勾股定理教案锦集(15篇)
作为一名默默奉献的教育工作者,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?以下是小编为大家整理的勾股定理教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

勾股定理教案1
在数学课程改革中,基于对数学课程标准基本理念的理解,我从多个方面、不同的角度将课改前后勾股定理的教学进行了对比与研究,以求从中明晰在今后的教学中亟待解决的问题,更加靠近课程改革的具体目标、
一、课程改革前对勾股定理的教学
(一)教学目标
1、使学生掌握勾股定理、
2、使学生能够熟练地运用勾股定理,由已知直角三角形中的两条边长求出第三条边长
(二)教学内容
1、关于勾股定理的数学史:《周髀算经》中出现的“勾广三,股修四,径隅五”
2、给出勾股定理:直角三角形两直角边a,b的平方和,等于斜边c的平方,即a2 + b2 = c2
3、用拼图法推证勾股定理、
4、勾股定理的应用:解决几何计算、作图及实际生产、生活的问题、
二、课程改革后对勾股定理的教学
(一)教学目标
1、认知目标:掌握直角三角形三边之间的数量关系,学会用符号表示、通过数格子及割补等办法探索勾股定理的形成过程,使学生体会数形结合的思想,体验从特殊到一般的逻辑推理过程
2、能力目标:发展学生的合情推理能力,主动合作、探究的学习精神,感受数学思考过程的条理性,让学生经历“观察—猜想—归纳—验证”的数学思想,并感受数形结合和由特殊到一般的思想方法
3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感,使学生在经历定理探索的过程中,感受数学之美、探究之趣
(二)教学内容
1、在方格纸上通过计算面积的方法探索勾股定理(或设计其他的探索情境)
2、由学生通过观察、归纳、猜想确认勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2 + b2 = c2,即直角三角形两直角边的平方和等于斜边的平方
3、勾股世界:介绍勾股定理的悠久历史、重大意义及古代人民的聪明才智
4、探讨利用拼图法验证勾股定理、
5、勾股定理的实际应用、
三、两种课堂教学的对比
(一)教学理念和教学内容的不同
课改前传统的勾股定理的教学,重在掌握定理和应用定理、这种教学过分突出了勾股定理这一现成几何知识结论的传递和接受,忽略了定理的发现过程、发现方法,导致学生的学习过程被异化为被动接受和单纯的记忆定理、被动认知和机械训练变形及运算技能的过程、这种教学思想的弊病是“重结论而轻过程”,“厚知识运用而薄思想方法”
课改后勾股定理的教学从以下几方面进行:
1、创设探索性的问题情境——学生归纳出直角三角形三边之间的一般规律
2、拼图验证定理——用数形结合的方法支持定理的认识
3、构建数学模型——学生体验由特例归纳猜想、由特例检验猜想
4、解决实际问题——熟练掌握定理,并形成运用定理的技能
5、勾股定理数学史——激发学生的民族自豪感,点燃热爱数学的热情
站在理论的角度,在这种设计中,使学生对知识的实际背景和对知识的直观感知以及学生对收集、整理、分析数学信息的能力等方面得以加强、这充分反映了以未来社会对公民所需的数学思想方法为主线选择和安排教学内容,并以与学生年龄特征相适应的大众化、生活化的方式呈现教学内容、不过,通过实际教学,要想真正的做到“以学生为本”,在短短的两课时内既要重点突出,又能不留死角地圆满完成以上五个层面的学习,也确属不易
(二)教师备课内容的不同
教改前对勾股定理的'备课,在把握教材内容的同时,可在勾股定理的数学史和定理应用两方面加以调整、例如,增强民族自豪感:中国古代的大禹就是用勾股定理来确定两地的地势差,以治理洪水;激发学习兴趣:勾股定理的证明方法已有400多种,给出这些证明方法的不但有数学家、物理学家,还不乏政界要人,像美国第20任总统加菲尔德、印度国王帕斯卡拉二世,都通过构造图形的方法给出了勾股定理的别致证法、
定理应用这一课时,教材从纯几何问题、生活问题、生产问题等几方面均有涉及,从提高学生兴趣方面可灵活补充一道11世纪阿拉伯数学家给出的一道趣味题:小溪边长着两棵树,隔岸相望、一棵树高30肘尺(古代长度单位),另一棵高20肘尺,两树的树干间的距离是50肘尺、每棵树的树顶上都停着一只鸟,两只鸟同时看见树间水面上游出的一条鱼,它们立刻飞去抓鱼,并且同时到到目标、问:这条鱼出现的地方离较高的树的树根有多远?
在实际教学中根据学生的理解情况及实际水平,在训练的形式、数量上与教材也有所区分:增加了一个随堂检测,以巩固所学、由于当时所教班级为数学班,学生整体接受能力较强,就设计了一个请学生自编有关勾股定理应用的题目,效果不错、
教改后的备课,除了在上述两方面有所选择之外,重点放在了探索情境的设置上:利用下面图中的任何一个或几个都可从3个正方形的面积关系中得出直角三角形三边关系,不同的班级可由学生不同的认知水平来设计认识层次、
为了保证教学重点,把利用拼图验证勾股定理的主要探讨放在专门的课题学习中进行
(三)学生学习方式的不同
对于课改前勾股定理的学习,学生沿袭着“接受定理——强化训练——回味体会”的方式、这在一定程度上增强了学生对定理的熟悉程度,并在定理应用上感到运用自如、但这种熟练仅仅是一种强化训练后的暂时现象,知识的本身及其迁移只保持在较短的时间内,不会给学习者留下长久的甚至是终生的印象
很明显,课改后勾股定理的学习是从实际问题到数学问题,再回到实际问题的处理过程,学生眼中的勾股定理来源于熟悉的背景——正方形面积,又用于指导生产、生活、经常用数学的眼光来审视生活,从生活中发现数学,学生才会逐步具有“数学建模”的能力,才能逐步感悟生活的数学性、这不仅是社会发展的需要,同时也是促进学生自身发展的需要、学生学习过程中对定理的探求、现代信息技术的发现及验证过程无时不表现着其学习的主动性,定理的归纳、结论的自我认同又包含着合作与自由发展的和谐共鸣、利用课堂教学、利用教材培养学生良好的学习方式,便塑造了其良好的思维方式,促进了学生和谐、自由、全面、充分的发展
(四)教学效果的不同(见下表)
四、两种教学对比研究的结论
(一)新课程前后的教学各有优势与不足(见下表)
(二)新课程中几何教学需要注意的几个方面
1、探究学习不是简单地布置学生去探究、去学习,教师要发挥主导作用,要让学生明确去探究什么,如何探究,要让学生的探究活动是有效的、有意义的新教材中的很大一部分可采用勾股定理的探究方式:向学生提供探索情境,提出能提供必需信息的问题——学生采用多种方式寻求问题的答案,获取信息——整理、归纳结论——设法验证或解释
2、学生学习过程中的主动参与要在教师指导督促中形成,不能过高估计学生的意志、兴趣、例如,营造一种和谐、民主的课堂气氛来提高全体学生的参与兴趣;帮助学生制订分段式的小目标来增强其成就感,强化其参与意识、
3、避免合作学习流于形式
(1)坚持“组间同质,组内异质”的分组方式,以保证人人有所发展
(2)教师要加强合作技能的指导,指导学生进行小组分工,要求明确各自在完成共同的任务中个人承担的责任
(3)及时协调组内成员间的关系,有效解决组内出现的不利问题
(4)正确评价组内成员的成绩,寻求个人和小集体共同提高的途径
4、要注重教学活动目标的整体实现、新课程中注重对学生学习兴趣的培养、能力的提升,注重知识形成过程的教学,但对一些基本的训练有些淡化,导致整体教学目标不够均衡、为此,在勾股定理的教学中,不但要重过程、方法、能力,还要重视相关的计算和推理,并在计算和推理中学会数学思考,这样才能把“知识技能”、“数学思考”、“问题解决”、“情感态度”多方面教学目标有机结合,达到整体实现教学目标
5、不能忽视双基的教学,要注重学生对基础知识、基本技能的理解和掌握、基础知识不但是学生发展的基础性目标,还是落实数学思想、方法、能力目标的载体、数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系
6、重视合情推理及演绎推理的教学和训练、推理教学要转变并贯穿于数学教学的始终、教学中,教师要设计适当的学习活动,引导学生通过观察、估算、归纳、类比、画图等活动发现一些规律,猜想某些结论,发展合情推理能力、对于几何的教学要加强演绎推理的教学训练,通过实例让学生认识到,结论的正确与否需要演绎推理的证明、当然,不同年级可提出不同的要求,但要慢慢加强,训练不断提高要求,最后形成较高的演绎推理能力
勾股定理教案2
教学目标
1、知识与技能目标
用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
2、过程与方法
让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
3、情感态度与价值观
在探索勾股定理的过程中,体验获得成功的快 乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久化的.思想,激励学生发奋 学习.
教学重点:了结勾股定理的由,并能用它解决一些简单的问题。
教学难点:勾股定理的发现
教学准备:多媒体
教学过程:
第一环节:创设情境,引入新(3分钟,学生观察、欣赏)
内容:20xx年世界数学家大会在我国北京召开,
投影显示本届世界数学家大会的会标:
会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”
的图作为与“外星人”联系的信号.今天我们就一同探索勾股定理.(板书 题)
第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)
1.探究活动一:
内容:(1)投影显示如下地板砖示意图,让学生初步观察:
(2)引导学生从面积角度观察图形:
问:你能发现各图中三个正 方形的面 积之间有何关系吗?
学生通过观察,归纳发现:
结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2.探究 活动二:
由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
(2)填表:
A 的面积
(单位面积)B的面积
(单位面积)C的面积
(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
3.议一议:
内容:(1)你能用直角三角形的边长 、 、 表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理(gou-gu theorem):
如果直角三角形两直角边长分别为 、 ,斜边长为 ,那么即直角三角形两直角边的平方和等于斜边的平方.
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.
第三环节: 勾股定理的简单应用(7分钟,学生合作探究)
内容:
例 如图所示,一棵大树在一次强烈台风中于离
地面10m处折断倒下,
树顶落在离树根24m处. 大树在折断之前高多少?
(教师板演解题过程)
第四环节:巩 固练习(10分钟,学生先独立完成,后全班交流)
1、列图形中未知正方形的面积或未知边的长度:
2、生活中的应用:
小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得 一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?
第五环节:堂小结(3分钟,师生对答,共同总结)
内容:教师提问:
1.这一节我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?请与你的同伴交流.
在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 .
2.方法:① 观察—探索—猜想—验证—归纳—应用;
② 面积法;
③ “割、补、拼、接”法.
3.思想:① 特殊—一般—特殊;
② 数形结合思想.
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.教科书习题1.1;
2.《读一读》——勾股世界;
3.观察下图,探究图中三角形的三边长是否满足 .
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:见电子屏幕
教学反思:
勾股定理教案3
学习目标:
1、通过拼图,用面积的方法说明勾股定理的正确性.
2、通过实例应用勾股定理,培养学生的知识应用技能.
学习重点:
1.用面积的方法说明勾股定理的正确.
2. 勾股定理的应用.
学习难点:
勾股定理的应用.
学习过程:
一、学前准备:
1、阅读课本第46页到第47页,完成下列问题:
(1)我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦。图(1)称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的。图(2)是在北京召开的20xx年国际数学家大会(TCM-20xx)的会标,其图案正是“弦图”,它标志着中国古代的数学成就. 你能用不同方法表示大正方形的面积吗?
2、剪四个完全相同的'直角三角形,然后将它们拼成如图所示的图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)
二、合作探究:
(一)自学、相信自己:
(二)思索、交流:
拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和
(三)应用、探究:
1、如图 ,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160米,BC长128米.问从点A穿过湖到点B有多远?
(四)巩固练习:
1、如图,64、400分别为所在正方形的面积,则图中字
母A所代表的正方形面积是 _________ 。
三.学习体会:
本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。
2②图
四.自我测试:
五.自我提高:
勾股定理教案4
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念.
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力.
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣.
(2)在解决实际问题的过程中,体验数学学习的实用性.
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.
学生汇总了四种方案:
(1) (2) (3)(4)
学生很容易算出:情形(1)中A→B的.路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB.
得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?
2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节 课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六 环节:布置作业(2分钟,学生分别记录)
内容:
作业:1.课本习题1.5第1,2,3题.
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:
教学反思:
勾股定理教案5
教学目标
知识与技能:
了解勾股定理的一些证明方法,会简单应用勾股定理解决问题
过程与方法:
在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。
情感态度价值观:
通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。
教学过程
1、创设情境
问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?
师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。
设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。
2、探究勾股定理
观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界
问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?
师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论
追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?
师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的`平方。
设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论
问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。
师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。
勾股定理教案6
【学习目标】
能运用勾股定理及直角三角形的判别条件解决简单的实际问题.
【学习重点】
勾股定理及直角三角形的判别条件的运用.
【学习重点】
直角三角形模型的建立.
【学习过程】
一.课前复习
勾股定理及勾股定理逆定理的区别
二.新课学习
探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题
1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?
思考:
1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为
这样的线路有几条?可分为几类?
2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从
A点到B点的最短路线是什么?你是如何画的?
1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。
4.你是如何将这个实际问题转化为数学问题的?
小结:
你是如何解决圆柱体侧面上两点之间的最短距离问题的?
探究点二:利用勾股定理逆定理如何判断两线垂直?
1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,
但他随身只带了卷尺。(参看P13页雕塑图1-13)
(1)你能替他想办法完成任务吗?
1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,
BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?
(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?
探究点三:利用勾股定理的方程思想在实际问题中的应用
例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.
1.3
思考:
1.求滑道AC的长的问题可以转化为什么数学问题?
2.你是如何解决这个问题的?写出解答过程。
小结:
方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础.
四.课堂小结:本节课你学到了什么?
三.新知应用
1.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.
1.3
2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的`水面则这根芦苇的长度是()
1.3
五.作业布置:习题1.41,3,4题
【反思】
一、教师我的体会:
①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。
把教材读薄,
②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。
③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。
④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。
二、学生体会:
课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。
不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。
勾股定理教案7
一、创设问属情境,引入新课
活动1(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?
设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力.
师生行为学生分组讨论,交流总结;教师引导学生回忆.
本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”.
生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.
师:那么,一个三角形满足什么条件,才能是直角三角形呢?
生:有一个内角是90°,那么这个三角形就为直角三角形.
生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.
师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?
二、讲授新课
活动2问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是直角三角形.
画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.
设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法.
师生行为让学生在小组内共同合作,协手完成此活动.教师参与此活动,并给学生以提示、启发.在本活动中,教师应重点关注学生:①能否积极动手参与.②能否从操作活动中,用数学语言归纳、猜想出结论.③学生是否有克服困难的勇气.
生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52.我们围成的三角形是直角三角形.
生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的`角是直角,并且2.52+62=6.52.
再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.
是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?
活动3下面的三组数分别是一个三角形的三边长?
勾股定理教案8
重点、难点分析
本节内容的重点是勾股定理的逆定理及其应用。它可用边的关系判断一个三角形是否为直角三角形。为判断三角形的形状提供了一个有力的依据。
本节内容的难点是勾股定理的逆定理的应用。在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方。
教法建议:
本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法。通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题。在课堂教学中营造轻松、活泼的课堂气氛。通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.。具体说明如下:
(1)让学生主动提出问题
利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来。这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容。所有这些都由学生自己完成,估计学生不会感到困难。这样设计主要是培养学生善于提出问题的习惯及能力。
(2)让学生自己解决问题
判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路。
(3)通过实际问题的解决,培养学生的数学意识。
教学目标:
1、知识目标:
(1)理解并会证明勾股定理的逆定理;
(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;
(3)知道什么叫勾股数,记住一些觉见的勾股数。
2、能力目标:
(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;
(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征。
教学重点:
勾股定理的逆定理及其应用
教学难点:
勾股定理的逆定理及其应用
教学用具:
直尺,微机
教学方法:
以学生为主体的讨论探索法
教学过程:
1、新课背景知识复习(投影)
勾股定理的内容
文字叙述(投影显示)
符号表述
图形(画在黑板上)
2、逆定理的获得
(1)让学生用文字语言将上述定理的逆命题表述出来
(2)学生自己证明
逆定理:如果三角形的三边长 有下面关系:
那么这个三角形是直角三角形
强调说明:
(1)勾股定理及其逆定理的区别
勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。
(2)判定直角三角形的方法:
①角为 、
②垂直、
③勾股定理的逆定理
2、 定理的应用(投影显示题目上)
例1 如果一个三角形的三边长分别为
则这三角形是直角三角形
例2 如图,已知:CD⊥AB于D,且有
求证:△ACB为直角三角形。
以上例题,分别由学生先思考,然后回答。师生共同补充完善。(教师做总结)
4、课堂小结:
(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)
(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。
5、布置作业:
a、书面作业P131#9
b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8
求证:△DEF是等腰三角形
勾股定理教案9
教学课题:
勾股定理的应用
教学时间(日期、课时):
教材分析:
学情分析:
教学目标:
能运用勾股定理及直角三角形的判定条件解决实际问题.
在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值.
教学准备
《数学学与练》
集体备课意见和主要参考资料
页边批注
教学过程
一.新课导入
本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:
一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流.
创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:
底端也滑动0.5m;如果梯子的顶端滑到地面上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的.顶端下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等)。
通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题,从中感受用数学的眼光审视客观世界的乐趣.
二.新课讲授
问题一在上面的情境中,如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导.
问题二从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流.
设计问题二促使学生能主动积极地从数学的角度思考实际问题.教学中学生可能会有多种思考.比如,
①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;
②因为梯子顶端下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;
③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。
教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法.
3.例题教学
课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题.通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智.
三.巩固练习
1.甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km.
2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是().
(A)20cm(B)10cm(C)14cm(D)无法确定
3.如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求这块草坪的面积.
四.小结
我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边.从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程.
勾股定理教案10
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题.
2.进一步加深性质定理与判定定理之间关系的认识.
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题.
2.难点:灵活应用勾股定理及逆定理解决实际问题.
3.难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.
四、例习题分析
例1(P83例2)
分析:⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的.逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.
解略.
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.
勾股定理教案11
教学目标:
一知识技能
1.理解勾股定理的逆定理的证明方法和证明过程;
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;
二数学思考
1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;
2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.
三解决问题
通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.
四情感态度
1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;
2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.
教学重难点:
一重点:勾股定理的.逆定理及其应用.
二难点:勾股定理的逆定理的证明.
教学方法
启发引导分组讨论合作交流等。
教学媒体
多媒体课件演示。
教学过程:
一复习孕新,引入课题
问题:
(1) 勾股定理的内容是什么?
(2) 求以线段ab为直角边的直角三角形的斜边c的长:
① a=3,b=4
② a=2.5,b=6
③ a=4,b=7.5
(3) 分别以上述abc为边的三角形的形状会是什么样的呢?
二动手实践,检验推测
1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?
学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.
教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.
2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?
3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?
三探索归纳,证明猜想
问题
1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?
2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?
3.如图18.2-2,若△ABC的三边长
满足
,试证明△ABC是直角三角形,请简要地写出证明过程.
教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.
四尝试运用,熟悉定理
问题
1例1:判断由线段
组成的三角形是不是直角三角形:
(1)
(2)
2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?
教师巡视,了解学生对知识的掌握情况.
特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题
五类比模仿,巩固新知
1.练习:练习题13.
2.思考:习题18.2第5题.
部分学生演板,剩余学生在课堂练习本上独立完成.
小结梳理,内化新知
六1.小结:教师引导学生回忆本节课所学的知识.
2.作业:
(1)必做题:习题18.2第1题(2)(4)和第3题;
(2)选做题:习题18.2第46题.
勾股定理教案12
课题:
勾股定理
课型:
新授课
课时安排:
1课时
教学目的:
一、知识与技能目标理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
二、过程与方法目标通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
三、情感、态度与价值观目标了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题
教学难点:
用面积法方法证明勾股定理
课前准备:
多媒体ppt,相关图片
教学过程:
(一)情境导入
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,20xx年国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
2、多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?已知一直角三角形的两边,如何求第三边?学习了今天的这节课后,同学们就会有办法解决了。
(二)学习新课问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传2500年前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?对于等腰直角三角形有这样的`性质:两直边的平方和等于斜边的平方那么对于一般的直角三角形是否也有这样的性质呢?请大家画一个任意的直角三角形,量一量,算一算。问题二是一般直角三角形的情形,判断这时外围三个正方形的面积是否也存在这种关系?通过这个观察和验算这个直角三角形外围的三个正方形面积之间的关系,同学们发现了什么规律吗?通过前面对两个问题的验证,可以得到勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。
(三)巩固练习1、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?2、解决课程开始时提出的情境问题。
(四)小结
1、背景知识介绍①《周髀算径》中,西周的商高在公元一千多年前发现了“勾三股四弦五”这一规律;②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是他的独创。
2、通过这节课的学习,你会写方程了吗?你有什么收获和体会?
(五)作业练习18.1中的1、2、3题。板书设计:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2。
勾股定理教案13
教学目标:
1、知识目标:
(1)掌握勾股定理;
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史.
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育.
教学重点:勾股定理及其应用
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程():
1、新课背景知识复习
(1)三角形的三边关系
(2)问题:(投影显示)
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得
让学生用文字语言将上述问题表述出来.
勾股定理:直角三角形两直角边 的平方和等于斜边 的平方
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边
(2)学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、定理的证明方法
方法一:将四个全等的直角三角形拼成如图1所示的正方形.
方法二:将四个全等的直角三角形拼成如图2所示的正方形,
方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形
以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明
4、定理与逆定理的应用
例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.
解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有
∴ ∠2=∠C
又
∴
∴CD的长是2.4cm
例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,
求证:
证法一:过点A作AE⊥BC于E
则在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
证法二:过点D作DE⊥AB于E, DF⊥AC于F
则DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,FD=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3 设
求证:
证明:构造一个边长 的矩形ABCD,如图
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4 国家电力总公司为了改善农村用电电费过高的`现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为
AD+AB+BC=3,AB+BC+CD=3
图3中,在Rt△DGF中
同理
∴图3中的路线长为
图4中,延长EF交BC于H,则FH⊥BC,BH=CH
由∠FBH= 及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此图中总线路的长为4EA+EF=
∵3>2.828>2.732
∴图4的连接线路最短,即图4的架设方案最省电线.
5、课堂小结:
(1)勾股定理的内容
(2)勾股定理的作用
已知直角三角形的两边求第三边
已知直角三角形的一边,求另两边的关系
6、布置作业:
a、书面作业P130#1、2、3
b、上交作业P132#1、3
板书设计:
探究活动
台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响
(1)该城市是否会受到这交台风的影响?请说明理由
(2)若会受到台风影响,那么台风影响该城市持续时间有多少?
(3)该城市受到台风影响的最大风力为几级?
解:(1)由点A作AD⊥BC于D,
则AD就为城市A距台风中心的最短距离
在Rt△ABD中,∠B= ,AB=220
∴
由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.
故该城市会受到这次台风的影响.
(2)由题意知,当A点距台风中心不超过60千米时,
将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,
该城市都会受到这次台风的影响
由勾股定理得
∴EF=2DE=
因为这次台风中心以15千米/时的速度移动
所以这次台风影响该城市的持续时间为 小时
(3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为 级.
勾股定理教案14
教学 目标:
(1)理解通分的意义,理解最简公分母的意义;
(2)掌握分式的通分法则,能熟练掌握通分运算。
教学 重点:
分式通分的理解和掌握。
教学 难点:
分式通分中最简公分母的确定。
教学 工具:
投影仪
教学 方法:
启发式、讨论式
教学 过程 :
(一)引入
(1)如何计算:
由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。
(2)如何计算:
(3)何计算:
引导学生思考,猜想如何求解?
(二)新课
1、类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的 通分 .
注意:通分保证
(1)各分式与原分式相等;
(2)各分式分母相等。
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的最简公分母.
通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做 最简公分母 .
根据分式通分和最简公分母的定义,将分式xx ,xx,xx 通分:
最简公分母为:xx ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为xx。通分如下:
通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。
例1 通分:
(1)xx,xx,xx ;
分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。
解:∵ 最简公分母是12xy 2
小结:各分母的系数都是整数时,通常取它们的.系数的最小公倍数作为最简公分母的系数.
解:∵最简公分母是10a 2 b 2 c 2
由学生归纳最简公分母的思路。
分式通分中求最简公分母概括为:
(1)取各分母系数的最小公倍数;
(2)凡出现的字母为底的幂的因式都要取;
(3)相同字母的幂的因式取指数最大的。
取这些因式的积就是最简公分母。
勾股定理教案15
一、学生知识状况分析
本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析
本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:
1.通过观察图形,探索图形间的关系,发展学生的空间观念.
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.
四、教法学法
1.教学方法
引导—探究—归纳
本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,顺势教学过程;
(3)利用探索研究手段,通过思维深入,领悟教学过程.
2.课前准备
教具:教材、电脑、多媒体课件.
学具:用矩形纸片做成的'圆柱、剪刀、教材、笔记本、课堂练习本、文具.
五、教学过程分析
本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.
1.3勾股定理的应用:课后练习
一、问题引入:
1、勾股定理:直角三角形两直角边的________等于________。如果用a,b和c表示直角三角形的两直角边和斜边,那么________。
2、勾股定理逆定理:如果三角形三边长a,b,c满足________,那么这个三角形是直角三角形
1.3勾股定理的应用:同步检测
1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )
A.0.7米B.0.8米C.0.9米D.1.0米
2.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )
A.锐角弯B.钝角弯C.直角弯D.不能确定
3.如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
4.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组.
A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4
【勾股定理教案】相关文章:
勾股定理教案02-21
勾股定理教案02-11
勾股定理教案汇编(15篇)05-30
勾股定理说课稿03-10
《勾股定理》说课稿06-20
《勾股定理》的说课稿01-18
勾股定理说课稿模板04-12
勾股定理课后反思02-28
数学《勾股定理》教学反思04-22
《勾股定理》教学反思范文04-27