- 分数的基本性质教案 推荐度:
- 相关推荐
分数的基本性质教案模板汇总九篇
作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,教案是教学活动的依据,有着重要的地位。我们该怎么去写教案呢?以下是小编为大家收集的分数的基本性质教案9篇,希望能够帮助到大家。

分数的基本性质教案 篇1
教学目标:1,使同学理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2,培养同学发现问题和解决问题的能力。渗透"事物之间是相互联系"的辩证唯物主义观点。
教学重点:掌握分数的基本的性质,能运用分数的基本性质解决有关的问题。
教学难点:理解分数的基本的性质。
教学课型:新授课
教具准备:课件
教学过程:
一,复习铺垫,准备迁移 [课件1]
1,120÷30的商是多少 被除数和除数都扩大3倍,商是多少被除数和除数都缩小10倍呢
2,比较下列每组数的大小。
3/4( )3/5 15/20( )4/20
3,把下面的分数改写成两个数相除的形式。
2/3=( )÷( ) 5/8=( )÷( )
二,探索新知,发展智能
1,同学操作:将手中的纸圆片平均分成若干份。
2,反馈。
(1)提问:A,若要求剪下其中的一半,想想剪下的份数各自占圆的几分之几
B,虽然每个同学所剪的份数不同,但它们之间大小关系怎样
板书: 1/2=2/4=3/6
C,观察一下:这些分数的分子,分母变化有什么规律
(2)引导同学概括出分数的基本性质,并与前面的猜测相回应。
(3)小结:这里的"相同的数",是不是任何数都可以呢
(零除外)
板书:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的.大小不变。
3,分数的基本性质与商不变的性质的比较。
提问:在除法里有商不变的性质,在分数里有分数的基本性质。想一想:根据分数与除法的关系以和整数除法中商不变的性质,你能说明分数的基本性质吗
4,巩固认识。
P109 。1
(2)说数接龙。
5/6=5+5/( )……
三,运用延伸,深化概念
1,要求大小不变。[课件2]
1/3=( )/6 10/15=( )/6 1/4=5/( )
2,下面分数中哪两个分数相等 [课件3]
3/4 21/32 15/20 1/5 4/20
习后提问:A,依据是什么
B,3/4和1/5哪个大 你是怎么比较出来的
C,那么,从中你又有什么新发现 你的新发现是什么
四,全课总结
提问: A,这节课你学习了什么
B,运用分数的性质,你能做什么
C,本节课你还有哪些疑问 你还想从哪些方面去探索分数
的知识呢
五,家作
P109 。3,5,6
板书设计: 分数的基本性质
1/2=2/4=3/6
分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。
分数的基本性质教案 篇2
内容:P15、16例1、2 ,练习四第1-3题。
目标:
1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。
2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
重点:正确理解与分析运用分数的基本性质。
过程:
一、创设情境,导入新课。
“大圣”分桃:
话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?
二、师生共研、发现规律。
师生共同揭秘“分桃”内幕。
人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:
1÷2=1/2=2/4=4/8
从上面这三个分数的.相等关系,你发现了什么?
从左往右看:
1/2 = 1×2 / 2×2 = 2/4
从右往左看:
2/4 = 2÷2 / 4÷2 = 1/2
1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。
观察分子、分母的变化,同时归纳小结。
学生试,验证自己提出的观点是否正确。
小结:
分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。
三、数学小报,再次验证。
1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。
2.将折得的小报中数学趣题版用阴影显示出来。
3.将四张的折叠结果重叠,得出数学趣题版面大小。
4.针对式子进行口头表述。
四、理解性质、简单运用。
例2的教学
(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。
请同学们理清题意,然后进行转化。
(2)反馈。
(3)质疑
让学生通过讨论,深化对分数大小不变的要求的理解。
(4)议一议
由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。
五、练习巩固、拓展提高。
1.课堂活动
2.提取第一题的结果,进行深入思考:
当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?
结论:大小不变,分数单位要变。
六、全课总结:
这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?
七、作业:
练习四第1-3题。
分数的基本性质教案 篇3
教材简析:
分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。
设计理念:
分数的基本性质是约分和通分的'基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。
在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。
《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。
教学目标:
1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.
2、培养学生观察、分析、思考和抽象、概括的能力.
3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.
教学重点:
使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教具准备:
每生三张正方形纸
教学方法:
演示法、观察法、讨论法、交流法。
分数的基本性质教案 篇4
教学目标:
1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好的实现知识教育与思想教育的有效结合。
教学重点:
理解和掌握分数的基本性质。
教学难点:
能熟练、灵活地运用分数的基本性质。
教学过程:
一、创设情景
师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以
生2:我们组是用折纸的.方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)
师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)
师:同学们汇报一下你们的讨论结果。
三、 自主练习 巩固提高
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4 题学生自做。师巡视指导。
课堂小结 :
一生小结,他生补充,教师评判。
分数的基本性质教案 篇5
教学内容:人教版五年级数学下册57页内容。
教学目标:
知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。
过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。
情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。
教学重点:使学生理解和掌握分数的基本性质。
教学难点:运用分数的基本性质解决相关的问题。
教学准备:多媒体课件、正方形纸、直尺、彩笔
教学过程:
一、铺垫孕伏,温故迁移
1.比一比:看谁算得又对又快。
2.说一说:商不变的性质是什么?
3.想一想:分数与除法有怎样的关系?
4.猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?
二、设疑激趣,探究新知
(一)故事激趣,引出分数。
说出自己从故事中听到的分数。
(二)小组合作,直观感知。
1.折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。
2.画一画:画出折痕所在的直线。
3.涂一涂:
(1)给平均分成2份的正方形纸的其中的1份涂上颜色。
(2)给平均分成4份的正方形纸的`其中的2份涂上颜色。
(3)给平均分成8份的正方形纸的其中的4份涂上颜色。
4.比一比:比较3张正方形纸涂色部分的大小。
5.议一议:和同伴说说自己的想法。
(二)观察比较,探究规律。
1.这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。
2.汇报交流。
3.启发点拨。
通过从左往右观察、比较、分析,你发现了什么?
引导学生小结得出:分数的分子、分母同时乘相同的数,分数的大小不变。
那么,从右往左看呢?
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
4.归纳小结:引导学生概括出分数的基本性质。
5.启发思考:这里的“相同的数”可以是任何数吗?(补充板书:0除外),你能举例说明吗?
(三)独立尝试,运用规律。
1.学生独立思考,完成例2。
2.反馈交流,订正点拨。
3.小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。
三、达标检测,内化提升(见《达标测试题》)
四、总结收获,评价激励
这节课你有什么收获?你对自己的哪些表现比较满意?
板书设计:
分数的基本性质
例1:
分数的分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。
例2:
分数的基本性质教案 篇6
教学内容:
人教版《义务教育课程标准实验教科书数学》五年级(下册)75—78页。
设计思路:
《分数的基本性质》是人教版《义务教育课程标准实验教科书数学》五年级(下册)第四单元《分数的意义和性质》的第三节内容。它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课的教学重点是理解和掌握分数的基本性质,并能运用分数的基本性质解决实际问题。教材共安排了两道例题、“做一做1、2题”等。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。
教学目标:
1.通过教学理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
2.引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
3.渗透初步的辩证唯物主义思想教育,使学生收到数学思想方法的熏陶,培养探究的学习态度。
教学重点:
理解和掌握分数的基本性质。
教学难点:
应用分数的基本性质解决实际问题。
教学方法:
直观演示法、讨论法等。
学法:
合作交流、自主探究。
教学准备:
每位学生准备三张同样大小的正方形(或长方形)的纸片;教师:长方形(或正方形)的纸片、PPT课件等。
教学过程:
一.创设情景,激发兴趣
(课件出示)1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?
( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )
二.大胆猜想,揭示课题
学生大胆猜想:在除法里有商不变的性质,在分数里会不会有类似的性质存在呢?(生答:有!)这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三 .探索研究,验证猜想
1. 动手操作,验证性质。
(1)学生拿出三张同样大小的正方形(或长方形)纸片,分别平均分成4份、8份、12
份,并分别给其中的1份、2份、3份涂上色,把涂色部分用分数表示出来。 图(略)????引导学生观察、思考:你发现了什么?
(2)小组合作:①观察、分析、比较在组内交流你的发现。
②合作交流,各抒己见。
123③选代表全班汇报、交流,师相机板书:4812
123(3)合作讨论: 为什么相等? 4812
①以小组为单位思考讨论:(引导)它们的分子、分母各是按照什么规律变化的? ②观察它们的分子、分母的变化规律,在组内用自己的话说一说。
2.分组汇报,归纳性质。
a.从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答
b.从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答)
c.有与这一组探究的分数不一样的吗?你们得出的规律是什么?
d.综合刚才的探究,你发现什么规律?
(4)引导学生概括出分数的基本性质,回应猜想。
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3.慧眼扫描(下列的式子是否正确?为什么?)(课件出示)
33×263(1) ==(生: 的分子与分母没有同时乘以2,分数的大小改变。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除数的大小不同,分数1212÷6212
的大小改变。) 11×331==(生:的分子乘以3,而分母除以3,没有同时乘或除以,1212÷3412(3)
分数的大小改变。) 22×x2x(4)==(生:x在这里代表任意数,当x=0时,分数无意义。) 55×x5x
四.回归书本,探源获知
1.浏览课本第75—78页的内容。
2.看了书,你又有什么收获?还有什么疑问吗?(指名汇报、交流)
3.分数的基本性质与商不变性质的比较。
(1)小组合作:讨论分数的基本性质与商不变性质的异同。
(2)小组内交流。
(3)选代表全班交流、汇报。
(4)小结归纳:分数的基本性质与商不变性质内容相同,只是名称不同罢了!
4.自主学习并完成例2,请二名学生说出思路。
五.巩固深化,拓展思维(PPT演示文稿出示下列题目)
1.想一想,填一填。
33×( )988÷( )() 55×( )( )2424÷( )3
学生口答后,要求说出是怎样想的?
2.在下面( )内填上合适的数。
要求:后二题采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。
3.思维训练(选择你喜爱的一道题完成)
3(1)的分子加上6,要使分数的大小不变,分母应加上多少? 5
(2)1/a=7/b(a、b是自然数,且不为0),当a=1,2,3,4??时,b分别等于几?
讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?
(3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。
思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。
六.全课小结
本节课你收获了什么?同桌交流分享你获取知识的快乐!(汇报全班交流)
七.布置作业
P77—78练习十四第1、5、8题。
教学反思
“分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的.一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。
本节课教学设计突出的特点是学法的设计。从“创设情境、激发兴趣;大胆猜想、揭示课题;探索研究、验证猜想;回归书本、探源获知;巩固深化、拓展思维”到“全课小结”每一个环节完全是为学生自主探究、合作交流学习而设计的。通过教学总结了自己的得与失如下:
1. 创设情境,可以更好地激发学生的学习兴趣,学生有了这样的学习兴趣,我想这节课已经成功了一半。因为兴趣是最好的老师!
2.学生在操作中大胆猜想。
新课标积极倡导学生 “主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。因此我由学生的猜想入手,可以最大限度的调动学生“验证自己猜想”的积极性和主动性,接下来通过学生:动手操作、观察、比较、分析、讨论、合作交流、探究等活动都是为了验证学生自己的猜想,这些环节充分发挥了学生的主动性、积极性,从而凸显学生在学习中的主体地位。教师在教学过程成为学生学习的引导者、支持者、服务者。同时创设猜想的情境,学生通过动手操作、观察、比较、分析、讨论、合作交流的探究方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程。并且也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略多样化,使生生、师生评价在价值观上都得到了发展。
3.学生在自主探索中科学验证。
分数的基本性质教案 篇7
教学目的
1.使学生理解和掌握分数的基本性质.
2.培养学生观察、思考、动手操作和自学能力.
教学过程
一、导入新课.
故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).
分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)
到底谁回答得对呢?上完这节课你们一定能得到准确的答案.
二、新课.
1.实际操作列等式证实两组分数,每组分数大小相等.
(1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的
.(板书: )
(2)教师提问:比较一下阴影部分的大小,结果怎样?
阴影部分相等,说明这三个分数怎样?
(随着学生回答老师将三个分数用“=”连接)
(3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?
(4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?
(随着学生回答老师在三个分数间用“=”连接)
2.初步概括分数基本性质.
(1)观察两个等式,每个等式的三个分数什么变了?什么没变?
(2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.
板书:
(3)谁能用一句话把这个变化规律叙述出来?
板书:分数的分子、分母都乘上同一个数,分数大小不变.
(4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?
板书:
(5)问:谁能用一句话把这个变化规律叙述出来?
谁能用一句话把这两个变化规律叙述出来?
(板书:或除以)
3.完整分数基本性质.
填空:
教师追问:第三题( )里可以填多少个数?第4题呢?
为什么3、4题( )里可以填无数个数?
( )里填任何数都行吗?哪个数不行?(板书:零除外)
这里为什么必须“零除外”?
教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.
(板书课题:分数基本性质)
4.深入理解分数基本性质.
教师提问:分数的基本性质里哪几个词比较重要?
为什么“都”和“相同”很重要?
为什么“分数大小不变”也很重要?
为什么“零除外”也很重要?
三、课堂练习.
1.用直线把相等的'分数连接起来.
2.把下列分数按要求分类.
和 相等的分数:
和 相等的分数:
3.判断下列各题的对错,并说明理由.
4.填空并说出理由.
5.集体练习.
四、照应课前谈话.
问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?
板书:
五、课堂小结.
这节课你有什么收获?
六、布置作业.
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
分数的基本性质教案 篇8
教学目的:
1、理解分数的基本性质;
2、初步掌握分数性质的应用;
3、培养学生观察——探索——抽象——概括的能力;
4、渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学重点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:
形成对分数的基本性质的统一认知。
教学准备:多媒体,自制演示教具。
教学过程:
一、激趣引新:
1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。
2、在下面的()中填上合适的数。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同学们现在已经能用分数的知识来解决问题了。
二、启发引导,探索新知。
1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?
通过图形的平移、旋转等方法看出三个班种植面积一样大。
2.引导观察得出结论。
(1)通过拼图得到1/2=2/4=4/8
(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?
(3)引导思考探索变化规律:
从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同讨论,引导学生抽象概括出分数的基本性质:
(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?
(2)变化时同时乘或除以小数可以吗?
(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)
归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)
(1)练习在□中填上合适的数
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
(2)你能把1÷2这个除法算式改写成分数形式?
你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)
5.组织练习
(1)判断:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0.5/4÷0.5()
分数的分子和分母都乘或除以相同的数,分数的大小不变。()
(2)画一画、填一填
(3)填空
1/2=1×()/2×()=6/()
10/24=10○()/24○()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少种填法)
6.通过练习在此性质中哪些是关键词?
7.巩固练习(选择你喜欢的一题来做)
(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
三、课堂总结
今天这节课同学们学了分数的'基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。
四、课堂作业:练习十四第1——3题。
板书设计:
分数的基本性质
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分数的分子和分母同时乘以一个不为0的数分数的大小不变
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分数的分子和分母同时除以一个不为0的数分数的大小不变
综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数的基本性质教案 篇9
教学目标 :
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、理解和掌握分数的基本性质。
3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN>
4、较好实现知识教育与思想教育的有效结合。
教学重点 :理解和掌握分数的基本性质。
教学难点 :能熟练、灵活地运用分数的基本性质。
教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。
教学过程:
一、巧设伏笔、导入新课。
1、出示课件:120÷30的商是多少?
被除数和除都扩大3倍,商是多少?
被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)
2、在下面□里填上合适的数。
1÷2=(1×5)÷(2×□)
=(1÷□)÷(2÷4)
①想一想,你是根据什么填上面的数的?(生口答)
(课件:商不变的性质)
②商不变的性质是什么?(生口答)
③除法与分数之间有什么关系?
生答,师板书:被除数÷除数=被除数/除数
二、讨论探究,学习新知。
1、课件出示:1÷2= (怎么写)
①1/2与( )相等?你能想出哪些数?有办法怎么让它们相等吗?
让生合作探讨。
②生出示答案:1/2=2/4=4/8……
有选择填入上数。
2、引导学生证明它们相等。
①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。
(课件演示)
上述演示让学生感知后,问你发现了什么?(生讨论)
②再逆向思考,观察板书和课件。
问你又发现了什么?(生讨论)
得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。
3、验证、补充、强调
①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。
②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的`数”。
③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。
④归纳出上述板书为“分数的基本性质”(课题)。
4、信息反馈、纠正、巩固。
①判断(出示课件)
A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。
B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。
C、3/4的分子乘上3,分母除以3,分数的大小不变。
D、10/24=10÷2/24÷2=10×3/24×3 ( )
完成后,强调重点,加以巩固。
②完成课本108页例2(学生尝试练习)
强调运用了什么性质?课件:“分数的基本性质”醒目强调。
三、实践练习,信息综合
1、练一练
①3/5=3×( )/5×( )=9/( )
②7/8=( )/48
③4÷18=( )/( )=4×5/18×( )=2/( )
2、练习二十二1—3题。
四、课堂总结、整体感知。
(在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?
五、发散巩固、自主选择。
想一想:(选择一道你喜欢的题做)
课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。
②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗
【分数的基本性质教案】相关文章:
分数的基本性质的教案02-26
分数的基本性质教案05-23
[精选]分数的基本性质教案08-06
分数的基本性质教案03-21
《分数的基本性质》教案范文04-02
《分数的基本性质》说课稿05-15
《分数的基本性质》说课稿06-14
分数的基本性质(说课稿)07-04
分数的基本性质说课稿06-20
分数的基本性质教案汇总八篇04-07