当前位置:好文网>实用文>教案>六年级数学教案

六年级数学教案

时间:2023-11-04 07:02:48 教案 我要投稿

人教版六年级数学教案(热门)

  作为一名为他人授业解惑的教育工作者,常常要写一份优秀的教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么教案应该怎么写才合适呢?以下是小编收集整理的人教版六年级数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

人教版六年级数学教案(热门)

人教版六年级数学教案1

  教学目标

  1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

  2。初步学会用负数表示一些日常生活中的实际问题。

  3。能借助数轴初步理解正数、0和负数之间的关系。

  重点难点

  负数的意义和数轴的意义及画法。

  教学指导

  1。通过丰富多彩的生活情境,加深学生对负数的认识。

  负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的.学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

  2。把握好教学要求。

  对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

  3。培养学生多角度观察问题,解决问题的能力。

  教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

  课时安排

  共分3课时

  教学内容

  负数的初步认识

  (1)(教材第2页例1)。

  教学目标

  结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

  重点难点体会负数的重要性。

  教学准备多媒体课件。

  情景导入

  1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

  2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)

  3。引出课题并板书:负数的初步认识

  (1) 新课讲授教学教材第2页例1。

  (1)教师板书关键数据:0℃。

  (2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

  (3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。

  (4)刚刚同学回答得很对,读法也很正确。

  (5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗

  学生讨论合作,交流反馈。

  (6)请同学们把图上其它各地的温度都写出来,并读一读。

  (7)教师展示学生不同的表示方法。

  (8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。

  课堂作业

  完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。

  答案:—18℃温度低。

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

人教版六年级数学教案2

  教学目标

  1、使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。

  2、通过观察、思考和动手操作,培养学生多种能力,渗透美的教育。

  教学重点

  理解对称图形的概念及性质,会找对称轴。

  教学难点

  准确找全对称轴。

  教学准备

  1、教具:投影片、图片、剪刀、彩纸。

  2、学具:蝴蝶几何图片、剪刀、白纸。

  教学过程

  (一)导入新课

  你们看这些图形好看吗?观察这些图形有什么特点?

  (图形的左边和右边相同。)

  你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)

  这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)

  你怎么知道图形的左边和右边相同?(看出来的……)

  还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)

  你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)

  (二)讲授新课

  1、对称图形的概念。

  (1)对称图形和对称轴的定义。

  以剪出的图形为例,贴在黑板上。

  问:你们剪出的`这些图形都有什么特点?

  (沿着一条直线对折,两侧的图形能够完全重合。)

  师:像这样的图形就是对称图形。(板书课题)

  折痕所在的这条直线叫做对称轴(画在图上)。

  问:现在谁能准确说出什么是对称图形?什么是对称轴。

  板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。

  (2)加深理解概念。

  以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。

  (3)巩固概念。(投影)

  ①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。

  生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。

  ②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。

  投影出示,折一折,说明是否是对称图形,并在xx里写明有几条对称轴。

  生边回答老师边填在投影片上,并用小棒摆出对称轴。

  回答:

  1°任意三角形不是对称图形。

  2°等腰三角形是对称图形,有一条对称轴。

  3°任意梯形不是对称图形。

  4°正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)

  5°平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)

  6°长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)

  7°圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)

  8°等腰梯形是对称图形,有一条对称轴。

  ③小结。

  问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?

  ④练一练

  打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。

  第2个图和第4个图较难,要引导学生用对折的思想思考,关键找准第一条对称轴,其它就好找了。

  2、对称图形的性质。

  (1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。

  (2)测量并归纳性质。

  打开书第125页,看下半部分的对称图形,用尺子量一量图中的A,B,C,D点到对称轴的距离分别是多少厘米?(保留一位小数)

  认真度量,结果填在书上,你发现什么?

  投影订正。填后的结果:

  A点到对称轴的距离是0。6厘米。

  B点到对称轴的距离是1。2厘米。

  C点到对称轴的距离是0。6厘米。

  D点到对称轴的距离是1。2厘米。

  问:根据测量的结果你发现什么?

  (A,D两点及B,C两点都分别在对称轴两侧。A,D两点到对称轴的距离相等,都是0。6厘米;B,C两点到对称轴的距离也相等,都是1。2厘米。)

  问:根据度量结果,你们能总结出对称图形的性质吗?

  板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。

  (3)验证性质。

  量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。

  看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。

  (三)课堂总结

  今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?

  (四)巩固练习

  1、第127页1题,画出对称轴。

  2、在你周围的物体上找出三个对称图形。

  3、让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。

  4、你能否应用对称图特点,剪出美丽的窗花或五角星。

人教版六年级数学教案3

  难点名称:理解“满100减50”与“五折”的区别

  难点分析:

  从知识角度分析为什么难。

  打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。

  从学生角度分析为什么难。

  学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。

  难点教学方法:

  在教学时,先让学生结合自己的.生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。

  教学过程:

  一、复习旧知,引入新课。

  1、提问“一件物品打九折出售”表示什么意思?

  2、生活中,是不是所有的优惠都是以“几折”来表示的呢?

  3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)

  二、教学新知。

  (一)出示例5:某品牌的裙子搞促销活动,在A商场打五折销售,在B商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。

  1、根据这些信息,学生提问题。

  教师板书:

  (1)在A、B两个商场买,各应付多少钱?

  (2)哪个商场省钱?

  2、分析问题,理解题意。

  (1)结合题目给出的数学信息,哪些是关键的?

  (2)怎样理解“满100元减50元”?

  (3)不足100元的部分呢?怎么办?

  3、独立思考,尝试解决。

  师:请同学们独立思考,看能否解决黑板上的这两个问题?

  4、交流并汇报方法。

  师:谁来说说自己的解决方法?

  学生展示自己的算式,并解释。

  5、启发思考,辨析原因。

  (1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?

  (2)什么情況下两种优惠是一样的呢?

  6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:

  (1)“满100减50”,就是够100才能减50,不够则不减。

  (2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。

  (3)售价刚好是整百元的时候,两种优惠结果才是一样的。

  三、练习巩固,提高能力。

  1、做一做。

  某品牌的旅游鞋搞促销活动,在A商场“每满100元减40元”的方式销售,在B商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。

  (1)在A、B两个商场买,各应付多少钱?

  (2)选择哪个商场更省钱?

  小结:

  同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。

人教版六年级数学教案4

  教学目标:

  1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

  2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

  3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

  教学重点:

  负数的意义和负数的读法与写法。

  教学难点:

  理解0既不是正数,也不是负数。

  教具准备:

  多媒体课件

  教学方法:

  教师讲授、合作交流

  教学过程:

  一、复习导入

  提出问题:举例说明我们学过了哪些数?

  教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

  提出问题:我们学过的数中最小的数是谁?有没有比零还小的'数呢?

  二、创设情境、学习新知

  1.教学例1。

  (1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”

  同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?

  为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

  这里有零下6℃、零上6℃,都记作6℃行吗?

  你有什么简洁的方法来表示他们的不同呢?

  教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

  (2)巩固练习。

  同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

  学生独立完成第87页下图的练习。

  教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

  2.自主学习例2。(进一步认识正数和负数)

  教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

  今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?

  引导学生交流:珠穆朗玛峰比海平面高8844.43米。

  我们再来看新疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?

  引导学生交流:吐鲁番盆地比海平面低155米。

  教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?

  学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)

  教师追问:你是怎么想到用这种方法来记录的呢?

  最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。

  教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。

  (2)巩固练习:教科书第88页试一试。

  3.小组讨论,归纳正数和负数。

  教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

  提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

  小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)

  通常正号可以省略不写。负号可以省略不写吗?为什么?

  最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)

  三、运用新知,课堂作业

  1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

  2.课堂活动第2题。同桌先讨论,然后反馈。

  四、小结

  同学们,今天我们认识了负数。你有什么收获?

  五、课堂作业

  练习二十二第1、4题。

  家庭作业:练习二十二第2、3题。

  板书设计:

  负数的初步认识

  正数:20、22、14、 +8844.43…

  0:既不是正数也不是负数

  负数:-2、-30、-10、-15、-155…

人教版六年级数学教案5

  教学内容:

  抽样游戏

  教学目标:

  1.使学生能够理解抽样问题中的某些基本原则,并能够解决相关简单问题。

  2.意识到数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

  教学重点:

  抽样问题。

  教学难点:

  理解抽样问题的基本原理。

  教学过程:

  一、教学示例

  示例:一个盒子里有4个红球和4个蓝球,要摸出至少两个同色的`球,最少需要摸几个球?

  1.猜想答案。

  鼓励学生猜想至少要摸几个球。

  2.实验活动。

  (1)抽样2个球,有多少种可能?

  结果:可能抽中2个同色的球。

  (2)抽样3个球,有多少种可能?

  结果:一定可以抽中2个同色的球。

  3.发现规律。

  启发:抽样球的数量与颜色种类有什么关系吗?

  学生可以发现:只要抽样数量比颜色种类多1,就可以保证至少抽出2个同色的球。

  二、练一练

  问题1:

  (1)独立思考,判断是否正确。

  (2)和同学们交流,并解释理由。

  问题2:

  (1)请您说明至少抽多少个球,您可以保证至少抽出2个同色的球?

  (2)如果抽样4个球,可以保证至少抽出2个同色的球吗?为什么?

  三、巩固训练

  完成课本练习12的问题1和问题3。

人教版六年级数学教案6

  教学目标:

  1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

  2、根据题意,能画线段图分析图意。

  3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

  教学过程:

  一、巩固旧知,过渡引入

  1、根据题意,判断谁是单位1,并写出各题的数量关系。

  (1)故事书本的2/5等于连环画的本数。

  (2)梨重量的.7/8是840千克。

  (3)男生人数是全班人数的2/3 。

  2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

  [这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

  二、学习新知

  1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?

  (1)读题,找出已知条件和问题。

  (2)根据题意与线段图理解题中的条件和问题。

  (3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

  体重× 4/5 =体内水分重量

  师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?

  (4)学生尝试练习方程解答,个别板演,教师点评。

  (1)解:设这个儿童体重χ千克

  (2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

  χ=35答:这个儿童体重35千克。

人教版六年级数学教案7

  20xx年人教版六年级数学上册教案姓名:沈金鹏

  学号:134080303

  院、系:数学学院

  专业:数学与应用数学

  20xx年1月22日

  第二单元位置与方向

  教学目标:

  知识与技能:

  1.通过解决实际问题,了解确定位置的方法,能根据方向和距离确定物体的位置。2.会看简单的路线图,能根据路线图说出行走的方向和路线。

  过程与方法:

  1.通过解决实际问题,体会确定位置在生活中的应用。

  2.探索和发现确定位置的有效方法。

  情感态°价值观:

  1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

  2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

  教学重点:

  通过学习了解确定位置的方法,能根据方向和距离确定物体的位置。会看简单的路线图,能根据路线图说出行走的方向和路线。

  教学难点:

  在学习过程中,发展学生的合情推理能力,使学生能进行有条理的思考,能比较清楚地表达自己的思考过程和结果。

  课时安排:

  六年级上册第二单元:位置与方向

  第1课:位置与方向㈠

  教学内容:教材第19、20页相关内容及练习题

  知识与技能:

  1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的`

  方法。

  2.学会通过测量描述物体在平面图上的具体位置,并会根据描述在

  平面图上画出物体的具体位置。

  过程与方法:通过小组合作交流探讨,掌握画图的方法。

  情感态度价值观:

  1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

  2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

  重点:能根据任意方向和距离确定物体的位置。

  难点:根据描述标出物体在平面图上的具体位置。教学目标:教学重难点:

  教学方法:合作交流、共同探讨

  教师:多媒体课件,直尺、量角器等。教、学具准备:学生:直尺、量角器。

  教学过程:

  一、情景导入

  1.交流例题1中有关台风的消息。

  ⑴同学们听说过台风吗?你对台风有什么印象?

  ⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。

  师:听到这侧消息,你有什么感想?

  启发学生交流,引导学生关注台风的位置和动态。

  2.导入新课

  现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。

  [板书课题:位置与方向(一)]

  【设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。

  二、探究新知

  ㈠教学题例1

  1.投影出示例题1。

  学生观察情境图,交流从图中信息?

  (启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)

  2.交流确定台风中心具体位置的方法。

  ⑴让学生尝试说说台风中心的具体位置。

  ⑵教师结合学生的汇报情况进行引导。

  提问:东偏南30°是什么意思?

  (东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)

  ⑶小结确定位置的方法。

  提问:如果只有一个条件,能够确定台风中心的具体位置吗?

  引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。

  3.组织计算。

  师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市

  呢?

  学生独立计算,组织交流。

  600÷20=30(小时)

  (二)教学例题2

  1.投影出示例题2。

  提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。

  2.尝试画图。

  ⑴学生独立思考怎样标出B市、C市的具体位置。

  ⑵小组交流作图的方法。

  ⑶尝试画图。

  教师巡视交流,参与部分小组讨论,辅导有困难的学生。

  3.组织全班交流。

  投影展示学生完成的作品。

  组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。

  B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。

  C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。

  4.算一算。

  台风到达A市后,移动速度变为40千米/时,几小时后到达B市?

  200÷40=5(小时)

  5.总结画图的基本步骤。

  交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?

  总结:

  (1)确定平面图中东、西、南、北的方向。

  (2)确定观测点。

  (3)根据所给的度数定出所画物体所在的方向。

  (4)根据比例尺,定出所画物体与观测点之间的图上距离。

  【设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。

  三、巩固练习

  1.教材第20页“做一做”。

  这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。⑴让学生独立进行测量、计算、填空。

  ⑵组织交流。

  让学生说说是怎样测量方向的,怎样计算距离的。

  2.教材第21页“做一做”。

  ⑴学生独立进行画图。

  ⑵投影展示,组织评议。

  ⑶交流画图的方法。

  四、课堂小结

  今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。

人教版六年级数学教案8

  教学目标:

  使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。

  教学重点:

  整数除以分数的计算方法的推导。

  教学难点:

  理解“÷”转化为“x”的转化过程。

  教学过程:

  一、复习

  1、说一说÷18的意义。

  2、一辆汔车2小时行驶90千米,1小时行驶多少千米?

  (1)口述算式和结果。

  (2)板书:数量关系:速度=路程x时间

  二、新授

  今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?

  板书课题:一个数除以分数

  (1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?

  教师板书:18÷ (出示线段图)

  (2)推导18÷的计算方法。

  引导学生分两步进行计算

  第一部分:求小时行多少千米。

  提问

  1)、小时里面有几个小时?

  2)、2个小时行驶多少千米?

  3)、1个小时行驶多少千米?即小时行驶多少千米?

  明确:因为2个小时行18千米,所以要算18÷2,也就是18x(千米)。第二步:求1小时行多少千米。

  提问

  1)、1小时里面有几个小时?

  2)、1个小时行驶18x(千米),那么要求5个小时行驶多少千米,算式应该怎样写?

  明确

  1) 为1小时5个小时,所以,要算18__5,也就是18x。

  2) 18__5用18x代替,因为18__5=18x。(这里实际上是运用了乘法结合律)。

  根据上面的推想,板书:18÷=18x,=45千米

  答汔车1小时行驶45千米。

  强调

  1)18÷不便于直接除,把它转化乘法。

  2)18÷=18x,“÷”转化为“x”,被除数不变,除数发生了变化。

  3)是的倒数,即的''倒数是。

  2、小结:引导学生归纳整数除以分数的计算方法。

  板书:整数除以分数可以转化为乘以这个数的倒数。

  三、巩固练习

  1、在( )里填上适当的分数,使等式成立。

  15÷=15x( )10÷ =10x( )

  8÷=8x( ) ÷9=x( )

  2、列式计算。

  (1)一堆煤,每次用去 ,多少次才能用完?

  (2)王晶小时做15朵花,1小时做多少朵花?

  3、教科书第29页的“做一做”

  四、作业

  练习八第1——4题。

人教版六年级数学教案9

  第一单元:分数乘法

  第一课时:分数乘以整数

  教学内容:第1~2页,例1及“做一做”,练习一1-7题。

  教学目的:

  (1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。

  教学重、难点:(1)使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  (2)引导学生总结分数乘整数的计算法则。

  教学过程:

  (一)铺垫孕伏

  1.出示复习题。(投影片)

  (1)整数乘法的意义是什么?

  (2)列式并说出算式中的被乘数、乘数各表示什么?

  5个12是多少?9个11是多少?8个6是多少?

  (3)计算:

  123333??????666101010

  计算333??时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加101010

  数都相同,计算时3个3连加的结果做分子,分母不变。

  2.引出课题。

  分数加法是否也有简便算法?今天我们学习分数乘法。(板书课题:分数乘整数)

  (二)探究新知。

  1.教学分数乘整数的意义。

  出示例1,指名读题。

  (1)分析演示:师:每人吃2块蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。9

  222问:一个人吃了块,三个人吃了几个块?使学生从图中看到三个人吃了3个块。让学生999

  用以前学过的知识解答3个人一共吃了多少块?(教师在3个扇形下面画出大括号并标出?块)2222?2?262订正时教师板书:++===(块),(教师将3个双层扇形图片拼成一个一块999939

  2蛋糕的图片)3

  (2)观察引导:

  这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数

  22的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:?3。再启发学生说出?3表99

  2示求3个相加的和。9

  2(3)比较?3和12×5两种算式异同:9

  提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

  通过讨论使学生得出:

  相同点:两个算式表示的意义相同。2不同点:?3是分数乘整数,12×5是整数乘整数。9

  (4)概括总结:

  教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

  2.教学分数乘以整数的计算法则。

  (1)推导算理:

  由分数乘整数的意义导入。22222问:?3表示什么意义?引导学生说出表示求3个的和。板书:++。学生计算,99999

  教师板书:2?2?22?362??。提示:分子中3个2连加简便写法怎么写?学生答后板书:9993(块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

  (2)引导观察:2?32的分子部分、分母与算式?3两个数有什么关系?(互相讨论)99

  观察结果:2?32的分子部分2×3就是算式中的分子2与整数3相乘,分母没有变。99

  (3)概括总结:

  2请根据观察结果总结?3的计算方法。(互相讨论)9

  22汇报结果:(多找几名学生汇报)使学生得出?3是用分数的分子2与整数3下乘的积99

  作分子,分母不变。

  2根据?3的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得9

  2的数要与原数上下对齐。然后让学生将?3按简便方法计算。9

  (启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)

  3.反馈练习:

  (1)看图写算式:做一做、练习一第1题。

  订正时让学生说出乘法中被乘数、乘数各表示什么?

  (2)口答列算式:

  3333???=()×()4444

  3个13是多少?5个是多少?1010

  订正时让学生说一说为什么这样列式。

  (3)计算:

  25?4?81512

  先让学生讲每个算式表示的意义,然后教师提示:乘的时候如果分子分母能约分的`要先约分,若乘得的结果是假分数的要化成带分数。

  (三)全课小结。

  这节课我们学习了什么?引导学生回顾总结。

  (四)作业。

  练习一5、6题。

  第二课时:一个数乘以分数

  教学内容:课本第4-6页,例2,例3及“做一做”,练习二1-4题。

  教学目标:

  (1)使学生理解一个数乘分数的意义,掌握分数乘以分数的计算法则。

  (2)学会分数乘分数的简便计算。

  (3)通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重、难点:

  理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。

  教学过程:

  一、复习。

  153?5?1?21087

  1.计算下列各题并说出计算方法。

  2.上面各题都是分数乘以整数,说一说分数乘以整数的意义。

  二、新课。

  引入:这节课我们来学习一人数乘以分数的意义和计算方法。(板书课题:一个数乘以分数)1.理解一个数乘以分数的意义。3(1)第一幅图:一瓶桔汁重千克,3瓶重多少千克?怎样列式?5

  3指名列式,板书:?35

  333问:?3表示什么意思?指名回答,板书:或求的3倍。555

  3(2)出示第二幅图:一瓶桔汁重千克,半瓶重多少千克?怎样列式?怎样表示半瓶?5

  指名回答:半瓶用131表示;式子为:?。252

  3133131说明:?是求的一半是多少,也就是求的是多少。板书:求的。5255252

  32(3)出示第三幅图:一瓶桔汁重千克,瓶重多少千克?怎样列式?53

  323232指名回答,板书:?,问:?表示什么意思?指名回答,板书:求的。535353

  2.引导学生小结。

  ①.指出三个算式都是分数乘法,比较三个算式的不同点:第一个算式与第二、三个算式中乘数有什么不同?

  想一想:第一个算式与第二、三个算式中乘法的意义有没有不同。有什么不同?

  学生齐读课本的结语。

  练习:

  .课本的做一做1、2题。

  .说一说下列算式的意义。533?8?754

  3.理解分数乘以分数的计算方法。

  (1)出示例3(先出示第一个问题)。

  问:你根据什么列出式子?

  11得出:根据“工作效率×工作时间=工作总量”列出式子:?。25

  问:如果我们用一个长方形表示1公顷,那么

  学生回答后,教师出示例3的图(1)11问:公顷的是什么意思?251公顷怎样表示?2

  出示例3图(2)

  要求学生观察图(2),问:在图中

  111?11?引导得出:??252?51011的对于1公顷来说,是1公顷的几分之几?25

  观察这个式子有什么特点?

  出示例3的第二个问题。

  学生列式,教师再出示例3图(3)11131问:已经求公顷的是公顷,那么公顷的应有这样的几份?就是多少公顷?252?525

  131?33?板书:??公顷)252?510

  (2)引导学生小结分数乘以分数的计算方法。

  观察分数乘以分数的计算过程,谁能说一说计算方法?

  教师归纳,再看书上结语。

  再说明,为了计算的简便,也可以先约分,再乘。323?22?例:??535?35

人教版六年级数学教案10

  教学内容

  教科书第124~125页的内容,练习三十三的第1~7题.

  教学目的

  1.了解储蓄的含义.

  2.理解本金、利率、利息的含义.

  3.掌握利息的计算方法,会正确地计算存款利息.

  4.感受数学在生活中的作用,培养学生的应用意识和实践能力.

  教具准备

  储蓄的有关课件、视频展示台、银行存款凭证(复印,每生一张).

  教学过程

  一、情境引入

  教师:你们到银行或信用社去存钱或取过钱吗?(学生回答)这里有一段银行工作人员工作情况的录像,想看一看吗?

  播放录像,内容是几位小朋友在银行存钱、取钱的情境,在录像中,通过画面和声音,突出存入时间、金额、取款的本金、利息等.

  教师:看了这段录像,你能提出哪些有关的数学问题?

  学生围绕录像内容自由提问,最后教师指出:同学们刚才提出的问题都与我们今天要学习的'内容有关系.

  板书课题:利息

  二、教学新课

  1.学习质疑.

  学生围绕上面提出的问题,以小组为单位,阅读教科书第38~39页,不理解的内容可在小组内讨论或注上?.

  学生看书时,教师巡视指导,并参与学生的讨论.

  2.合作交流.

  教师:通过看书学习和讨论,你知道了储蓄中的哪些知识?能向全班同学汇报一下吗?

  屏幕上显示如下信息:

  20xx年12月,中国各银行给工业发放贷款18636亿元,给商业发放贷款8563亿元,给建筑业发放贷款20xx亿元,给农业发放贷款5711亿元.

  教师:你们知道银行这些钱是从哪儿来的吗?

  学生回答后,教师指出:银行的贷款主要*人们的存款.据统计,到20xx年底,我国城市居民的存款总额已突破7万亿元.所以,把暂时不用的钱存入银行,对国家、对个人都有好处.

  学生说到存款的方式时,教师板书:

  存款方式

  活期

  定期

  零存整取

  整存整取

  提问:你对活期、定期、零存整取、整存整取这些存款中的专用术语的意思理解吗?举例说给大家听一听.

  结合学生的举例,教师提问:什么叫本金?什么叫利息?

  学生回答,教师板书:利息、本金.

  提问:利息的多少一般由什么决定?(本金、利率、时间)

  板书:利率、时间.

  教师:什么叫利率?你知道利率中的哪些知识?

  学生回答后,教师指出:利率由银行决定,在我国是由中国人民银行统一规定,利率的高低反映一个时期经济发展状况和消费状况.根据国家经济发展的变化,银行存款的利率有时也会有所调整.例如:1998年至20xx年,我国银行活期和整存整取调整后的利率如下:(屏幕显示)

  教师:从表中你能发现哪些数学问题?

  教师:根据刚才的探索,你认为应如何计算利息?

  学生回答,教师板书:利息=本金利率时间.

  教师:请说一说你对这个公式的理解.

  教师:你能根据这个公式计算一下,如果你把100元钱以整存整取的方式在银行存3年,能得到多少利息吗?

  学生计算后交流,教师板书:

  1002.52%3=7.56(元)

  教师:三年后取款时,你能得到7.56元的利息吗?为什么?

  学生各自发表意见后,教师指出:1999年国家规定存款时,要按利息的20%缴纳利息税,你能再算一算如果你存入100元,3年后实际能得多少利息吗?

  学生计算后回答,教师板书:

  7.56(1-20%)=6.05(元)

  教师:6.05元是纳税后利息,也是你应实得的利息.

  3.观察交流.

  教师:请拿出你们手中的存款凭证(复印),你看了后能发现哪些问题?(注意让学生观察正面和反面.)

  学生观察后交流自己的发现和体会.

  教师:你还知道存款的哪些知识或常识?

  让学生自由发表意见,最后教师根据学生的回答作小结.

  三、课堂练习

  1.完成练习三十三的第1~6题.

  第1题学生读题后,教师提问:小华存入的本金是多少?利率是多少?存期是多长?然后再由学生解答,最后订正.

  第2题学生读题后教师提问:存期是多长?半年用多少年计算?最后学生独立完成.

  第3、4题由学生独立完成,做后再订正.

  第5题由学生独立完成,做后再集体订正.

  2.开放性练习.

  完成练习三十三的第7题,学生先分小组讨论,探索选择哪种方式,再在全班交流.

  3.实际应用.

  学生拿出手中的中国工商银行储蓄存款凭证(复印件),先想一想自己准备存入多少钱?从什么时候开始起存?存期多长?再填写凭证.

  学生填后请几名同学在视频展示台上展示、交流填写的情况.

  学生再各自计算一下到期时,能取到本金和纳税后利息一共多少元?(屏幕上显示利率表)(见前表)

  四、实践调查

  以存款、贷款与消费为主题,拟定一个小题目开展一次社会调查,注意有关数据的收集,然后写一篇简短的调查报告(或调查情况说明).

  五、反思体验

  教师:这节课你们学习了什么?你有哪些收获?

  随着学生的回答,教师适时给以强化.

人教版六年级数学教案11

  教学计划

  在本节课的教学中,学生将学会反比例的概念、特点及应用,体验自主探究的过程,掌握探究的方法,培养思维能力和创新意识。

  设计思路

  本节课的教学采用“学生是学习的主体”的理念,最大限度地为学生提供自主探究的机会。具体过程分为三个部分:借助定义、实例,渗透函数思想;借助具体情境,在观察、讨论中发现规律;借助已有的学习经验总结反比例关系式。

  教学准备

  教师准备PPT课件,相关实验材料。学生准备实验记录单。

  教学过程

  1.复习。

  课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?

  (1)引导学生独立解决问题。

  (2)提问:“底面积”和“高”的数量关系是什么?

  (3)师追问:在什么情况下,“底面积”和“高”成正比例关系?

  2.探究反比例的概念和特点。

  教师引导学生借助正比例的意义和生活实例,体会函数思想,理解成正比例关系的两种量的比值不变的特点。

  引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,归纳、概括出反比例的意义及特点。

  3.总结反比例关系表达式。

  教师引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

  教学总结

  本节课的教学采用了以学生为主体的教学模式,学生参与探究过程,理解反比例的概念和特点,掌握探究方法,培养思维能力和创新意识。

  本节课继续探究圆柱体积问题,如果圆柱的体积一定,底面积与高之间又存在怎样的关系呢?我们将从具体情境中初步感知成反比例关系的量开始。

  2.引入课题

  如果已知圆柱的体积,底面积与高的关系是怎样的呢?本节课将探究圆柱体积、底面积和高之间的关系,并引入反比例的概念。

  设计意图:通过让学生在具体问题中初步感知反比例的量,并思考如何探究圆柱的体积、底面积和高之间的关系,提高学生对数学问题的兴趣和思维完整性。

  ⊙探究新知

  1.在具体情境中初步感知成反比例关系的量。

  (1)教师出示以杯子的底面积为自变量,水的高度为因变量的变化情况表格。

  教师:请观察下表,思考其中的规律,并回答下列问题。

  杯子的底面积/cm2

  10

  15

  20

  30

  60

  …

  水的高度/cm

  30

  20

  15

  10

  5

  …

  ①表中有哪两种量?

  ②水的高度是如何随着杯子底面积的变化而变化的?

  ③相对应的杯子的底面积与水的高度的乘积分别是多少?

  (2)学生思考后在小组内交流。

  (3)全班交流。

  预设

  学生1:表中包含底面积和水的'高度这两种量。

  学生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。

  学生3:相对应的杯子的底面积与水的高度的乘积都是300,也就是底面积×高度=水的体积(一定)。

  (4)明确反比例的概念及特点。

  由于水的体积保持不变,因而杯子的底面积变化就会影响水的高度。杯子底面积增加,则水的高度相应地降低,而当杯子底面积减小时,则水的高度反而会升高。然而,无论杯子底面积和水的高度如何变化,它们的乘积始终保持不变,这就是我们所说的反比例关系,即杯子底面积和水的高度是成反比例关系的两种量。

人教版六年级数学教案12

  新课标人教版六年级数学上册全册教案

  一、教材分析:

  新课标六年级人教版这一册教材主要包括以下内容:《位置》,《分数乘法》,《分数除法》,《圆》,《百分数》,《统计》,《数学广角》和《数学实践活动》等。分数乘法和除法,圆,百分数等是本册教材的重点教学内容。在数与代数方面,这一册教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。分数四则运算能力是学生进一步学习数学的重要基本技能,应该让学生切实掌握。百分数在实际生活中有着广泛的应用,理解百分数的意义、掌握百分数的计算方法,会解决简单的有关百分数的实际问题,也是小学生应具备的基本数学能力。在空间与图形方面,这一册教材安排了位置、圆两个单元。位置的教学在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生经历初步的数学化的过程,理解并学会用数对表示位置;通过对曲线图形——圆的特征和有关知识的探索与学习,初步认识研究曲线图形的基本方法,促进学生空间观念的进一步发展。在统计方面,本册教材安排的是扇形统计图。在前面学习条形统计图和折线统计图的基础上,学会看懂扇形统计图,认识扇形统计图的特点,进一步体会统计在生活和解在用数学解决问题方面,教材一方面结合分数乘法和除法、百分数、圆、统计等知识,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,进一步体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用的实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学应用意识和实践能力。决问题中的作用,发展统计观念。

  二、教学目标

  本册教材的教学目标是,使学生:

  1.理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。

  2.理解倒数的意义,掌握求倒数的方法。

  3.理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

  4.掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。

  5.知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。

  6.能在方格纸上用数对表示位置,初步体会坐标的思想。

  7.理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分

  数的简单实际问题。

  8.认识扇形统计图,能根据需要选择合适的统计图表示数据。

  9.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

  10.体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的`意识,初步形成观察、分析及推理的能力。

  11.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

  12.养成认真作业、书写整洁的良好习惯。

  三、教学重点:分数乘法和除法、圆、百分数。

  四、教学难点:分数乘法和除法、鸡兔同笼问题。

  五、课时安排:

  各部分教学内容教学课时大致安排如下,教学时可以根据本班具体情况适当灵活掌握。

  1、位置(2课时)

  2、分数乘法(12课时)

  3、分数除法(13课时)

  4、圆(8课时)

  5、百分数(15课时)

  6、统计(2课时)

  7、数学广角(2课时)

  8、总复习(4课时)

  第一单元位置

  单元目标:

  1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2.使学生能在方格纸上用数对确定位置。

  单元重点:能用数对表示物体的位置。

  单元难点:能用数对表示物体的位置,正确区分列和行的顺序。

  1、位置

  教学目标:

  1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

  2.使学生能在方格纸上用数对确定位置。

  教学重点:能用数对表示物体的位置。

  教学难点:能用数对表示物体的位置,正确区分列和行的顺序。

  一、导入

  1、我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中

  的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

  2、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

  二、新授

  1、教学例1

  (1)如果老师用第二列第三行来表示××同学的位置,那么你也能用这样的

  方法来表示其他同学的位置吗?

  (2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

  (3)教学写法:××同学的位置在第二列第三行,我们可以这样表示:(2,3)。

  按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

  2、小结例1:

  (1)确定一个同学的位置,用了几个数据?(2个)

  (2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。

  如果这两个数据的顺序不同,那么表示的位置也就不同。

  3、练习:

  (1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

  (2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

  4、教学例2

  (1)我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看

  在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

  (2)依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

  (3)同桌讨论说出其他场馆所在的位置,并指名回答。

  (4)学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”

  的位置。(投影讲评)

  三、练习

  1、练习一第4题

  (1)学生独立找出图中的字母所在的位置,指名回答。

  (2)学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

  2、练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

  3、练习一第6题

  (1)独立写出图上各顶点的位置。

  (2)顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向

  上平移5个单位,位置在哪里?哪个数据也发生了改变?

  (3)照点A的方法平移点B和点C,得出平移后完整的三角形。

  (4)观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是

  第一个数据发生改变,上移时行也就是第二个数据发生改变)

  四、总结

  我们今天学了哪些内容?你觉得自己掌握的情况如何?

  五、作业

  练习一第1、2、5、7、8题。

  教学反思:

  第二单元分数乘法

  单元目标:

  1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

  2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

  3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

  4、使学生理解倒数的意义,掌握求倒数的方法。

  单元重点:

  分数乘法的意义和计算法则。

  单元难点:

  1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

  2、分数乘法计算法则的推导。

  1、分数乘法

  (1)分数乘整数

  教学目标:

  1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分

  数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

  2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生

  的抽象概括能力。

  3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步

  感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

  教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。

  教学过程:

  一、复习

  1.出示复习题。

  (1)列式并说出算式中的被乘数、乘数各表示什么?

人教版六年级数学教案13

  教材分析

  理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

  学情分析

  分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  教学目标

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.能正确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学重点和难点

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程

  一、创设情景,教学分数除法的意义

  1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

  (1)每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  (2)3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  (3)300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的`运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/5。

  师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

  能再讲讲这样做的道理吗?

  师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/5的多少?

  通过直观图理解4/5的1/3是4/15

  (3)比较归纳,发现规律。

  分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

  结果最简。除号要变成乘号。

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、分数除法的意义是什么?

  2.分数除以整数的计算法则是什么?(学生总结)

  五、作业布置

人教版六年级数学教案14

  [教学目标]

  1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确计算;主动体会整数运算律在分数运算中同样适用,能运用运算律进行有关分数的简便计算,体验简便运算的优越性。

  2、使学生在理解运算顺序和简便计算的过程中,进一步培养观察、比较、分析和抽象概括能力。

  3、使学生在学习过程中,体会到数学知识的内在联系,积累数学学习的经验。

  [教学过程]

  一、复习铺垫,重温整数四则混合运算的运算顺序。

  1、谈话:中国结是我们中华民族特有的传统工艺制作,元旦时我们班将用它来装扮教室。

  2、出示场景图:小的中国结每个用4分米彩绳,大的中国结每个用6分米彩绳。两种中国结各做18个,一共用彩绳多少米?

  3、学生口头列式,说说运算顺序。

  4、提问:两种方法,哪一种计算更简便?为什么?

  4、小结:整数、小数四则混合运算的运算顺序都是先算乘除法,再算加减法。有括号的先算括号里面的。还可以使用运算律使计算更简便。

  [设计意图:“温故而知新”,在具体的情境中再现旧知,为新课的教学打下了稳固的知识基础,埋下了情感、思维体验的伏笔。]

  二、主动探索,理解分数四则混合运算的运算顺序

  1、出示例1的场景图,学生自主列出综合算式。

  板书:2/5×18+3/5×18    (2/5+3/5)×18

  2、交流两种算式的不同思路:列式时你是怎样想的?

  3、指出:在一道有关分数的算式中,含有两种或两种以上的运算,称为分数四则混合运算。

  这两道算式都属于分数四则混合运算。(板书课题)

  [设计意图:将计算与解决问题有机结合起来,能使学生体会到计算是解决实际问题的需要,从而增强学习计算的内在需求。]

  4、独立思考,尝试计算

  (1)提问:根据以往计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?

  使学生明确:分数四则混合运算的运算顺序和整数小数四则混合运算的运算顺序相同。

  (2)尝试:这两道算式你能试一试吗?

  学生分别计算,指名板演。

  5、交流算法,理解顺序

  让学生结合具体问题情境说说运算顺序。说清先算什么,再算什么。

  6、小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。也是先算乘除法,再算加减法,有括号的先算括号里面的。

  [设计意图:利用学生已有的知识经验唤醒学生的数学思考,用自主学习的方法体会分数四则混合运算的顺序,体验数学知识的内在联系,新知识纳入知识结构的过程也就顺理成章。]

  三、算中体验,把整数的'运算律推广到分数。

  1、讨论:这两个算式,如果让你选择,你喜欢计算哪一个?为什么?

  使学生明确第二个算式因为括号内的和是整数,所以计算比较简便。

  2、观察:这两种算式有什么联系?

  得出:两种方法从算式来看,其实是乘法分配律的运用。

  板书:2/5×18+3/5×18=(2/5+3/5)×18

  3、引导:两个不同的算式,求的都是“一共用彩绳多少米”。从中,你得到了什么启发?

  4、小结:整数的运算律在分数中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。

  [设计意图:整数的运算律迁移到分数中来使用,让学生在计算中自主探索,充分观察,对比体验,通过自己思考,用已有的知识结构去同化、顺应新的知识,达到有意义的学习的目的。发展了学生的抽象概括能力和初步的演绎推理能力。]

  四、练习巩固,正确计算。

  1、练一练第1题

  先让学生说说运算顺序,再计算。

  反馈时:可以让学生说说自己的算法,第1题的除法和乘法你是怎么处理的?

  小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。但整数四则混合运算通常是一次计算出一个得数,而分数四则混合运算的乘除法连在一起时可以同时运算。

  提问:你是怎么检查结果是否正确的?

  使学生重温检查的方法,养成习惯:(1)数字、符号有没有抄错;(2)每一步的计算是否正确;(3)书写格式是否规范。

  [设计意图:计算后,引导学生自觉对计算过程进行检查,分析错误的原因,养成认真计算、自觉检查的良好习惯,充分发挥每一道题的作用,培养学生认真负责的学习态度。]

  2、练一练第2题

  独立完成

  交流时,说说应用了什么运算律或运算性质,为什么要这样算。

  提问:分数四则混合运算在使用运算律时,有什么特别之处?

  小结:整数四则混合运算在使用运算律时,常常是使用运算律凑成整十或整百、整千数再计算,但分数四则混合运算在使用运算律时,通常是凑成整数,或者观察是否有利于约分。计算步数较多的题时,要随时注意使运算简便。

  [设计意图:把整数的简便运算与分数的简便运算进行对比,使学生体会,使用的运算律是相同的,但分析的方法稍有区别。养成认真分析数据的习惯,提高合理灵活计算的能力。]

  3、练习十五1、2题

  独立完成

  五、全课总结

  说一说:这节课你有哪些收获或不足?

  计算分数四则混合运算时,你觉得你对同学们可以提出什么样的友情提醒?

人教版六年级数学教案15

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、借助数轴初步学会比较正数、0和负数之间的大小。

  2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

  教学重、难点:负数与负数的比较。

  教学过程:

  一、复习:

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 - + 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  二、新授:

  (一)教学例3:

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3:

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察:

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4:

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

  四、全课总结

  (1)在数轴上,从左到右的顺序就是数从小到大的顺序。

  (2)负数比0小,正数比0大,负数比正数小。

  第二课教学反思:

  许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

  例3——两个不同层面的拓展:

  1、在数轴上表示数要求的拓展。

  数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

  同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

  2、渗透负数加减法

  教材中所呈现的'数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

  例4——薄书读厚、厚书读薄。

  薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

  例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

  将厚书读薄——无论哪种类型,比较方法万变不离其宗。

【六年级数学教案】相关文章:

六年级数学教案01-31

小学六年级数学教案11-06

税率六年级数学教案11-17

六年级下册数学教案11-07

人教版六年级数学教案12-08

六年级上册数学教案02-24

人教版六年级下册数学教案11-28

人教版六年级上册数学教案12-17

新课标六年级上册数学教案02-18