办法:
⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。
⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。
师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢
⑶ 学生在小组内动手操作,测量进行验证。
直径(cm) 周长(cm) 周长是直径的几倍
2 6。2 3倍多一点
3 9。1 3倍多一点
4 12。9 3倍多一点
2,
a,”圆的周长÷直径”等于3倍多一点,经过科学家精密的论证,计算发现这个”3倍多一点”是一个固定数叫圆周率3。14159……是一个无限不循环小数,我们在计算时通常取3。14,用字母π表示(请学生写一写)
b,结合圆周率进行爱国注意教育。
c,师生共同推导计算圆的周长公式。
教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。
四,实践应用,拓展新知
1,学生尝试求圆的周长
d=2cm r=3。5cm d=10cm
2,圆形花坛的`直径是20cm,它的周长是多少m
3,请同学们画一个周长是15cm的圆。
教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。
五,,体验成功
1,通过这节课的学习,你学会了什么
2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm
板书设计:
圆的周长
围成圆的曲线的长叫做圆的周长。
c=πd c=2πr
圆数学教案3
教学内容:
上教版四年级第一学期P74~75
教学目标:
1、经历主动探索、操作画圆等活动,理解圆的本质特征。
2、初步学会用圆规画圆。认识圆心、半径并知道其作用。
3、培养学生的观察、操作、抽象、概括等能力,进一步发展空间观念。
教学重、难点:
理解圆的本质特征。
教具准备:
圆规、课件、三角尺
学具准备:
圆规、直尺、A4纸、正方形纸
教学过程:
一、创设情境,丰富表象,初步感知圆的形成过程。
1、寻宝游戏:
师:小胖得到一张纸条,宝物藏在距离小胖3米远的地方。请你在这张纸上点上一个点,这个点就是小胖,这个宝物在哪儿呢?在纸上表示出你的想法,纸上1cm表示1m,请你表示出距离小胖3m远的宝物可能所在的位置。
揭题:带着这个问题走进我们今天的学习,齐读课题。(板书:圆的认识)
2、对比认识:
师:图形不同他们的特点也不一样,所以确定他们大小所需要的数据也不一样,我们今天学习什么?圆的大小究竟是谁确定的呢?
二、尝试画圆,揭示圆的本质特征。
1、认识圆心,半径
师:请你在空白纸上,画出3个圆,可以同样大,也可以画3个大小不一,边画边体会,圆的大小有谁确定?
师:要画出大小一样的圆,有什么窍门,怎么样保证画出的圆的大小完全相同?
(能不能说得更具体一点)
师:只要保证圆规两脚的距离不变,画出的圆大小就一样的,同意吗?
师:要想画出大小不同的圆,有什么窍门?
师:圆规开口的两个脚或者两个针尖的距离不一样。
师:这样看来,圆的大小是谁确定的呢?
师:圆规开口的大小决定圆的大小。
师:我们就以这个圆为例,针尖在这里,圆规两脚的距离,指的是从哪儿到哪儿的距离?(书空)
师:你能用一条线段把他表示出来吗?(呈现作品
师:像这样,一端在圆的中心,一端在圆上的线段,数学中把他叫做什么?
师:中间这个点叫圆心,用字母0表示,连接圆心0与圆上某一点的线段叫做(半径),用字母r。
师:找到圆心O,标上半径r。
总结:现在看来,圆的'大小是由半径决定的,半径越长,圆越大,半径越短,圆越小。
2、探究圆的有无数条,半径都相等
师:小组讨论,看看那个小组认识最深刻,方法最多元。
师:先解决第一问题,半径真有无数条吗?
师:圆的半径有无数条都相等,都相等吗?拿出理由啦,没有理由的都只能成为猜想。
师总结:得出结论了圆的半径有无数条,同一个圆里面半径都相等。
3、深化对比
真因为这样,200多年前,我们伟大的思想家墨子,说了“圆,一中同长也”
,一中指,同长呢?正因为一中同长,虽然有无数条半径,但只要几条就能知道圆的大小?
师:难道以前的这些图形不是一中同长吗?
4、认识直径
师:在圆里面,除了半径能决定圆的大小,还有一条线段也能决定圆的大小,找一个圆画出心目中的直径。
展示作品:直径
师:是不是圆里面的随便画一条就是直径?怎样的线段是直径?用自己的话概括一下?
师:穿过圆心,两个端点在圆上。
半径有无数条,长度相等,猜猜直径有什么特点?
师:直径有无数条我们就不在研究了,和我们刚才的半径无数条的想法差不多,那为什么直径的长度都相等呢?除了测量你有什么更好的办法来说明?
师:同一个圆里面,直径是半径的2倍。
想圆猜物。
师:那我就来点线索,当我线索出来的时候,第一独立思考,第二,同桌前后迅速碰撞,猜一猜我带的是什么?
半径:15cm
师:仔细观察这个钟面,你在这个钟面上,你找到圆了吗?他指完了,还有别的圆的,你可以继续补充?
师:哪根针转出的圆大?
说明圆的大小和什么有关?
圆的大小和半径有关,既然圆的大小和半径有关。谁决定了圆的位置?
师:他在没有圆的地方,他发现了3个动态的圆,这就是数学的洞察力。
直径:135cm
师:数据太大了,我再给点提示。
师:全球最大的摩天轮,知道在哪儿吗?伦敦眼,杨老师为了上好这节课,专门跑了一趟伦敦,拍了张照片我就回来了。话说那天去啊,杨老师和杨老师的朋友一起去的,他知道杨老师是数学老师,就给杨老师出了一道题,他说我们俩这次做摩天轮分开来坐,而且坐得越远越好,他蹭蹭蹭的爬上去了,你猜我在哪儿?
师:谁能用数学的语言描述一下,我究竟坐在那儿?
原来我在直径的那里,他在直径的那里。
师:当我们把这些线段连起来,圆里面发现了许多的线段,仔细发现,哪条线段最长?(直径最长:原来小小的游戏里面,蕴含着朴素的道理,直径是一个圆里面最长的线段)
总结回顾
师:最后,千金难买回头看,距离小胖3米的宝物为什么是圆呢?又真的是圆吗?
师:你能说说球和圆有什么区别?
学习到这儿,我们的数学课将要结束了,杨老师希望在座所有的同学都能拥有一双数学的眼睛,你会在生活中发现更多的圆,了解更多圆的奥秘。
圆数学教案4
教案目标:
1、认识圆形,能区分圆形与其它形状;
2、能举出生活中的圆形物体;
3、能初步了解圆形在生活中的用途。
教案准备:
1、五张画有圆形的纸;一张画三角形的纸,一张画正方形的`纸。
2、小羊、小鸡、小熊、小猫、小狗、小兔头饰各一个。
3、轮胎、呼拉圈、镜子、足球、碟片各一。
教案过程:
1、认识圆形:出示画有圆形的纸,幼儿观察。
教师:这是什么啊?幼儿答。
教师:对了,有的小朋友说是圆圈圈。今天我们就是讲这个圆。它叫圆形,跟老师念:圆形。它长得圆乎乎的,没有角,没有边,像圆圆的饼干,也像圆圆的太阳,也像圆圆的皮球。
2、区分圆形与正方形、三角形:同时出示正方形、三角形、圆形,让幼儿观察并区分是否是圆形。
3、画圆形:幼儿伸出右手在空中画圆:跟着老师先确定一个起点,向左转圆圆地转向右边再回到起点,就像圆圆的太阳升起在天空,也像圆圆的足球放在地上。
4、导入故事讲述:我们认识了圆、区分了圆、也画了圆,小朋友们知道圆在生活中的用途吗?请听故事:《小羊卖圆》。请五位幼儿协助老师讲述故事。
5、听了故事,小朋友们也看到了生活中的圆的应用,那你们还能不能找出其它的圆形物体呢?幼儿举手回答。教师记录。
6、结束部分:游戏《拉个圆圈走一走》。
教师:小朋友们认识了圆形,那我们现在用小手来做个大圆圈好不好?开始游戏。
活动延伸:
让幼儿回家同家长一起找家中的圆形物品,加深对圆形的认识。
圆数学教案5
1、教学目标
1.理解和掌握圆面积的计算公式,沟通圆与其它图形之间的联系,增强观察、操作、分析、概括的能力以及逻辑推理能力。
2.学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;感受极限、转化、以直代曲等数学思想方法。
3.认真观察、深入思考,面对困难勇于克服、弃而不舍。
2、学情分析
《圆的面积》一课是小学数学第十一册第五单元第四小节的起始课。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。以往主要教学方法是:教师先带领学生将圆沿半径剪开,将若干个小扇形拼成长方形,借助长方形面积公式来推导圆面积的公式。然后在教师的引导下部分学生再将圆转化成平行四边形,甚至梯形、三角形,借助已知图形的面积公式推导圆面积的公式。一节课至少展现三、四种转化方法,教学容量较大、内容较难。
看到这样的教学过程我产生了一些困惑:
1.学生能想到这样的转化的方法吗?——这使我想到了学生学习平面图形的历程。学生第一次学习最基本的图形的面积:长、正方形。可以看出使用面积单位拼摆的方法得到的图形面积其实是最为直接的方式。学生学习的所有直线段图形,可以看出它们之间有着非常直观地联系,易于转化。作为第一个曲边图形“圆”,面对以上学习的转化发过程,学生怎么就能想到把圆等分成小扇形并拼出学过的图形呢?这无疑需要一个思维的飞跃,如果这个飞跃的过程是属于学生自己的,那样才是真正有价值的。
2.在老师的讲授下又有多少学生能理解多种转化方法呢?
我先在自己班进行了多种转化方法的试验,发现还真有孩子的思维水平让我刮目相看,可我也发现有80%的孩子这节课没有参与真正的实验研究,只是跟着别人看、听,下课时有一半的孩子还不认可圆面积转化的过程。
一节课是只为20%的孩子服务,还是应尽可能让每一个孩子都有不同层次的体验与收获呢?
3、重点难点
教学重点:运用转化思想探索圆面积的解决办法。
教学难点:如何将曲线图型转化成直线型图形以及对极限思想的渗透。
4、教学过程
活动1【导入】引入课题
同学们圆是我们在小学阶段接触的第一个曲边图形,它在生活中也有广泛的应用,我们来欣赏一下生活中的圆吧!(ppt到泳池)
今天我们一起要来研究的是圆的面积。(板书课题:圆的面积)
活动2【导入】交流困难
我看到有同学已经有了自己的想法,但是,面对“圆”这么特殊的图形也有了一些问题,我们先暂停手中试验,一起来分享一下!
(1)有同学在圆里画出了一个正方形,请这样的同学来介绍一下?教师操作
ppt提问:我们学过了这么多种平面图形,可你们怎么就想到在圆里画正方形了。
生1:因为他和圆最接近,
师:你能想一想,为什么说正方形和圆最接近吗?
生2:正方形正正方方的,四边都一样长,
生3:在圆中画正方形会让剩下的部分最少,而且剩下的部分都是一样的。
生4:正方形和圆最像了,正方形的对称轴最多,圆有无数条对称轴。
师:看看同学们多么善于思考呀,通过你们的发言让我感受到,和其他学过的图形相比正方形和圆真的非常接近,你们的数学直觉真敏锐,太了不起了。
(2)在圆里画出了很多的小方格,请这样的同学来介绍一下?。
提问:看看同学们的想法多有创意呀,但是你们是怎样想到用小方格来解决问题的呢?
生1:我们最开始学习长方形、正方形的面积时就是用面积单位拼摆的方法研究。
生2:我们以前学习的'很多图形的面积,比如平行四边形、三角形、梯形其实都可以用方格来计算,可以数有多少1平方厘米的小方格,就可知道图形的面积了。
师:你们真是了不起,我们最初学习的面积单位,它是一个最基本的研究图形面积的方法,后来我们又学习了不同的研究图形面积的方法,比如像拼摆、割补等方法,运用面积单位寻找图形面积就不太常用了,今天同学们面对圆面积的时候又想到了它,你们的好方法让我想起了我的一位老师说过的话:退回到原始,不失其本质!
(3)还有一种想法也来和大家分享。
他发现原来学习的图形之间都是有关系的,可以相互转化。想到了我们在研究图形面积时最常用的方法“转化”,你们认为转化不精确是吗?
活动3【讲授】小结
同学们你们开动脑筋,用你们的智慧已经能够解决圆面积中绝大部分的问题,同时也遇到了想要更精确地得到圆的面积,需要解决剩余面积的问题。对于这些不可知的地方,我们是否可以继续去研究它,让这些不可知的地方越来越小,是否就越来越接近圆的面积了呢?困难就摆在这里,但研究的智慧与方法在你们的头脑中。选择你感兴趣的研究方案,赶快动手试试吧!回到Iteach,可以继续研究,也可以删除重画。完成之后拍照提交到讨论二!学生操作
活动4【活动】全班交流
师:我想同学们一定像数学家一样非常投入地在研究圆的面积,老师从心里钦佩你们。有句话说:倾听是分享成功的最好方法,那么我们就一起来看看同学们是如何来解决圆面积的问题。教师操作
(1)刚才在圆中画正方形的同学先让我们看看他们后续的研究吧!
生1:我在空余部分补了补了三角形。
还有同学发现空余的部分还可以继续在上面补三角形会更接近圆。
师:看来他真的有了属于自己的研究成果。对于这位同学的研究过程,同学们有什么疑问或是感想吗?
生1:总是这样补三角形真的可以越来越接近圆的面积,就是有点麻烦。
生2:如果只看图形最外面一圈,我发现是一个正多边形。
师:同学们仔细观察一下,最外面一圈是一个什么样的图形?这个图形有什么特点吗?你还有其他的发现吗?
生:的确是正多边形,如果正多边形的边数更多一些,几乎就是一个圆了。
师:这位同学用了“几乎”,你们能想象到了吗?请看投影,看到这样的变化过程能谈谈谈你们有什么感受吗?
同学们一定发现了多边形边数越多越接近圆。
ppt有这样一句名言:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。这句话是什么意思呢?这里“割”就是分割的意思;“失”指误差。这就是说,圆内接正多边形的边数无限增加的时候,它的周长会越来越接近直到等于圆周长,它的面积也会越来越接近直到等于圆面积。这句话出自我国魏晋时期的数学家刘徽,曾用圆内接正多边形计算出π的近似值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。短暂的时间你们都和大数学家有了相同的发现,多了不起呀!(贴)
(2)我们再来看看刚才画小方格的同学们后面的研究吧!
生:可以把剩下的地方画更小的方格就可以算出准确的面积了。
师:这位同学也有了自己的研究成果,可以非常准确的解决圆面积的问题了。对于这位同学的研究过程,你有什么疑问或是感想吗?
生:有同学会问:这样就真准确了吗?是不是永远都会有曲边存在呢?
小结:同学们想一想,既然可以画更小的格,曲边小了方格可以画的更小,是不是可以这样无限的画下去呢?
生:这样画下去倒是可以,但是算起来太麻烦了。
师:的确会让我们感觉计算起来比较麻烦,但其实只是我们缺少一些更好的计算方法而已,等你们以后学了更多的知识,计算就不再是问题了。同学们用了最为普遍的方法,虽然看似简单,却能解决这个很难的曲边图形的面积,如果以后再遇到更特殊的图形面积,你们有没有信心解决呢?我想一定是没问题的。
(3)我们再来看看第三位同学又有了什么新的发现吧!
生1:将圆等分成16分,拼成一个近似的平行四边形,平行四边形的底边长度其实就是圆周长的一半,而平行四边形的高就是圆的半径,所以,平行四边形的面积是底乘高,那么圆的面积就可以用圆周长的一半乘半径得到。
师:对于他们的方法你有什么疑问或是受到什么启发吗?
生:圆看似很特殊,其实和其他图形也是有联系的,
生:这是真正的平行四边形吗?他的上下两条底边都是弯弯曲曲的。教师操作
的确现在看来还是有点曲边的,但要是细分下去,16份,32份、64份,你觉得会怎样?
Ppt:那样就会越来越行四边形,曲边越来越直。但是无论分多少份其实道理是一样的,平行四边形的底是圆周长的一半,平行四边形的高是圆的半径。
师:让我们再来看一看圆面积的转化过程,将圆沿半径剪开,拼成平行四边形,圆的面积等于平行四边形的面积。平行四边形的底是圆周长的一半,平行四边形的高是圆的半径,圆周长的一半可以表示为c/2=2
活动5【讲授】总结
看看你们是多么的了不起呀,对于圆这么特殊的图形,同样能够找到它与学过图形之间的联系,从而寻找到圆面积的计算公式,可以帮助我们方便快捷的得到圆的面积。面对这样的方法对你有什么启发吗?你还有其他的想法吗?
前几节课我们已经认识了圆并学习圆的周长,那么对于圆你能说说你的感受吗?
我们曾经感受到了圆的圆润和完美,在今天这个探究的过程中,我们不仅再一次体会到圆的完美和神奇,而且还发现了圆和正方形、正多边形,以及学过的很多图形之间有着千丝万缕的联系。其实在圆中还有许多的美妙与神奇,有待我们今后继续探索。
圆数学教案6
【教学内容】
教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。
【教学目标】
1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。
2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。
【教学重、难点】
掌握并理解圆的周长计算公式及其推导过程。
【教具、学具准备】
圆规、直尺、课件、圆纸片、线。
【教学过程】
一、导入新课
出示情境图:谁的铁环滚一圈的距离长一些?为什么?
教师:铁环滚动一周的距离我们就叫做铁环的周长。
教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。
板书课题:圆的周长。
二、感知圆的周长与直径的关系
1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?
学生指出并回答。(略)
2.观察。
课件演示右图:
问题:这两个圆周长有什么关系?你是怎么知道的?
小结:直径相等,圆的周长就相等。
3.课件演示右图:
问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。
4.小结。
问题:通过刚才的观察,你有什么发现?
学生:圆的周长和直径有关系。
三、探究圆的周长与直径的倍数关系
圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。
1.小组讨论,制定探究步骤。
出示探究建议:
(1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。
2.说明活动要求。
每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。
圆的直径圆的周长周长除以直径的商(保留两位小数)
3.小组合作,进行探究。
4.汇报交流。
(1)交流测量的方法。
提问:谁来介绍一下,你们组是怎样测量圆的周长的?
学生汇报测量的方法。(绳绕法、滚动法……)
教师:在这些方法中,最欣赏哪个组的方法?
小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)
(2)交流计算方法和结论。
提问:观察这些计算结果,你有什么发现?你还有哪些了解?
学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。
5.介绍圆周率。
圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的.周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,1999年日本的两位科学家把π值精确到20xx亿位。
6.总结圆周长的计算方法。
问题:你怎样理解周长/直径=π?你还能知道什么?
结论:c=πd,d=c/π,c =2πr,r=c/2π。
说明:为了计算方便,我们把π近似的取为3.14。
7.教学例2。
让学生独立列式计算,提示用估算检查计算结果。
[评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]
四、巩固练习
(一)判断。
1.π=3.14。()
2.计算圆的周长必须知道圆的直径。()
3.只要知道圆的半径或直径,就可以求圆的周长。()
(二)选择。
1.较大的圆的圆周率()较小的圆的圆周率。
a.大于b.小于c.等于
2.半圆的周长()圆周长。
a.大于b.小于c.等于
(三)实践操作。
请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。
五、课堂小结
通过这堂课的学习,你有什么收获?你还有什么问题?
六、课堂作业
1.课堂活动第1、2题。
将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。
2.练习五第1~5题。
在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。
七、课后作业
1.求下面各圆的周长。
(1)d=2米(2)d=1.5厘米(3)d=4分米
2.求下面各圆的周长。
(1)r=6分米(2)r=1.5厘米(3)r=3米
[评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]
圆数学教案7
教学目标
知识
1.使学生认识圆,知道圆的各部分名称.
2.掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系
能力
培养学生动手实践、观察分析、合作交流的能力
情感
使学生认识到圆在日常生活中的存在和作用,体验数学的价值
教学重点
理解和掌握圆的特征
教学难点
理解圆上的概念,归纳圆的特征
教 学过程
时间
教师主导活动
学生主体活动
信息技术运用
设计意图
3分钟
一、游戏引入,出示不合理的游戏规则
学生寻找合理的游戏规则,从而引入圆,激趣引入
2分钟
师:实际圆在我们生活中的应用非常广泛,你能说出我们周围的物体上哪里有圆?
生口述举例
课件出示生活中的圆
认识生活中的圆
师:圆的应用这么广泛,今天我们就来探索圆的有关认识。师板书课题:圆的认识
2分钟
二、新授
1、认识圆的形状。
出示一组由线段组成的图形与一个圆,请同学们找出圆与它们的联系和区别
学生讨论后汇报
课件出示
认识圆的特征
5分钟
2、认识圆的各部分名称
(1)圆心
师:粉笔盒所在的点就是圆心,给你一个圆,你能找到它的圆心吗?
折过若干次后,你们发现了什么?
折痕相交于圆中心的`这一点,我们把它叫做圆心,一般用字母O来表示.
教师板书:圆心(O)
生动手操作
课件出示要求:请同学们用一个圆形的物体,在纸上画一个圆,然后剪下来,对折,打开,再换个方向对折,再打开,反复几次。
通过折纸认识圆心
5分钟
(3)半径
师:我们为什么要站成圆形呢?
师:我们把每位同学到粉笔盒所连的线段叫半径
谁能用自己的语言总结什么叫半径?
教师板书:半径(r)
教师:在同一圆里有多少条半径?为什么?所有半径的长度都相等吗?
生:因为我们每位同学到粉笔盒的距离都相等
生:这些连接圆心与圆上任意一点的线段叫做半径,一般用字母r表示
演示半径的画法
认识半径的意义及特征
5分钟
(4)直径
教师:请观察你们折过的纸圆的折痕,你能发现什么?
教师板书:直径(d)
教师:在同一圆里有多少条直径?为什么?所有直径的长度都相等吗?
学生讨论
生:通过圆心,两端都在圆上的线段叫做直径,一般用字母d表示.
演示直径的画法
认识直径的意义及特征
巩固练习:完成书87页的做一做
5分钟
3.直径与半径的关系.
教师让学生在自己的纸圆片上画出三条直径,三条半径..
教师:同学们用直尺量一量你们手中的圆的半径、直径,看能发现什么?
学生动手操作、画圆
得出结论:在同一圆里,直径的长度等于半径的2倍。
D=2r
或r=d/2
课件演示两条半径通过移动变成一条直径
认识圆的特征
2分钟
小结:通过今天的学习,你有什么收获?
作业:练习二十二1、2、3
板书
设计
圆的认识
1、圆心用字母O表示4、直径与半径的关系
2、半径:连接圆心与圆上任意一点的线段叫半径d=2r或r=d/2
通常用字母r表示
同圆内,有无数条半径,所有的半径都相等
3、直径:通过圆心,两端都在圆上的线段叫直径
通常用字母d表示
同圆内,有数条直径,所有的直径都相等
教学
反思
学生能认识圆的特征,知道圆的各部分名称.能理解和掌握在同一个圆里半径和直径的关系,所有同学学习热情高涨,学习效果较好,学生认识到圆在日常生活中的存在和作用,体验数学的价值。
圆数学教案8
教学目标:
1、使学生经历操作、观察、天表、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
教学过程:
一、导入新课。
1、谈话:关于圆这个图形,我们已经认识了它的特征和画法,还掌握了它的周长,今天我们要继续学习圆的有关知识。那么你们还向学习关于圆的哪些知识呢?(学生回答后揭示课题:圆的面积)
2、追问:你认为要学习圆的面积,我们需要研究哪些问题?
根据学生的回答重点整理出:
(1)圆的面积公式是怎样的?这样推倒出圆的面积公式?
二、教学例7。
1、初步猜想:圆的面积可能与什么有关?
2、实验验证:圆的面积和半径或直径究竟有着怎样的关系呢?我们可以开做个实验。
(1)出示例题第一幅图。
提问:图中正方形的面积和圆的半径有什么关系?猜一猜,圆的面积大约是正方形的几倍?(引导学生观察得出圆的面积小于正方形的4倍,有可能是3倍多一些,并让学生适当说明自己的想法)
出示方格图后指出:用数方格的方法验证猜想。
交流数方格的方法。
计算:这个圆的面积大约是正方形面积的几倍,并将结果记录下来。
(2)指出:只用一个圆,还不足验证猜想,我们再找两个圆,并用上面的方法算一算。
让学生观察例题中的下面两幅图,计算并填写图下的表格。
3、交流归纳:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?
学生交流中相机总结:
(1)圆的面积是它的半径平方的3倍多一些。
(2)圆的面积可能是半径平方的π倍。
三、教学例8。
1、谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。那么圆的面积究竟应该怎样来计算呢?我们继续学习。
2、2、操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。再让学生用预先已经平均分成16份的圆,仿照教师的拼法拼一拼。
提问:拼成的图形像个什么图形?
追问:为什么说它像一个平行四边形?(拼成的图形上下的边不够直。)
3、初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,品成的图形与前面的图形相比竟回有怎样的变化?用实物或投影演示,验证或修正学生的想象。
4、进一步想象:如果将圆平均分成64份、128份)--也用类似的'方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形回越来越接近一个什么图形?
5、交流后,教师出示推导图。
6、推导公式。
(1)拼成的长方形与原来的圆有什么联系?在小组中讨论交流。
交流中借助图示小结:长方形的面积与员的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。
追问:如果圆的半径是R,长方形的长和宽个应怎样表示?(重点引导学生理解=)
(3)根据长方形面积的计算方法,怎样来计算圆的面积?
根据学生的回答,完成形如教科书第105页上的板书,并得出公式:S=πr.
追问:(1)看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?
(2)有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
7、做练一练。
核对答案后,先引导学生比较两体的不同之处,再引导学生总结已知直径求圆面积的方法。
四、教学例9。
1、出示例9。学生读题后,可以先问问献身个有没有在生活中见过自动旋转喷水器,西崽让学生想象自动喷水器旋转一周后喷灌的地方是什么图形,最后借助图形帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远的距离。
2、学生独立列式解答,并组织交流。
五、练习。
1、指名读题,并要求说说对题意的理解。
2、学生独立尝试解答。
3、反馈交流,
六、全课小结。
今天的课,你有什么收获?
圆数学教案9
【教学内容】
义务教育课程标准北师大版试验教材六年级上册第一单元第6、7页圆的认识二。
【教学目标】
1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。
2、进一步理解轴对称图形的特征,体会圆的特征。
3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。
【教学重、难点】
1、圆的`特征。
2、同一个圆里半径与直径的关系。
【教具、学具准备】
1、三角尺、直尺、圆规。
2、教学课件。
【教学设计】
教 学过程
教学过程说明
一、实践操作。
1、折一折。
每人准备一个圆,请同学们想办法找出圆心。
2、小组活动:剪几个圆,折一折,你发现了什么?
小组交流。
3、汇报:沿着任意一条直径对折,都能完全重合。
4、小结:圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴。
在同一个圆里,直径的长度是半径的2倍,可以表示为d=2rr=d/2。
二、尝试练习。
1、说一说学过的图形中哪些是轴对称图形?分别有几条对称轴?
正方形:4条
长方形:2条
等腰三角形:1条
等边三角形:3条
圆:无数条
2、要求学生剪出书本第7页做一做的三幅图,沿中心点A转动,同学们发现了什么?
三、巩固练习。
1、练一练第一题。
学生在书上填写,集体交流。
2、练一练第二题。
学生在书上填写,集体交流。
3、练一练第三题。
学生画出对称轴,集体交流。
4、练一练第四题。
学生实际测量,集体交流。
5、练一练第五题。
学生在书上填写,集体交流。
使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。
引导学生整理已学过的轴对称图形。
让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。
通过练习,进一步巩固所学知识。
四、全课小结。
【教学反思】
学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。
存在问题:对于画对称轴,学生掌握得层次不齐。需要进一步练习巩固!
圆数学教案10
教学目标:
知识目标:使学生在观察、操作、画图等活动中感受并发现圆的有关特征
能力目标:在活动积累认识图形的学习经验,增强空间观念,发展数学思考。
情感目标:提高数学学习的兴趣和学好数学的自信心。
教学重点、难点:
在观察、操作、画图等活动中感受并发现圆的有关特征
教学过程:
我们曾一起探寻过美丽的图形王国里很多图形的奥秘,如长方形、正方形、三角形、平行四边形、梯形和圆形(黑板上贴出),你能找出其中与众不同的图形吗?
(学生的答案是丰富多彩的,只要合理就行,教师引导学生说出--圆,从而引导出圆是由曲线围成的平面图形)那老师要问一问了,你打算怎样研究圆,从哪些方面入手呢?
(小组同学互相说一说)生汇报,教师适当板书
那这一些呢?它们的圆又藏在哪里?(生答,教师引导学生用手指一指)仔细看!(
据你对圆的一些了解,你能简单介绍一下圆吗?(生介绍)
对于圆,同学们一定不会感到陌生吧?(是)在生活中,我们经常看到许多圆形的物体,瞧,这些物体上都有圆,你能把它们找出来并指一指吗?除了刚才这一些,能说说你在哪里还看到过圆形吗?
(生:钟面上有圆、轮胎上有圆、钮扣是圆的.....)
同学们,你们还想不想自己动手来研究研究圆的有关知识?(想!)好吧,就用我们手头的'工具,先自己画一个圆。开始!(请一部分学生上黑板画,画好先不下去,介绍一下画法)
【二】画圆部分
刚才我们用自己的聪明想到了很多画圆的方法,画圆的感觉怎么样?(歪歪扭扭的,不大好画......)
你知道为什么会这样吗?
在交流中再次强调:以前学过的长方形、正方形、三角形、平行四边形和梯形都是由线段围成的,而圆是由曲线围成的图形。
(1)把圆规的两脚分开,定好两脚间的距离。
(2)把有针尖的一只脚固定在一点上。
(3)把装有铅笔尖的一只脚旋转一周,就画出一个圆。]
[集体交流时,引导学生总结出画圆的注意点:针尖必须固定在一点不可移动;两脚间的距离必须保持不变;要旋转一周。(定点、定长、旋转)]
圆数学教案11
教学内容:苏教版实验教科书数学第五册第63-65页
教学目标:
1、经历探索长方形和正方形周长的计算过程,并掌握长方形和正方形的周长
计算方法。
2、通过观察、测量和计算等活动,在获得直观经验的同时发展空间观念。
3、在学习活动中体会现实生活中的数学,发展对数学的兴趣,培养交往、合作的
探究的意识与能力。
教学重点:探索并掌握长方形周长的计算方法。
教学准备:课件、边长是1厘米的小正方形6个。
教学过程:
一、设疑激趣,引入新课
在动物王国里,有一对有趣的好朋友。它们是小兔(显示)和小狗(显示)。今天他们俩要沿着草坪进行跑步比赛呢。看,比赛已经开始拉。可是刚跑完,它们却吵了起来。
(小兔:不算不算,你跑的路程比我少。小狗:不对不对,因为我跑得比你快。)
引导:看来,如果没人来帮帮忙,它们可能会无休止地吵下去了。同学们,你们来猜一猜,它们走的路程是不是一样长的呢?(指名说)你觉得它们跑步的路线与我们所学的哪一个数学知识有关?
揭题:你想得真快!老师非常欣赏你对数学的'敏感。今天我们就来研究长方形与正方形的周长问题。(揭示课题)
二、新课展开
1、提问:刚才出现了三种不同的意见,谁能想出一个科学的办法来验证你的判断是正确的,这样好让大家心服口服。
预设:(1)用绳子绕一圈,量一量绳子的长度;
(2)先量出每一步的长度,看看走了多少步,一乘就知道了;
(3)量出长、宽各是多少,再计算。
谈话:你们的办法可真多,小组讨论一下,在这里哪种办法比较合适。说说你的想法。(用绳子绕一圈太烦,有局限性;在不要求精确结果时用步测很好,这儿就不合适。)
2、提问:小狗采用了你们的办法,量出了长方形的长是45米(显示),宽是35米(显示)。
请你们帮它来算一算这个长方形的周长是多少?可以独立思考,也可以同桌讨论完成。(师巡视)
3、引导:从你们的脸上我可以看出你们肯定有成果了,谁愿意来展示一下。
4、指名说一说,并要求说清这样做的道理。
可能有这四种:
(1)45+35+45+35=160(米)这是把长方形的四条边一条一条加起来。
(2)45+45+35+35=160(米)先加两个长,再加两宽。
(3)45×2=90(米),35×2=70(米),90+70=160(米)。
(4)45+35=80(米)80×2=160(米)。
5、小结:现在我们发现计算长方形的周长有这么多的方法,请你在小组里说说可以怎样算长方形的周长。
提问:数学中简单明了的东西喜欢的人总是多一些。你比较喜欢哪种方法,说说你的想法。(算法优化一)
7、解决了小狗的问题,我们该帮小兔了,她量得正方形边长是40米,请你算出它的周长。别忘了算完后可以跟同桌交流交流算法。
学生汇报。出示两种算法:
(1)40+40+40+40=160(米)
(2)40×4=160(米)
8、提问:原来两人跑得一样多。知道了结果,小兔也对周长产生了兴趣。看,它来到了篮球场(出示书上的图)。
你们愿意跟小兔一起来解决这个问题吗?学生计算在草稿笨上。
指名说说是用什么方法计算的?你觉得用你刚才的方法计算简便吗?(算法优化二)
提问:小兔有点累了,球场服务员兔子女士马上递上手帕,它并不急着擦汗,却问我们:
显示:正方形手帕边长25厘米,它的周长是多少?
学生口答,并说说是怎样算的。
三、巩固深化,联系生活
过渡:掌握了方法,再难的问题我们都能轻而易举地解决,就请你们用已掌握的方法再来解决一些问题吧。
1、“想想做做”第3题。
(1)学生做在练习纸上。
(2)指名回答
(3)反馈。
2、出示第1、2题:四个没有显示长度的图形。(让学生提出疑问)
师:要想计算图形的周长我们必须知道每条边的长度,现在请你选择一个你喜欢的图形,先动手量出需要的数据,再计算。(完成在练习纸上)
3、生活中经常需要求长方形或者正方形的周长。这不,到了星期天,我们的史诺比又闲不住了。他去效外租了一块边长6米的正方形土地种花,考虑到这块地有可能被践踏,要在四周围栏杆,请你帮他算一算,栏杆一共长多少米?(出示想想做做第5题,让学生完成)
提问:如果花圃的一面借用这堵墙壁,栏杆需多长呢?(电脑出示图片)
同桌讨论,指名回答。
4、出示第6题,动手拼一拼。
刚才我们根据给定的图形求出了它们的周长,现在让我们一起来动手拼一个你喜欢的图形,然后再算出它的周长,好吗?
(1)拿出课前准备好的6个边长是1厘米的小正方形,在桌上摆一摆。
(2)利用实物投影展示学生的作品,并让学生说出自己所摆图形的周长是多少。
四、总结全课
谈话:今天这节课你学得开心吗?能把你今天的收获与大家一起分享吗?回家后请选择你喜欢的物体,测量并计算出它的面的周长。
圆数学教案12
教学目标
1、给合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、通过观察、操作、想象等活动,发展空间观念。
教材分析
重点
在观察、操作中体会圆的特征。知道半径和直径的概念。
难点
圆的特征的认识及空间观念的发展。
教具
教学圆规
电化教具
课件
教学过程:
一、 观察思考
1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。
2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。
3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)
4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。
二、画圆
1、你们谁能画出圆来吗?动手试一试。
2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。
3、思考:以上这些画法中有什么共同之处?注意的`问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)
三、认一认
1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。
2、半径和直径的辨认。
3、
四、画一画,想一想
1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直
径呢?(放动画)
2、以点A为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?
五、应用提高
讨论:圆的位置和什么有关系?圆的大小和什么有关系?
六、作业
1、教材第5页练一练
2、在平面上先确定两个不同的点A和B,再画一个圆,使这个圆同时经过点A和点B(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)
训练学生的观察能力,发现问题的能力
不直接说出圆,把思考的空间留给学生
在画图中体会圆的特征
思考共同之处时再一次体会圆的特征
通过正反例的练习,加深对半径和直径的理解
动手操作,理解画圆的关键是定圆心(位置)和半径(大小)
巩固提高,满足不同学生要求
板书设计
圆的认识(一)
圆(本质特征):圆上各点到定点(半径)的距离都相等。
圆的画法:
圆的相关概念:圆心,半径,直径
同一个圆中,有无数条半径,它们都相等;同一个圆中有无数条直径,它们也都相等。
教学后记
在学生已认识圆的基础上,深入的了解圆的各部份名称。学生对圆心与圆
的半径的作用能理解,掌握了本课的重点内容。
圆数学教案13
教学目标
1、使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。
2、学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。
3、培养学生观察、分析、推理和概括的能力,发展学生的空间概念。
教学重难点
1、教学重点
会利用圆和其他已学的相关知识解决实际问题。
2、教学难点
圆与其他图形计算公式的混合使用。
教学工具
PPT卡片
教学过程
1、复习巩固上节知识,导入新课
2、新知探究
2、1圆环面积
一、问题引入
同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。
回答(略)。
今天我们就来做一做与光盘相关的数学问题。
二、圆环面积求解
例2、光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?
步骤:
师:求圆环面积需要先求什么?
生:内圆和外圆的面积
师:同学们可以自己做一做,分组交流一下自己的解法。
师:给出计算过程与结果:
三、知识应用
做一做第2题:
一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。
2、2圆与正方形
一、问题引入
师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。
师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。
二、知识点
例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?
步骤:
师:题目中都告诉了我们什么?
生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m
师:分别要求的是什么?
生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。
师:应该怎么计算呢?
归纳总结
如果两个圆的半径都是r,结果又是怎样的呢?
当r=1时,与前面的结果完全一致。
四、知识应用
70页做一做:
下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?
师:同学们用我们刚刚学过的知识来解答一下这道题目吧。
解:铜镜的半径是300px
5、3随堂练习
若还有足够时间,课堂练习练习十五第5/6/7题。
(可以邀请同学板书解题过程)
6 小结
1、今天我们共同研究了什么?
今天我们在已知圆和正方形的'面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。
2、在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!
7板书
例2解答步骤
圆数学教案14
教学目标
1、经历观察、操作活动,认识圆心、半径和直径,体会半径、直径的特征以及它们之间的关系。会用圆规按要求画圆。
2、在活动中发展观察能力、实践操作能力,学会应用所学知识解决简单的实际问题。
3、体验圆与人类生活的不解之缘,感受圆的美。
教学预案
一、欣赏,走进圆的世界。
1、(课件播放石子入水的声音)闭上眼睛仔细听,这是什么声音?你想到了什么?
(课件播放动态的水纹)
2、生活中,你在哪里见到过圆形?
3、圆不但在生活中无处不在,在大自然中更是随处可见,一起来欣赏。(播放课件)
4、圆使我们的世界变得如此美丽。这节课,就让我们一起去探寻圆的奥秘。
二、触摸,感受圆是一种曲线图形。
1、每个小组有一张未完成的中秋图,缺了哪样最重要的东西?(圆月)
2、每个小组的'信封里有很多不同形状的图片,看谁能摸到圆月?你是怎样挑选的?
3、圆和以前学过的图形有什么不同?(板书:曲线图形)
三、创造,认识圆的各部分名称。
1、同桌合作,把中秋图画完整。
画完后,交流各种不同的画法(估计有的会用圆规、用实物描、用线和图钉、用两支笔)
2、用圆规画圆,认识圆心与半径。
(1)独立动手操作。(挑选部分展示)
(2)师:有的同学画的不够理想,他可能在哪儿出了问题?
根据学生回答概括:定点(揭示圆心)、定长(揭示半径)
(3)刚才同学们谈的正是我们画圆时要注意的地方。还想再画一个吗?能不能想个办法,使我们全班同学画的圆一样大?(统一半径)
画一个半径为3厘米圆,标出圆心与半径。
你是怎样画半径的?它是一条怎样的线段?(连接圆心到圆上任意一点的线段)
3、认识直径。
(1)把圆剪下来。谁来说说这是个多大的圆?
(2)动手折一折,你发现了什么?
圆数学教案15
教学目标:
1、在复习巩固圆面积、扇形面积的计算的基础上,会计算弓形面积;
2、培养学生观察、理解能力,综合运用知识分析问题和解决问题的能力;
3、通过面积问题实际应用题的解决,向学生渗透理论联系实际的观点.
教学重点:扇形面积公式的导出及应用.
教学难点:对图形的分解和组合、实际问题数学模型的建立.
教学活动设计:
(一)概念与认识
弓形:由弦及其所对的弧组成的图形叫做弓形.
弦AB把圆分成两部分,这两部分都是弓形.弓形是一个最简单的组合图形之一.
(二)弓形的面积
提出问题:怎样求弓形的面积呢?
学生以小组的形式研究,交流归纳出结论:
(1)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;
(2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;
(3)当弓形弧是半圆时,它的面积是圆面积的一半.
理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的'弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.
(三)应用与反思
练习:
(1)如果弓形的弧所对的圆心角为60°,弓形的弦长为a,那么这个弓形的面积等于_______;
(2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.
(学生独立完成,巩固新知识)
例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m2)
教师引导学生并渗透数学建模思想,分析:
(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?
(2)求截面上有水的弓形的面积为你提供什么信息?
(3)扇形、三角形、弓形是什么关系,选择什么公式计算?
学生完成解题过程,并归纳三角形OAB的面积的求解方法.
反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决.
例4、已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,以BC为半径作 .求 与 围成的新月牙形ACED的面积S.
解:∵ ,
有∵ ,
, ,
∴ .
组织学生反思解题方法:图形的分解与组合;公式的灵活应用.
(四)总结
1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;
2、应用弓形面积解决实际问题;
3、分解简单组合图形为规则圆形的和与差.
(五)作业 教材P183练习2;P188中12.
【圆数学教案】相关文章:
小学数学教案圆的面积11-22
《圆的面积练习》数学教案04-04
圆的初步认识数学教案03-26
五年级数学教案圆的周长04-08
五年级数学教案圆的认识04-15
六年级数学教案:圆的认识04-13
六年级数学教案圆的认识04-03
圆和圆的位置关系教案03-21
小学六年级数学教案《认识圆》02-20
六年级数学教案圆的周长教学04-07