实用的平行四边形教案范文汇编六篇
作为一名无私奉献的老师,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。快来参考教案是怎么写的吧!以下是小编为大家整理的平行四边形教案6篇,欢迎大家借鉴与参考,希望对大家有所帮助。

平行四边形教案 篇1
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的`功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 教学内容: 义务教育六年制小学《数学》第九册P64-P66 教学目的: 1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。 2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。 3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。 4、培养学生自主学习的能力。 教学重点: 掌握平行四边形面积公式。 教学难点: 平行四边形面积公式的推导过程。 教具、学具准备: 1、多媒体计算机及课件; 2、投影仪; 3、硬纸板做成的可拉动的长方形框架; 4、每个学生5张平行四边形硬纸片及剪刀一把。 教学过程: 一、复习导入: 1、我们认识的平面几何图形有哪些呢?(微机出示,图形略) 2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式) 3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。 二、质疑引新: 1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好? 2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗? 3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。 4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算) 三、引导探求: (一)、复习铺垫: 1、什么图形是平行四边形呢? 2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。 3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。 (二)、推导公式: 1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗? 2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形) 3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。 4、学生实验操作,教师巡视指导。 5、学生交流实验情况: ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程) ⑵、有没有不同的剪拼方法?(继续请同学演示)。 ⑶、微机演示各种转化方法。 6、归纳总结规律: 沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念: ⑴、平行四边形剪拼成长方形后,什么变了?什么没变? ⑵、剪拼成的长方形的.长与宽分别与平行四边形的底和高有什么关系? ⑶、剪样成的图形面积怎样计算?得出: 因为:平行四边形的面积=长方形的面积=长×宽=底×高 所以:平行四边形的面积=底×高 (板书平行四边形面积推导过程) 7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。 8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。 四、巩固练习: 1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高) 2、练习: ⑴、(微机显示例一)求平行四边形的面积 ⑵、判断题(微机显示,强调高是底边上的高) ⑶、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等) ⑷、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。 五、问答总结: 1、通过这节课的学习,你学到了哪些知识? 2、平行四边形面积的计算公式是什么? 3、平行四边形面积公式是如何推导得出的? 六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1 课型: 新授课。 教学分析: 本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。 教学目标: (一)知识与技能: 引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。 (二)过程与方法: 学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。 (三)情感态度价值观: 培养学生积极参与的学习品质,使学生获得成功的体验,感受教学与日常生活的密切联系,树立学好数学的信心。 教学策略: 创设情景、动手实践、交流合作。 教具学具: 多媒体课件、长方形、正方形、格子纸、三角板。 教学流程: 一、创设情景,提出问题。 今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。引出课题) 二、协作探索,研究问题。 1、教学长方形、正方形。 (1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角? (2)教学对边的概念: 在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示) (3)小组合作研究长方形、正方形的特点。 下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。 长方形的'对边和正方形的边有什么特点,角有什么特点? (4)指名汇报,并演示自己发现的过程。 共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。 (5)在方格纸上画出长方形、正方形 2、教学平行四边形。 (1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗? 我们把这样的四边形叫做平行四边形。 (2)平行四边形的特点: 出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点? (3)总结:平行四边形有四条边,四个角,对边相等。 (4)动手操作:拿出活动的四边形:拉动之后你发现了什么? 动手操作 三、运用知识,解决问题。 1、猜一猜。(多媒体演示) 2、找一找。(多媒体演示) 3、说一说。 四、总结。 你今天从智慧星那里学到了什么? 板书设计: 长方形正方形和平行四边形 边:4条 4条4条 对边相等全都相等对边相等 角:4个直角4个直角4个 教学内容 本册教材第37—38页上的内容,完成第37页上的“做一做”。 教学目的 1、使学生初步认识平行四边形,了解平行四边形的特点。 2、通过学生手动、脑想、眼看,使学生在多种感官的协调活动中积累感性认识,发展空间观念。 教学重点 探究平行四边形的特点。 教学难点 让学生动手画、剪平行四边形。 教学过程 (一)认识平行四边形 1、出示主题图。 从图中你看到了哪些图形,指给同桌看。 2、出示带有平行四边形的实物图片。 师:它们是正方形吗?是长方形吗?(学生回答后,教师接着问。) 师:它们有几条边?几个角?它们叫什么图形呢? 学生回答后教师说明:这样的.图形叫平行四边形。 3、感受平行四边形的特点 (1)让学生拿出三条硬纸条,用图钉把它们钉成三角形,然后拉一拉。(学生一边拉一边说自己的感受) (2)让学生拿出教师给他们准备的四条硬纸条,用图钉把它们钉成一个平行四边形形,然后拉一拉。(学生一边拉一边说自己的感受) (3)小组讨论操作:怎样才能使平行四边形拉不动呢? 学生汇报时,要说说理由。 (二)掌握平行四边形。 1、在钉子板上“钩”。 你认为什么样的图形是平行四边形呢?在钉子板上围围看。(学生动手操作, 然后汇报、展示) 2、在方格纸上“画”。 让学生在方格纸上画出一个平行四边形。(学生动手操作,然后汇报、展示) 3、折一折、剪一剪。 你会剪一个平行四边形吗?(学生动手操作,然后汇报、展示并说说各自不同的剪法。) 4、通过上面的活动,你发现平行四边形是一个什么样的图形?(小组讨论) (三)巩固平行四边形。 1、课堂练习:完成练习九第1—3题。 2、课外练习:完成练习九第5题。 教学目标: (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。 (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。 (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。 教学重点: 理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。 教学难点: 理解平行四边形的面积公式的推导过程。 教具、学具准备: 课件、长方形和平行四边形图片、剪刀、平行四边形框架等。 教学过程: 一、创设情境、导入新课。 大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想) 你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题) 出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示) 二、自主探究,合作验证 探究一:用数方格的的方法探究平行四边形的面积。 请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示: ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。 ② 填完表后,同学们相互议一议,并谈一谈发现。 你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报) 探究二:用割补的方法来验证猜测。 小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。) 我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件) (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。) (2)剪完后试一试能拼成什么图形? 师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示): 回顾发现过程: 1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的`面积=( ),用字母表示是( ) 2、求平行四边形的面积必须知道平行四边形的( ) 和( )。 探究过程小结(板书) 师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。 然后他们手拉手找到老师说了一些话。你知道他们说了什么? 生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演) 三、运用新知,练中发现 1、基本练习 (1)口算下面各平行四边形的面积 A、底12米,高3米: B、高 4米,底9米; C、底36米,高1米 通过这组练习,你有什么发现吗?(教学课件) 发现一:发现面积相等的平行四边形,不一定等底等高。 (2)画平行四边形比赛(大屏幕出示比赛规则) 比赛规则: 1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。 2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现) 发现二:1.发现只要等底等高,平行四边形面积就一定相等。 2.等底等高的平行四边形,形状不一定完全相同。 四、总结收获,拓展延伸 1、通过这节课的学习,你知道了什么? 2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗? 大屏幕出示(教学课件演示) 平行四边形,特点记心中。 面积同样大,形状可不同。 等底又等高,面积准相同。 要是求面积,底高来相乘。 (齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。 拓展延伸 请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。 五、板书设计: 学习目标 1、 理解平行四边形的概念及其特征,知道平行四边形两组对边分别平行且相等。 2、认识平行四边形的底和高,会画出平行四边形的高; 3、培养学生的实践能力,观察能力和分析能力。 学习重点: 掌握平行四边形的特征。 学习难点: 会画平行四边形的高。 学习准备: 课件、长方形框架、平行四边形纸、钉板 导学过程: 一、魔术表演: 教师拿出一个用四根木条钉成的长方形,两手捏住长方形的两个对角,向相反方向拉,观察两组对边有什么变化?拉成了什么图形?为什么会发生这样的变化? 二、揭示课题和目标。 三、体验平行四边形的特性 1、揭示平行四边形的不稳定性; 2、你能举出日常生活中应用平行四边形容易变形这一性质的例子吗? 3、图片展示。 四、探究平行四边形的特征 (一)观察图形,合理猜想 请学生拿出手里的平行四边形纸,让学生大胆猜平行四边形的特征。学生发言。 (二)动手操作,验证猜想 1、操作实践。教师提示用三角板或者直尺验证。学生小组验证。 2、汇报交流验证的过程。 预设:1、测量后发现对边相等 2、延长对边不相交,所以对边平行 3、用画垂线的方法,从一边向另一边画垂线,垂线段都相等,所以对边平行。 3、归纳特征。 师:现在请你用一句话概括平行四边形的特征。生用自己的语言描述。 教师帮助归纳并板书:两组对边分别平行且相等 4、应用做教材67页1题。 五、动手操作,认识“底和高”: 1、观察画出的垂直线段,告诉学生: 像这样从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的`高,垂足所在的边叫平行四边形的底。 2、请学生猜猜,平行四边形有多少条高? 3、揭示平行四边形高的画法 4、练习:画出四个平行四边形的高。 五、智慧屋(练习题) 六、全课总结:通过本节课的学习,你知道了平行四边形的哪些东西呢? 【平行四边形教案】相关文章: 平行四边形教案04-01 认识平行四边形教案10-16 平行四边形教案[热]12-30 《认识平行四边形》教案03-30 【优】平行四边形教案03-26 《平行四边形的面积》教案06-23 《平行四边形的认识》教案03-15 平行四边形的面积教案11-08 平行四边形优秀教案03-08 平行四边形面积教案03-09平行四边形教案 篇2
平行四边形教案 篇3
平行四边形教案 篇4
平行四边形教案 篇5
平行四边形教案 篇6