当前位置:好文网>实用文>教案>平行四边形教案

平行四边形教案

时间:2024-09-21 10:00:57 教案 我要投稿

【推荐】平行四边形教案四篇

  作为一名老师,时常需要用到教案,教案是教学活动的依据,有着重要的地位。如何把教案做到重点突出呢?下面是小编帮大家整理的平行四边形教案4篇,欢迎阅读,希望大家能够喜欢。

【推荐】平行四边形教案四篇

平行四边形教案 篇1

  教学内容:

  人教版小学数学教材五年级上册第87~88页例1及相关练习。

  教学目标:

  1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。

  2.能正确地应用公式计算平行四边形的面积。

  教学重点:

  探索并掌握平行四边形面积计算公式。

  教学难点:

  理解平行四边形面积计算公式的推导过程,体会转化思想。

  教学准备:

  课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。

  教学过程:

  一、激趣引入

  1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?

  你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)

  2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?

  3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?

  【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。

  二、新知探究

  (一)合理猜想

  1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。

  预设1:邻边相乘;

  预设2:底边乘高。

  2.同桌互相说一说,你同意哪一种猜想?理由是什么?

  3.反馈想法。

  预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。

  预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。

  (二)验证猜想

  同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?

  1.邻边相乘的想法

  教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?

  学生:边的长短没变,高和面积变了。

  教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?

  教师:现在谁能说说这种拉的方法合理吗?为什么?

  教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。

  【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。

  2.底边乘高的想法

  (1)数格子验证

  教师:这里的一些不是整格的怎么数?

  学生:可以通过拼一拼,变成整格的再数。

  教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?

  (2)剪拼验证

  教师:谁来展示你是如何进行剪接的?

  学生:沿高剪下,补到另一边,拼成长方形。

  教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)

  那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。

  【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。

  (三)公式推导

  教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?

  学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

  教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?

  教师:如果我们用

  表示平行四边形的面积,用

  表示平行四边形的底,用

  表示平行四边形的高,那么平行四边形的面积计算公式可以用

  来表示。

  (四)回顾总结

  回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?

  【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。

  三、练习巩固

  (一)基础练习

  1.完成练习十九第1题。

  (1)请学生计算,并进行订正。

  (2)反馈小结:在计算时,可以先写出面积公式,再进行计算。

  2.完成练习十九第2题。

  (1)请学生计算,并进行反馈。

  (2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。

  【设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。

  (二)拓展提升

  一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少?

  1.引导学生算出它的`面积;

  2.请学生在方格纸上画出这样的平行四边形;

  3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。

  4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。

  5.思考:面积相等的平行四边形一定等底等高吗?为什么?

  【设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。

  四、总结提示

  教师:回忆一下,今天这节课有什么收获?

  总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

  【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。

平行四边形教案 篇2

  教学目的:

  1、深入了解平行四边形的不稳定性;

  2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)

  3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;

  4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。

  教学重点:

  平行四边形的性质和判定。

  教学难点:

  性质、判定定理的运用。

  教学程序:

  一、复习创情导入

  平行四边形的性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  二、授新

  1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:

  2、自学质疑:自学课本P79-82页,并提出疑难问题。

  3、分组讨论:讨论自学中不能解决的问题及学生提出问题。

  4、反馈归纳:根据预习和讨论的效果,进行点拨指导。

  5、尝试练习:完成习题,解答疑难。

  6、深化创新:平行四边形的性质:

  边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。

  角:对角相等(定理1);邻角互补。

  平行四边形的判定:

  边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)

  7、推荐作业

  1、熟记“归纳整理的内容”;

  2、完成《练习卷》;

  3、预习:(1)矩形的定义?

  (2)矩形的`性质定理1、2及其推论的内容是什么?

  (3)怎样证明?

  (4)例1的解答过程中,运用哪些性质?

  思考题

  1、平行四边形的性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?

  跟踪练习

  1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )

  2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。

  3、下列条件中,能够判断一个四边形是平行四边形的是( )

  (A)一组对角相等; (B)对角线相等;

  (C)两条邻边相等; (D)对角线互相平分。

  创新练习

  已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)

  达标练习

  1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。

  2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。

  综合应用练习

  1、下列条件中,能做出平行四边形的是( )

  (A)两边分别是4和5,一对角线为10;

  (B)一边为4,两条对角线分别为2和5;

  (C)一角为600,过此角的对角线为3,一边为4;

  (D)两条对角线分别为3和5,他们所夹的锐角为450。

  推荐作业

  1、熟记“判定定理3”;

  2、完成《练习卷》;

  3、预习:

  (1)“平行四边形的判定定理4”的内容 是什么?

  (2)怎样证明?还有没有其它证明方法?

  (3)例4、例5还有哪些证明方法?

平行四边形教案 篇3

  导学目标:

  1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。

  2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。能根据判别方法进行有关的应用。

  3、在探索过程中发展学生的合理推理意识、主动探究的习惯。

  4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

  导学重点:平行四边形的判别方法。

  导学难点:根据判别方法进行有关的应用

  导学准备:多媒体课件

  导学过程:

  一、快速反应

  1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________

  2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________

  3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?

  结论:______________________________________

  符号表示:

  4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?

  在图中,AC=BD=16, AB=CD=EF=15,

  CE=DF=9。

  图中有哪些互相平行的线段?

  二、议一议

  1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?

  三、平行四边形的判别方法:

  (1)两组对边分别平行的四边形是平行四边形。

  (2)两组对边分别相等的四边形是平行四边形。

  (3)一组对边平行且相等的四边形是平行四边形。

  (4)两条对角线互相平分的四边形是平行四边形。

  四、练一练:

  1.判断下列说法是否正确

  (1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )

  (2)两组对角都相等的`四边形是平行四边形 ( )

  (3)一组对边平行且一组对角相等的四边形是平行四边形 ( )

  (4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )

  2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?

  3.比一比:如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由。

  五、师生共同小结,主要围绕下列几个问题:

  (1)判定一个四边形是平行四边形的方法有哪几种?

  (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

  (3)平行四边形判定的应用

  六、课后巩固:课本P107习题4.4第1题和第2题

  七、课后反思:

平行四边形教案 篇4

  教学内容:

  教科书数学第八册第22~26页

  教学目标:

  1.通过观察操作认识平行四边形的特征,使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。

  2.经历探索平行四边形面积计算公式的过程,使学生初步认识转化的思考方法在研究平行四边形面积时的运用。

  3.培养观察、比较、推理和概括能力,渗透转化思想的空间观念。

  教学重难点:

  探索平行四边形面积计算公式的推导过程。

  教具准备:

  1.课件

  2.教师准备一个平行四边形的纸片。

  3.学生准备好学具

  教学过程:

  活动一:认识平行四边形的特征。

  信息窗1,学生观察。

  师:你发现了什么信息?你想提一个什么数学问题?学生以小组为单位讨论。

  (生交流讨论的情况)

  平行四边形的特征:对边平行且相等,对角相等。

  师:什么叫平行四边形?(两组对边分别平行的四边形叫做平行四边形。)

  师:先领学生复习平行四边形的底和高。再让学生指出平行四边形的底,指出它的`高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

  活动二:学习平行四边形面积的计算公式。

  师:解决1号虾池的面积是多少。

  我们已经知道1号虾池的形状是平行四边形的,要求1号虾池的面积,就是求平行四边形的面积,那么怎样求平行四边形的面积?请大家猜测一下。

  学生活动:用手中的学具操作一下。

  师:现在交流你们想出的方法。

  师:同学们有各自的猜想,到底谁的对呢?用什么办法来验证。

  师:哪个小组来汇报一下你们是怎样来验证的 ,你们的结论是什么?

  提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?

  启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

  通过操作总结平行四边形面积的计算公式。

  (1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。

  (2)教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在演示。

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

  教学用字母表示平行四边形的面积公式。

  板书:S=ah,

  S=ah,或者S=ah。

  应用总结出的面积公式计算平行四边形的面积。

  师:现在来求:1号虾池的面积是多少?

  学生列式:90X60=5400(平方米)

  活动三:

  解决2号虾池能放养多少尾虾苗?

  交流答案,交流解题思路。

  活动四:巩固练习

  自主练习的1、2、5

  活动五:

  课堂小结:

  这节课我们共同研究了什么?

  怎样求平行四边形的面积?

  平行四边形的面积计算公式是怎样推导出来的?

【平行四边形教案】相关文章:

平行四边形教案04-01

平行四边形的面积教案01-23

平行四边形教案优秀11-05

认识平行四边形教案10-16

《认识平行四边形》教案03-30

平行四边形优秀教案03-08

平行四边形面积教案03-09

《平行四边形的面积》教案02-25

《平行四边形的认识》教案03-15

认识平行四边形教案03-05