当前位置:好文网>实用文>教案>可能性教案

可能性教案

时间:2024-07-29 20:17:44 教案 我要投稿

可能性教案范文集合七篇

  作为一名辛苦耕耘的教育工作者,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。来参考自己需要的教案吧!以下是小编为大家整理的可能性教案7篇,欢迎大家分享。

可能性教案范文集合七篇

可能性教案 篇1

  教材说明

  本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。

  1.事件发生的可能性以及游戏规则的公平性。

  关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。

  根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。

  等可能性事件与游戏规则的公平性是紧密相联的',因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。

  2.中位数的统计意义及计算方法。

  学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。

  在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。

  教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。

  教学建议

  1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。

  在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。

  在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。

  2.加强学生对中位数在统计学意义上的理解。

  中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。

  在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。

  另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。

可能性教案 篇2

  教学目标:

  1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。

  2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。

  3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

  教学重点:

  通过活动认识一些事件发生的等可能性。

  教学难点:

  理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的***会是相等的。

  教学准备:

  多媒体,红球3个 黄球3个

  教学过程:

  一、创设情境,激趣导入。

  1.出示装有3个红球的袋子

  (1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)

  (2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)

  2.揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)

  二、活动体验,探索新知。

  1.摸球。

  (1)猜测。

  (出示上述装有3个红球和3个黄球的透明口袋)

  谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?

  学生自由猜测

  (2)验证。

  谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)

  ①明确活动要求。

  谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。

  ②明确统计方法。

  提问:怎样能记住每次摸球的结果呢?

  以前我们用过哪些方法来记录?(画“√”、涂方块…)

  在生活中,你还见过哪些记录数据的方法?(引导说出画“正”字的`方法)

  怎样用画“正”字的方法来记录呢?谁能向大家介绍一下?

  教师相***出示“摸球结果记录表”,向学生介绍。

  讲解示范:一画“一”表示1次,1个“正”字表示记录5次。

  红球

  黄球

  ③明确分工。

  谈话:活动时我们要互相合作,互相帮助,这样才能顺利完成任务。请各小组在组长的带领下进行分工活动。

  ④活动体验。

  学生分组实验,教师巡视指导。

  (3)归纳。

  ①各小组交流汇报统计结果,教师用实物投影展示。

  ② 提问:统计的结果和你的估计差不多吗?我们再将各小组摸到红球的次数和摸到黄球的次数进行比较,你有什么发现?(有的小组摸到红球的次数和摸到黄球的次数同样多,有的小组摸到红球的次数比摸到黄球的次数多一些,有的小组摸到红球的次数比摸到黄球的次数少一些)如果继续摸下去,摸到红球的次数和摸到黄球的次数会怎样?

  讲述:这就说明从装有3个红球和3个黄球的袋子里任意摸一个球,摸到红球的***会和摸到黄球的***会是相等的,也就是摸到红球和黄球的可能性是相等的。

  提问:我们是用什么方法来记录摸球结果的?你觉得用画“正”字的方法来记录好不好?(记录简便、整理迅速)记录之后我们又对数据作了怎样的处理?(填入统计表)可见用统计的方法来研究事情发生的可能性是一个很好的方法。通过实验和统计得到了什么结论?(摸到红球和黄球的可能性是相等的)

  三、玩中交流,内化交流。

  1.抛小正方体。

  教师出示小正方体,问:知道小正方体有几个面吗?在6个面上都写有数字,小组成员仔细观察有哪些数字?各出现了几次?

  如果把小正方体抛30次,那么“1”“2”“3”各字朝上的次数会怎样呢?

  验证。

  明确活动要求:小组成员按顺序轮流抛小正方体,并记录朝上数字的次数。

  在小组内明确分工。

  活动体验:学生先分组实验,再统计结果,填写下列表格。

  朝上的数字

  1、2、3

  次数归纳。

  各小组汇报统计结果,教师将数据填入下表。

  朝上的数字

  1、2、3

  合计

  第一小组

  第二小组

  第三小组

  第四小组

  提问:仔细观察统计表,统计的结果和你估计的差不多吗?你发现了什么?

  反思。通过这一活动,你又明白了什么?为什么1、2、3朝上的次数差不多?

  讲述:根据合计栏里的数据,我们可以看出抛的次数越多,数字1、2、3朝上的次数就越接近。那么抛一次,向上的数字有几种可能性?这三种可能性的大小怎样?(相等)

  三、拓展深化

  谈话:如果要在装有红球和蓝球的口袋中任意摸一个球,摸到红球和蓝球的可能性相等,可以怎样放球?

  学生各抒己见

  谈话:为什么可以这样放?(因为红球和蓝球的个数相同,所以任意摸一个球,摸到红球和蓝球的可能性相等。)

  2.完成“想想做做”第2题

  先小组讨论,再展示交流,说说想法。

  四、总结

  提问:通过这节课的学习,你学会了什么?知道了什么?

  板书设计:

  统计与可能性

  3个红球 3个黄球

  当口袋里红球与黄球一样多时,摸到红球与黄球可能性是相等的。

可能性教案 篇3

  教学目标:1、通过具体的活动让学生体验事件发生的等可能性,会判断游戏规则的公平性,学会用简单的分数几分之一表示事件发生的可能性,《等可能性》教案。2、让学生亲身经历比赛公平性的探究过程,实验、分析的学习方法,培养学生的观察分析、逻辑推理能力和合作学习的意识。3、在学习探究活动中,感受探究数学活动的乐趣,体验游戏与比赛的公平原则,体验数学与生活间的密切联系,感受数学知识的使用价值,激发学习数学的乐趣。教学重点:通过实验活动让学生进一步体会等可能性。

  教学难点:使学生学会有根据的思考问题,有条理的说明问题。教具学具准备: 硬币、多媒体课件等。

  教学过程:

  一、创设情境,引出问题:谈话:你们看过足球比赛吗?你们知道在足球比赛时我们用什么方式决定谁先开球吗?我们一起来看一下。(播放课件)你认为我们用抛硬币的方式决定谁先开球公平吗?为什么?因为抛硬币的结果是无法人为控制的,所以抛硬币的事件是一种可能性事件。这节课我们继续学习可能性。(板书:可能性)

  二、探索研究,解决问题:谈话:刚才大家对老师提出的用抛硬币的方法决定哪个队先开球是否公平这个问题(板书:问题)进行了猜测,(板书:猜测)要想验证我们的猜测是否正确怎么办?(板书:实验)老师给每个同学都准备了一枚硬币,一会儿我们就利用这枚硬币进行实验。1、实验前:我们先来规定一下,币值这面我们叫它正面,国徽这面我们叫它反面。实验的时候为了实验结果的准确性,我们一定要竖着拿着硬币,抛的时候先向上。提问:我们实验几次呢?(如果实验一次,看不出正面朝上的次数和反面朝上的次数是否相等,所以最少实验2次)。2、学生实验2次。试验后找一组汇报数据。通过实验我们的得出的数据,(板书:数据)观察数据,看一看正面朝上的次数和反面朝上的次数是否相等。根据我们刚才实验的数据,你们能说着正面朝上的可能性和反面朝上的'可能性相等吗?如果数据不能证明我们的猜测是错误的?不是猜测有问题,那是哪儿有问题?3、实验10次学生实验。(把结果统计在表格中)汇报次数。观察数据正面朝上的次数和反面朝上的次数怎样?

  总结:通过试验次数的增多,正面朝上的次数和反面朝上的次数越来越相近了,那是不是就近似相等。我们做了十次实验,出现了相差2次,4次,甚至6次的情况。你觉得我们实验十次成不成,那我们实验多少次才成呢?4、统计全班数据正面朝上的次数和反面朝上的次数相差几次。你们觉得370次实验,相差10次不多?我们可不可以说正面朝上的可能性和反面朝上的可能性近似相等呢?5、出示科学家数据我们全班做了370次实验,那你知道我们的科学家为了验证这个猜测是否正确,做了多少次实验?(观看数据视频)6、得出结论通过科学家的试验,得到了大量数据根据这些数据我们可以得出一个什么结论?如果用一个分数表示,正面朝上的可能性是多少?如果抛1000次、10000次,会有多好次正面朝上?

  三、巩固提高。其实不光在足球比赛中,在许多国际比赛中,例如:乒乓球、篮球比赛中,我们也都用到了抛硬币决定哪个队先开球,应为这种方式是公平的。生活中,我们同学也选取了一些身边的材料来进行游戏,我们来看看他们的游戏规则公平不公平?1、游戏棋:掷正方体的木块,木块的各面分别写着1,2,3,4,5,6。掷到数字几就走几步。你认为这个游戏规则公平吗?每个面朝上的可能性是多少?如果换成长方体的木块来做这个游戏,游戏规则公平吗?2、桌子上摆着9张卡片,分别写着1-9各数。如果摸到单数小明赢,如果摸到双数小芳赢。你认为这个游戏规则公平吗?如果不公平怎么办?3、(1)转动转盘,会有几种可能的情况?(2)指针停在这四种颜色区域的可能性相等吗?(3)指针停在这四种颜色区域的可能性各是多少?

  四、小结:你有什么收获?板书设计:可能性相等问题→猜测→实验→数据→结论

可能性教案 篇4

  1、在简单的猜测活动中感受不确定现象,初步体验有些事件的发生是确定的 、有些则是不确定的。

  2、会用一定可能或不可能等词语描述生活中一些事情发生的可能性。

  教学重点:

  初步体验有些事件的.发生是确定的 、有些则是不确定的。

  教学难点:

  能列出简单试验所有可能性发生的结果。

  教学关键:

  选取学生熟悉的生活情境及感兴趣的游戏活动作为教学的素材,帮助学生理解数学知识

  教具准备:

  课件、硬币、珠子、彩球。

  教学过程:

  一、 创设情境,引入课题。

  师:同学们,在上新课之前呢,老师想问大家两个问题?

  1、明天是不是星期四?

  生:是。

  师:能确定吗?

  生:能。

  2、 明天是不是晴天?

  生:(可能会说),是,不是,不知道。

  师:分别让说是,不是,不知道的同学说一说自己的理由。

  师:也就是说明天是不是晴天我们能确定吗?

  生:不能。

  师:生活中就是这样,有些事情我们可以确定它的结果,有的事情则不能确定它的结果。这节课我们一起来研究事情发生的可能性。(板书课题)

  二、探究新知

  (一)、研究不确定现象

  1、师:大家喜欢玩游戏吗?我们来玩一个抛硬币游戏怎么样?

  (出示幻灯片)请看大屏幕

  抛硬币。(例1)

  抛硬币活动要求:

  (1)、抛之前先猜一猜硬币落地后,是正面向上?还是反面向上?

  (2)、分组进行抛硬币活动,注意记录和观察硬币落地后,有几种结果。

  (3)、活动后,同学们想一想怎么用语言准确的描述描述硬币落地后的出现的结果。

  2、师:教师引导学生用规范语言描述:这位同学说的挺好的,挺恰当的,我们就可能也可能.来说这种现象好不好。(板书:可能也可能.)

  3、练习。

  好,再来看一下,现在老师手里有一个盒子,老师找几个同学来摸球,摸到球后,请同学大声的告诉大家你摸到的是什么球。

可能性教案 篇5

  教学内容:

  教材P107—109

  教学目标:

  1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  3、 通过实际操作活动,培养学生的动手实践能力。

  3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

  教学重、难点:

  知道事件发生的可能性是有大小的。

  教学过程:

  一、引入

  出示小盒子,展出其中的小球色彩、数量,

  如果请一位同学上来摸一个球, 他 摸到什么颜色的球的可能性最大

  二、探究新知

  1、教学例5

  (1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。

  记录次数

  黄

  红

  活动汇报、小结

  (2)袋子里的'红球多还是黄球多?为什么这样猜?

  小组内说一说

  总数量有10个球,你估计有几个红,几个黄?

  (3)开袋子验证

  让学生初步感受到实验结果与理论概率之间的关系。

  2、练习

  P107“做一做”

  3、小结

  三、巩固练习

  P109 6

  [1]学生说说掷出后可能出现的结果有哪些

  [2]猜测实验后结果会有什么特点

  [3]实践、记录、统计

  [4]说说从统计数据中发现什么?

  [5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。

  P110 7

可能性教案 篇6

  一、情境导入

  谈话:小朋友们,今天这节课老师和大家一起来做游戏,好吗?我们还设立了得星榜,要比一比3个小组中,哪个小组得星最多,合作得最默契,数学教案-可能性的教学设计。先来玩第一个游戏,猜猜礼袋里装着什么?

  学生有的猜..有的猜...

  提问:一定是吗?(不一定)

  小结:也就是说,现在你们只能是猜测,可能会是...,也可能会是...,这就是我们生活中的“可能性”(板书:可能性)

  二、摸球游

  1.用“一定”来描述摸球的结果,体验事件发生的确定性。

  谈话:那么袋子里究竟是什么呢?

  指名学生上台并指导摸球:先搅几下,摸一个,拿出来。放进去。搅一搅,再摸一个,拿出来……

  引导:怎么他每次摸到的都是红球呢?(生猜测:里面都是红球)同意他的猜测吗?我们一起来验证一下吧!(请XXX把里袋拎出来)

  小结:对了,你们真聪明,一下就猜到了。袋子里装的都是红球,那我任意摸一个球,结果会是?(红)一定吗?(板书:一定)

  2.谈话:你们也想来玩摸球游戏吗?好,请组长拿出袋子。不过,在摸球之前先讲清楚摸球规则:由组长先摸,摸前手在口袋里搅几下,然后任意摸出一个,并告诉你们小组的同学摸到的是什么球,再把球放入袋中并做好记录,依次传给其他组员摸,明白了吗?就让我们比一比哪组合作得最好?开始吧!

  (让学生分组摸球,教师巡视指导)

  汇报摸球情况:每组派代表说一说,你们一组摸到了什么球呢?(黄球和绿球)

  猜一猜,袋子里是什么颜色的球?(黄球和绿球)

  组长倒球验证,(师作出摸球的动作)轮到我摸了,我从这个袋里任意摸一个,结果会是?(黄,绿)一定吗?(不一定)那要怎么说?(可能是黄,也可能是绿)(板书:可能)

  提问:那能在这个袋子里摸到红球吗?为什么?(板书:不可能)

  3.小结:通过摸球游戏,我们发现如果袋子里都是红球,任意摸一个,一定是红球。

  如果袋子里有黄球和绿球,任意摸一个,可能是黄球,也可能是绿球。但不可能是红球。

  三、实践拓展

  1.练一练。

  (1)(出示装有2个红球和3个黄球的袋子)瞧,在这个口袋里,任意摸一个球,一定黄球吗?那会怎样呢?

  (2)(出示有2个绿球和3个红球的袋子)那从这个袋子里一定能摸出黄球吗?为什么?

  (3)(出示装有5个黄球的袋子)这个袋子呢?为什么?

  小结:让我们来看看现在各小组的得星情况,问:猜一猜哪组有可能夺得今天的最佳合作奖?那这一组一定会是今天的冠军吗?对!在比赛还没有结束前,我们每个小组都有可能获胜,大家可要继续努力啊 !

  2.装球游戏,小学数学教案《数学教案-可能性的教学设计》。

  谈话:前面我们玩了摸球游戏,接下来我们要来装球,根据老师出示的要求,请先在小组内讨论,应该放什么球,不应该放什么球。讨论好了请组长把小篮里的球装在透明袋里,比一比哪个小组合作得又好又快!

  安排3次装球活动,依次出示要求:

  (1)任意摸一个球,一定是绿球。该怎么放呢?(学生讨论,放球,师巡视)

  说说你是怎么放的?放3个5个都可以吗?

  师表扬,说的.好,只要全部是绿球,那摸到的一定是绿球。

  (2)任意摸一个球,不可能是绿球。该怎么放呢?(学生讨论,放球,师巡视)

  谁愿意来说一说?这么多放法都对吗?只要怎样?(不放绿球)

  交流:任意摸一个,不可能是绿球,应该怎样装?装球时是怎样想的?

  小结:任意摸一个,不可能是红球。有很多种装法,可以装一种、两种、三种甚至更多种颜色的球,但是不能装绿色的球。

  (3)任意摸一个球,可能是绿球。

  (每次装球后,请组长把透明袋举起,展示本组装球情况,并说说为什么这样装球,老师相机引导、鼓励)

  3.转盘摇奖活动

  1、猜测:(师出示红黄蓝三色转盘)观察转盘,有几种颜色?想一想,转盘停止转动后,指针会指在哪里?能肯定吗?那应该怎么说?(转盘停止转动后,指针可能会指着红色,可能会指着黄色,还可能会指着蓝色。)

  2、体验:是不是真的会出现这些情况呢?刚才装球最快的那一小组的小朋友上来,请你们轮流拔动转盘试试看,

  4.联系生活。

  谈话:小朋友们,今天我们通过玩一玩、猜一猜、说一说,学会了用“一定”、“可能”、“不可能”来表述游戏中的各种情况,那在我们的生活中,同样有些事情是一定会发生,有些事情是不可能发生,也有些事情可能会发生。下面请小朋友们举例说说!

  小结:我们来看看今天的冠军是哪一组?那下次他们也一定是冠军吗?可能会出现什么情况呢?

  四、总结谈话

  1、今天,我们一起研究了“可能性”的问题,你学得开心吗?学到了哪些新知识?

  2、回家后把学到的新知识讲给爸爸妈妈听,再调查一下,看看生活中还有哪些事情可能发生,哪些事情不可能发生或一定会发生,一星期后举行一个交流会,比比谁讲得多讲得好!

可能性教案 篇7

  一、谈话导入:

  出示扑克牌与筛子:同学们,你们知道老师要玩什么游戏?想来一起玩一玩吗?我们要玩出数学味来。

  二、开展活动:

  1、活动一、摸牌游戏。

  (1)谈话并猜测:(电脑出示)老师这儿有四种不同花色的扑克牌各2张,混放在一起并叠整齐。如果每次任意摸一张,摸40次。你猜猜,每种花色的牌可能会摸到多少次?(指名猜测)请把你估计的数字写下来。

  (2)会和你猜的情况一样吗?我们只要自己试试就可以知道了。

  (3)师宣布活动规则,多媒体演示示范摸牌一次,说明活动顺序和要求:摸牌——画“正”字——放回——洗牌……,摸牌40次后,在记录表下面的方格图里涂色,用直条表示摸牌结果。

  (4)学生同桌合作,一人摸牌,另一人在书上记录,然后将结果用条形图表示。

  (5)学生汇报摸牌结果。看看和你估计的是否差不多,并在小组内交流活动的发现和体会。(可以让猜得很接近的学生说说为什么要这样猜。)

  (6)全班交流摸牌游戏中的体会。

  (7)谈话:如果再放进4张红桃牌,任意摸40次,结果可能会怎样?先猜一猜,再合作实验。(同桌合作,与刚才分工交换,一人摸牌、另一人记录在书上,并制成条形图)

  (8)全班交流各自的`发现,分析产生不同结果的原因。

  (9)同桌合作活动,任意选择不同张数、不同花色的扑克牌,先估计像刚才一样摸40次,结果可能会怎么样,再实验。并用自己最快的方法记录在自己本子上。

  (10)谈话:如果摸到黑桃牌的可能性最大,你准备怎么样?(指名回答)根据老师的要求选取扑克牌的花色和张数。

  2、活动二:下棋游戏。

  (1)过渡:老师认为自己打牌的水平还可以,可是,有一次和别人下棋,输得很掺,到底是怎么一回事呢?

  (2)电脑边演示边解说:那天,我们是这样下棋的,用一个小正方体,5面涂红色,1面涂黑色。一人黑棋,一人拿红棋,都从“0”开始。谁走棋用抛下正方体的办法确定。两人轮流抛小正方体。不管谁抛的,只要红色朝上,红棋就走一格;黑色朝上,黑棋就走两格。谁先走到最后一格谁为胜。

  (3)你能按着老师这样的玩法,和同桌一起玩玩吗?

  (4)先制作小正方体,剪下教材附页上的棋纸。同桌合作,随意选择颜色开展活动,一局结束后,可交换棋子再下几盘,并在书上记录自己哪种颜色棋胜的盘数。

  (5)小组内交流自己获胜情况,组长统计组内红棋和黑棋获胜的盘数。

  (6)在班内交流游戏结果。各组汇报,教师记录,合计。

  (7)你猜猜那天老师拿得是什么颜色的棋子?(生说)

  师设疑:我想,黑色朝上,可以走两格,所以我选择了黑色。可为什么和我想象得不样呢?(学生讨论并交流)

  (8)如果要使两种颜色的棋获胜的次数差不多,应该怎么改?

  三、拓展思维:

  你能在日常生活中找到利用这种可能性而举行的一些活动吗?

  假如自己是某商场的经理,请你策划一个有诱惑力而又很合理的“摸奖”活动。

  板书设计:

  摸牌和下棋

  顺序:摸牌——画“正”字——放回——洗牌……

  红色:走一格

  黑色:走两格

【可能性教案】相关文章:

可能性教案02-17

可能性教案06-18

《可能性》教案01-31

《统计与可能性》教案06-11

可能性教案模板04-17

可能性的认识教案04-12

有关可能性教案10-09

可能性教案范文07-19

《可能性》教案(20篇)11-03

《可能性》教案15篇03-08