平行四边形教案锦集七篇
作为一名默默奉献的教育工作者,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。快来参考教案是怎么写的吧!下面是小编为大家整理的平行四边形教案7篇,希望对大家有所帮助。

平行四边形教案 篇1
教学内容:国标苏教版数学第八册P43-45。
教学目标:
1、同学在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,认识平行四边形的高。
2、同学在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能丈量或画出平行四边形的高。
3、同学感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣。
教学重点:进一步认识平行四边形,发现平行四边形的基本特征,会画高。
教学难点:引导同学发现平行四边形的特征。
教学准备:配套多媒体课件。
教学过程:
一、生活导入。
1、(课件出示学校大门关闭和打开的录象,最后定格成放大的图片)教师谈话:同学们每天都要经过校门进入学校,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?根据回答,教师板书:平行四边形。
2、你们还能找出我们生活中见过的一些平行四边形吗?同学回答后,教师课件出示一些生活中的平行四边形:如活动衣架、风筝、楼梯栏杆等。
3、今天这节课我们一起来进一步研究平行四边形,相信通过研究,我们将有新的收获。板书完整课题:认识平行四边形。
[评:《数学课程规范》指出:“同学的数学学习内容应当是实际的、有意义的、富有挑战性的。”选择同学熟悉和感兴趣的素材,吸引同学的注意力,激发同学主动参与学习活动的热情,让同学初步感知平行四边形。]
二、探究特点。
1、刚才同学们已经能找出生活中的一些平行四边形了,那我们能不能利用身边的一些物品,自身来想方法来制作一个平行四边形呢?你们可以先看一看资料袋中有哪些资料,再独立考虑一下准备怎么做;假如有困难的可以先看看学具袋中的平行四边形再操作。
2、大家已经完成了自身的创作,现在请你们和小组的同学交流一下,说说自身的做法和为什么这样做,然后派代表上来交流。
同学小组交流,教师巡视,并进行一定的辅导。
3、哪个小组派代表上来交流?注意把你的方法展示在投影仪上,然后说说这么做的理由,其他小组等他们说完后可以进行补充。
(1)方法一:用小棒摆。请你说说你为什么这么做?要注意些什么呢?
(2)方法二:在钉子板上面围一个平行四边形。你介绍一下,在围的时候要注意些什么?怎样才干做一个平行四边形?
(3)方法三:在方格纸上画一个平行四边形。你能提醒一下大家吗?应该怎样才干得到一个平行四边形?
(4)用直尺画一个平行四边形。
……
(评:这个个环节的设计,本着同学为主体的思想,敢于放手,让同学的多种感官参与学习活动,让同学在操作中体验平行四边形的一些特点;既实现了探究过程开放性,也突出了师生之间、同学之间的多向交流,体现那了同学为本的理念。)
4、刚才我们已经能用多种方法来制作平行四边形,现在请大家在方格纸上独立在方格纸上画一个平行四边形,想想应该怎么画?注意些什么?
(评:本环节的设计,通过在方格纸上画,让同学再次感知平行四边形的一些特点,为下面的猜测、验证和画高作了铺垫。)
5、我们已经能够用不同的方法制作平行四边形,并且能够在方格纸上话一个平行四边形。那么这些大小不同的平行四边形到底有什么一起特点呢?下面我们一起来研究。
根据你们在制作平行四边形的时候的体会,你们可以猜测一下:平行四边形有哪些特点?(友情提示:课件中出示提示:我们可以从平行四边形的.那些方面来猜测它的特征呢?边?角?)
6、同学小组讨论后提问并板书猜测:
对边可能平行;
对边可能相等;
对角相等;
……
7、你们真行,有了这么多的猜测,那我们能够自身想方法来证明这些猜测是否正确呢?请每个小组先认领一条,时间有多余可以再研究其他的猜测。
同学每小组上台认领一条猜测,同学分组验证猜测。
8、经过同学们的努力,我们已经自身验证了其中一条猜测,现在我们旧来交流一下,其他小组认真听好,他们的回答是否正确,你觉得怎样?
9、小组派代表上来交流自身小组的验证方法,其他小组在其完成后进行评价。
(1) 两组对边分别相等:同学介绍可以用对折或用直尺量的方法来验证对边相等后,教师用课件直观展示。
(2) 两组对边分别平行:同学汇报的时候假如不一定很完整,教师用课件展示:两条对边分别延伸,然后显示不相交。
(3) 对角相等:同学说出方法后,教师让同学再自身量一量。
……
最后,教师板书出经过验证特点:
两组对边分别平行并且相等;
对角相等;
内角和是360°
(评:这个环节的设计蕴涵了“猜测-验证-结论”这样一个科学的探究方法。给同学提供了充沛的自制探索的空间,引导同学先猜想特点,再放手让同学自身去验证和交流,使同学在碰撞和交流中最后的出结论。在这个过程中,同学充沛展示了自身的思维过程,在交流中与倾听中把自身的方法与他人的想法进行了比较。)
10、完成“想想做做1”。同学独立完成后说说理由。
三、认识高、底。
1、出示一张平行四边形的图,介绍:这是一个平行四边形,你能量出平行四边形两条红线间的距离吗?应该怎么量?把你量的线段画出来。
同学自身尝试后交流。
2、老师刚才发现,大家画的高位置都不一样,你们想想这是为什么呢?这样的线段到底有多少条呢?(一组平行线之间的距离处处相等,有无数条。)
说明:从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。
3、你能画出另一组对边上的高,并量一量吗?同学继续尝试。
完成后,让同学指一指:两次画的高分别垂直于哪一组对边。板书:高和一组对边对应。
4、完成“试一试”:(1)先指一指高垂直于哪条边;(2)量出每个平行四边形的底和高各是多少厘米。
5、想想做做5,先指一指平行四边形的底,再画出这条底边上的高,注意画上直角标志。假如有错误,让同学说说错在哪里。
(这个环节的设计,通过同学自身去量、去画,从而很方便得到了平行四边形的高和底的概念,在的出高和底对应的时候比较巧妙,同学学得轻松、明了。设计的练习也遵循循序渐进的原则,很好地让同学领悟了高的知识。)
四、练习提高。
1、想想做做1,哪些图形是平行四边形,为什么。
2、想想做做2,用2块、4块完全一样的三角尺分别拼成一个平行四边形,在小组里交流是怎样拼的。
3、想想做做3,用七巧板中的3块拼成一个平行四边形。
出示,你能移动其中的一块将它改拼生长方形吗?
4、想想做做4,想把一块平行四边形的木板锯开做成一张尽可能的的长方形桌面,该从哪里锯开呢?找一张平行四边形纸试一试。
5、想想做做6,用饮料管作成一个长方形,再拉成平行四边形,比一比长方形和平行四边形的相同点和不同点。
(评:在巩固练习中,注意通过同学动手、动脑来进一步掌握平行四边形的特点。来年系的层次清楚、逐步提高,同学容易接受,并且注意了引导同学去自主探索、合作交流。)
五、阅读调查
自主阅读“你知道吗?”,说说有什么收获,再到生活中去找找类似的例子。
六、全课小结
今天我们重点研究了哪种平面图形?它有什么特点?回想一下,我们通过哪些活动进行研究?
平行四边形教案 篇2
教学内容:
人教版五年级上册第六单元86页---88页,
教学目标:
1、通过学生自主探索,动手实践,突出平行四边形面积公式,能正确运用平行四边形的面积公式进行相关的计算。
2、 让学生经历平行四边形面积公式的推导过程,通过操作观察比较等活动初步认识,转化的数学思想,发展学生的空间观念。
3、培养学生,观察分析,概括推导,和解决实际问题的能力。
4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
理解,并掌握平行四边形的面积计算公式,会计算平行四边形的面积,
教学难点:
通过转化的'方法理解平行四边形的面积计算公式、
教学过程:
一、回忆旧知,谈话导入
1、今天我们来平行四边形面积的计算,在以前我们学过哪些图形面积的计算?(长方形和正方形)是怎样算的呢?
2、出示,方格纸中的长方形,每小格代表1平方厘米。这个长方形的面积怎样计算呢?
平行四边形教案 篇3
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的.中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 教学目标 1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。 2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。 3.对学生进行辩诈唯物主义观点的启蒙教育。 教学重点 理解公式并正确计算平行四边形的面积。 教学难点 理解平行四边形面积公式的推导过程。 教学过程 一、复习引入 1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。 2.观察老师出示的几个平行四边形,指出它的底和高。 3.教师出示一个长方形和一个平行四边形。 猜测: 哪一个图形面积比较大?大多少平方厘米呢? 师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题) 二、指导探究 1.数方格方法 (1)小组合作讨论: a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么? b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米? c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算) d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么? (2)集体订正 (3)请同学评价一下用数方格的方法求平行四边形的面积。 (麻烦,有局限性) 2.探索平行四边形面积的计算公式。 (1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的.学具试试看。 (2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。 (3)同学到前面演示转化的方法。 (4)教师演示课件并组织学生讨论: ①平行四边形和转化后的长方形有什么关系? ②怎样计算平行四边形的面积?为什么? ③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么? 3、应用 例1一块平行四边形钢板,它的面积是多少?(得数保留整数) 4.83.517(平方米) 答:它的面积约是17平方米。 三、质疑小结 今天你学到了哪些知识?怎样计算平行四边形面积? 四、巩固练习 1、列式并计算面积 ①底厘米,高厘米, ②底米,高米, ③底分米,高分米 2、说出下面每个平行四边形的底和高,计算它们的面积。 3、应用题 有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数) 4、量出你手里平行四边形学具的底和高,并计算出它的面积。 教学目标: (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。 (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。 (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。 教学重点: 理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。 教学难点: 理解平行四边形的面积公式的推导过程。 教具、学具准备: 课件、长方形和平行四边形图片、剪刀、平行四边形框架等。 教学过程: 一、创设情境、导入新课。 大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想) 你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题) 出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示) 二、自主探究,合作验证 探究一:用数方格的的`方法探究平行四边形的面积。 请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示: ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。 ② 填完表后,同学们相互议一议,并谈一谈发现。 你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报) 探究二:用割补的方法来验证猜测。 小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。) 我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件) (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。) (2)剪完后试一试能拼成什么图形? 师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示): 回顾发现过程: 1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( ) 2、求平行四边形的面积必须知道平行四边形的( ) 和( )。 探究过程小结(板书) 师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。 然后他们手拉手找到老师说了一些话。你知道他们说了什么? 生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演) 三、运用新知,练中发现 1、基本练习 (1)口算下面各平行四边形的面积 A、底12米,高3米: B、高 4米,底9米; C、底36米,高1米 通过这组练习,你有什么发现吗?(教学课件) 发现一:发现面积相等的平行四边形,不一定等底等高。 (2)画平行四边形比赛(大屏幕出示比赛规则) 比赛规则: 1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。 2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现) 发现二:1.发现只要等底等高,平行四边形面积就一定相等。 2.等底等高的平行四边形,形状不一定完全相同。 四、总结收获,拓展延伸 1、通过这节课的学习,你知道了什么? 2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗? 大屏幕出示(教学课件演示) 平行四边形,特点记心中。 面积同样大,形状可不同。 等底又等高,面积准相同。 要是求面积,底高来相乘。 (齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。 拓展延伸 请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。 五、板书设计: 教学内容: 人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。 教学目标: 1。通过操作和讨论掌握平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。 2。培养分分析观察能力、动手操作能力和有序思考的能力,培养学生的空间观念和想像力。 3。体会数学学习的乐趣,树立学习信心,感受数学价值。 教学重点: 通过操作和讨论掌握平行四边形和梯形的特征。 教学难点: 了解平行四边形与长方形和正方形的关系。 教学准备 教具:正方形、长方形、平行四边形和梯形图各一;多媒体课件。 学具:直尺,三角板,练习纸一张。 教学过程: 一、回顾旧知,引入新课。 师:孩子们,在我们三年级时已经学过并认识了许多的四边形,那怎样的图形叫四边形呢? 师:今天四边形之家要邀请它的家族成员来开联欢会,看,它们来了。(课件出示)你还认识它们吗?请你说一说你认识的图形的名称。(生说名称,教师相应的课件出示名称) 师:你能把它们分分类吗? 师:长方形和正方形是我们的老朋友了,你们能介绍它们的边与角各有什么特征吗? 师:这两个图形(出示和,并粘贴在黑板上)你能试着说一说它的特征吗? 师:长方形和正方形我们已经很熟悉了,所以大家描述得既准确又充分,(拿下长方形和正方形),指着平行四边形和梯形说:这两个图形我们不熟悉,所以描述的信息不够准确,没关系,通过本节课的学习,会让你清楚的认识平行四边形和梯形。 二、探索发现,掌握特征。 1。联系生活,建构概念 师:其实生活中就有许多物体的表面是平行四边形或梯形。(课件出示一组图片)找一找,有平行四边形吗?梯形呢?说说看! 师:你们真会观察啊!除了这些,你能举出生活中的哪些物体的表面是平行四边形和梯形呢?(生举例) 师:看来平行四边形和梯形在生活中应用很广泛,既然他们的应用如此广泛,我们就来研究什么叫做平行四边形,什么叫做梯形。(板书课题:平行四边形和梯形) 2。观察图形,直观感知 师:好了孩子们,先来看看平行四边形有什么特征?梯形有什么特征呢? 生说:平行四边形左右的边是平行的,平行四边形的上下的边也是平行的。师指图比划,梯形的上下边是平行的。 师:刚才这位同学说平行四边形的两组对边分别平行,梯形的一组边平行(老师说时带动作),这是我们通过观察得到的信息,真的是这样吗?下面我们就来验证。 3。验证猜想。 师:现在在你们的练习纸上有一个平行四边形和一个梯形,请你拿出工具检查平行四边形和梯形对边是否平行。 学生活动:验证。 活动结束师让学生在实物投影上就图说明。 师:通过刚才的验证他们组有这样的发现,其他组和他的发现一样的请举手,哦,大家都有这样的发现。是不是其他的'平行四边形和梯形也具有这样的特点呢? 4。整体呈现,确定概念。 (1)平行四边形。 师:我们首先来看平行四边形。请看屏幕:课件出示三个不同的平行四边形并验证。 师:验证之后可以证实我们刚才的发现是正确的,是吗?谁再来说一说我们刚才的发现? 引导学生得出:两组对边分别平行的四边形叫做平行四边形。 学生读。 师:闭上眼睛想一想,你的脑子中的平行四边形是什么样的? (2)梯形 师:我们知道了什么叫平行四边形。现在我们来看梯形。请看屏幕:课件出示三个不同的梯形并验证。 师:现在我们又证实了刚才梯形的发现是正确的,谁再来说一说刚才的发现? 引导学生得出:只有一组对边平行的四边形叫做梯形。 师:刚才这个同学发言中有一个特别重要的词,谁发现了?你能解释什么是“只有”吗? 学生读概念,闭上眼睛想一想梯形的样子。 5。对比概念,上升理解。 师:(指板贴平行四边形和梯形图)同学们,既然我们知道了平行四边形和梯形的概念了,谁说说它们的共同点是什么? 师:但也有不同,谁来说说哪里不同? 师:加着重号“分别”是什么意思?“只有”是什么意思?能不能不要这两个字? 三、巩固知识,加深理解 师:既然大家已经知道了什么叫做平行四边形、什么叫做梯形,那么,请你迅速的判断一下。 课件出示:下面的图形中.是平行四边形的画“○”,是梯形的画“√”。 (在完成此题的过程中,如果出现争议,则让学生议一议;无争议则提问:为什么在长方形下面画“○”?为什么说它是特殊的平行四边形?) 四、探讨四边形间的关系 师:到现在为止,我们学过了长方形、正方形、平行四边形和梯形,如果分别用一个集合圈来表示一种图形,这几种图形在四边形这个大家庭中应该站什么位置呢?(课件出示集合圈) 师:你会选择哪一个?为什么?(放大正确集合图) 师:谁能根据这个图说说它们的关系?(生说) 五、灵活应用,解决问题 师:看来,同学们对于各种四边形之间的关系已经很了解了,说到四边形,看。老师这里有一个(课件出示:)可它被数学书挡住了,猜一猜,它可能是什么图形呢? 继续演示:不可能是……?可能是……? 不可能是……?可能是……? 一定是……?为什么? 师:其实谜底早在我们的意料之中! 师:通过一次次的猜想,我能感觉对于平行四边形和梯形的了解越来越深入,想挑战吗? 2.分图形。 呈现题目:如果在平行四边形里画一条线段,把它分成两部分,这两部分可能是什么图形?画画看吧。 教学目标 1、运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。 2、学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征,能测量或画出平行四边形的高。 3、在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。 教学重点:在制作中发现平行四边形的基本特征和画高。 教学难点:引导学生发现平行四边形的特征。 教学过程: 一、生活引入 1、出示校门口伸缩门照片,问:这张照片你熟悉吗?是哪里?请你观察我们校门口的电动门,你能在上面找到平行四边形吗?谁来指给大家看。对,在这个伸缩门上有许多平行四边形。 2、师:生活中,你还在哪些地方见过平行四边形呢?(指名说) 3、师:是的,平行四边形在咱们的生活中无处不在,漂亮的小篮子上,安全网上,花园的栅栏上,学校楼梯的扶手上,三菱汽车的标志上,足球门的网上,以及工人叔叔用的升降架上,各式各样的电动门上都有平行四边形的存在。今天这节课,老师就和大家一起来认识平行四边形。(板书课题) 二、操作探究 1、师:看了这么多的平行四边形,想不想自己动手做一个呢?老师为大家准备了一些材料,请你选择其中一种材料,制作一个平行四边形。先独立完成,再小组里说一说你的方法。 2、师:谁来汇报?你选了那种材料?是怎么制作的?(让学生依次在投影上演示,并介绍制作过程) 3、讨论:刚才同学们用不同的.材料制作了平行四边形,大家制作的这些大小不同的平行四边形的边,有什么共同的特点呢? 4、下面,请每个小组的同学根据老师的提示进行讨论。 小组活动: (1)仔细观察小组内每个平行四边形,猜想:它们的边有什么共同的特点?组长记录在练习纸上。 (2)用什么方法去验证你们的猜想?怎样操作? (3)通过观察,操作,验证,你们的结论是什么? 5、师:哪个小组来汇报?首先说你们的猜想是?怎样验证的?(让学生在投影上操作演示)你的结论是什么?(根据学生回答板书) 6、师:同学们刚才通过观察,操作,验证了平行四边形边的特征,我们可以用一句话概括它的特征是:两组对边分别平行且相等。(板书)对边是指?(课件演示)谁再来说说,平行四边形有什么特点呀?多指名几人说,同座位说。 7、师:要看一个四边形是不是平行四边形,就要看?(多指名几人说)下面大家来判断,这里哪些图形是平行四边形?拿出练习纸,完成想想做做第一题,先独立完成,再说说理由,你是怎么判断的。 三、探索认识平行四边形的底和高 1、前面我们已经认识了三角形的高,那平行四边形的高在哪儿?又怎么画呢?请大家自学书44。 2、指名汇报,通过自学,你知道了什么?(提示:画高用虚线)底与高什么关系? 3、出示试一试,你能量出下面每个平行四边形的高和底各是多少厘米吗?在练习纸上完成。汇报,你能向大家示范一下你是怎么量的吗?第3小题你量的是哪一条线段?为什么?蓝色线段应是哪一条底边上的高? 4、师:做完这一题,你有什么体会?(底与高互相垂直) 5、师:我们认识了平行四边形的底和高,那怎样画高呢?你们会吗?谁来指导我来画一画。指名说,老师操作。 6、师:你会画吗?完成练习纸第3题。 7、指名上台展示,问:画高前,我们要先找准什么?并演示操作过程,重点演示三角尺摆放方法。 四、探索平行四边形与长方形的相同点与不同点。 1、师:这节课,我们认识了平行四边形,老师手上的这张纸片是什么形状的?现在我想让它变成一张长方形纸片,我该怎么办?请大家帮一帮我。出示想想做做4。小组操作。 2、指名汇报,你是怎样剪的?谁来看着这个长方形,说说它的特征是什么? 3、刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗? 4、依次出示想想做做6的几个步骤。让学生一步步操作,最后小组里观察讨论,长方形和平行四边形的相同点与不同点。 五、小结,并认识平行四边形的不稳定性。 1、通过这节课的学习,你对平行四边形有哪些认识? 2、平行四边形对我们的生活有哪些帮助呢?它还有什么特征呢?请看。现在你知道为什么校门口的电动门要做成由许多个平行四边形组成的了吗?(观看电动门伸缩过程)你还能举出更多的例子吗?大家课后做个有心人,搜集相关的资料吧。 【平行四边形教案】相关文章: 平行四边形教案04-01 认识平行四边形教案10-16 平行四边形教案[热]12-30 《认识平行四边形》教案03-30 【优】平行四边形教案03-26 《平行四边形的面积》教案06-23 《平行四边形的认识》教案03-15 平行四边形的面积教案11-08 平行四边形优秀教案03-08 平行四边形面积教案03-09平行四边形教案 篇4
平行四边形教案 篇5
平行四边形教案 篇6
平行四边形教案 篇7