(精品)初中数学教案15篇
作为一位杰出的老师,就不得不需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。教案要怎么写呢?下面是小编收集整理的初中数学教案,仅供参考,希望能够帮助到大家。

初中数学教案1
教学建议
一、知识结构
二、重点难点分析
本节教学的重点是同位角、内错角、同旁内角的概念、难点为在较复杂的图形中辨认同位角、内错角、同旁内角、掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础、
(1)两条直线被第三条直线所截,构成八个角(简称“三线八角”),其中同位角4对,内错角2对,同旁内角2对、
(2)准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截、也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线、
(3)在截线的同旁找同位角和同旁内角,在截线的两旁找内错角、要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系、
(4)在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系、
三、教法建议
1、上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示、
2、在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,“三条线与一条线”,尽量给出变式的图形,让学生分辨清楚、
3、这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础、
教学设计示例
一、素质教育目标
(一)知识教学点
1、理解同位角、内错角、同旁内角的概念、
2、结合图形识别同位角、内错角、同旁内角、
(二)能力训练点
1、通过变式图形的识图训练,培养学生的识图能力、
2、通过例题口答“为什么”,培养学生的推理能力、
(三)德育渗透点
从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点、
(四)美育渗透点
通过“三线八角”基本图形,使学生认识几何图形的位置美、
二、学法引导
1、教师教法:尝试指导,讨论评价、变式练习、回授、
2、学生学法:主动思考,相互研讨,自我归纳、
三、重点、难点、疑点及解决办法
(一)生点
同位角、内错角、同旁内角的概念、
(二)难点
在较复杂的图形中辨认同位角、内错角、同旁内角、
(三)疑点
正确理解新概念、
(四)解决办法
引导学生讨论归纳三类角的特征,并以练习加以巩固、
四、课时安排
1课时
一、教具学具准备
投影仪、三角板、自制胶片、
六、师生互动活动设计
1、通过一组练习创设情境,复习基础知识,引入新课、
2、通过学生阅读书本,教师设问引导,练习巩固讲授新课、
3、通过师生互答完成课堂小结、
七、教学步骤
(一)明确目标
使学生掌握“三线八角”,并能在图形中进行辨识、
(二)整体感知
以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知、
(三)教学过程
创设情境,复习导入
回答下列问题:
1、如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?
2、如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?
3、如图,三条直线 AB 、CD 、EF 交于一点 O ,则图中有几对对顶角,有几对邻补角?
4、如图,三条直线 AB 、CD 、EF 两两相交,则图中有几对对项角,有几对邻补角?
5、三条直线相交除上述两种情况外,还有其他相交的情形吗?
学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线 CD ,使 CD 与EF相交于某一点(如图),直线 AB 、CD 都与EF相交或者说两条直线 AB 、CD 被第三条直线EF所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系、
【板书】 2.3同位角、内错角、同旁内角
【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况、认识事物间是发展变化的.辩证关系、
尝试指导,学习新知
1、学生自己尝试学习,阅读课本第67页例题前的内容、
2、设计以下问题,帮助学生正确理解概念、
(1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?
(2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?
(3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?
(4)同位角和同分内角在位置上有什么相同点和不同点?
内错角和同旁内角在位置上有什么相同点和不同点?
(5)这三类角的共同特征是什么?
3、对上述问题以小组为单位展开讨论,然后学生间互相评议、
4、教师对学生讨论过程中所发表的意见进行评判,归纳总结、
在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征( F 、Z 、U )判断问题就迎刃而解、
【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性、学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力、
投影显示(投影片2)
例题?如图,直线DE、BC被直线AB所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?
(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?
[教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练、
变式训练,巩固新知
投影显示(投影片3)
【教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是 c ,即 a 和 b 被 c 所截,如 c 和 a 被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提、
投影显示(投影片4)
【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角、这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位、这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形、如第2题由已知条件结合所求部分,对各个小题分别分解图形如下:
投影显示(投影片5)
【教法说明】学生在较复杂的图形中,对找这一类的同位角,找这一类的内错角,找这一类的同旁内角有一定困难,为此安排本组选择题,有利于突破难点,第2题中学生对 C 、D 两个图形易混淆,要加强对比以便解决教学疑点。第3题让学生掌握三角形中的3对同旁内角。另外本组练习也为后面的练习打基础。
投影显示(投影片6)
【教法说明】本组题目是上组题的延伸,再次突破难点,提高学生思维的广度与深度、学生解决此类题常常因考虑不全面而丢解,要使学生养成全方位多角度考虑问题的习惯,第2题以裁线为标准分类求解,分别把 AB 、BD 、EF 看成是截线找三类角,这样既不遗漏又不重复、
(四)总结、扩展
1、本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握辨别这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线——截线,就能正确识别这三类角、
2、相交直线
3、教师指着图中的一条被截直线,问:“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么关系?”
【教法说明】将所学知识进行归纳总结,加强了知识问的联系,充分体现了所学知识的系统性,最后用是合式小结、可使学生课后自觉地去看预习,寻找答案。系统性,最后用悬念式小结,可使学生课后自觉地去看书预习,寻找答案。
八、布置作业
课本第72页B组第4题、
【教法说明】课本练习穿插在课堂练习中完成,故只留一道提高题,让学有余力的同学继续探究,提高学生思维广度
作业答案
4、答:(1)设 E 是 BC 延长线上的一点,∠ A 与∠ ACD 、∠ ACE 是内错角,它们分别是由直线 AB 、CD 被直线 AC 截成的和直线 AB 、BE 被直线 AC 截成的。
(2)∠ B 与∠ DCE 、∠ ACE 是同位有,它们分别是由直线 AB 、CD 被直线 BE 截成的和直线 AB 、AC 被直线 BE 截成的。
初中数学教案2
教学目标:
1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.
2.理解对顶角相等,并能运用它解决一些问题.
重点:
邻补角、对顶角的概念,对顶角的性质与应用.
难点:
理解对顶角相等的性质的探索.
教学过程:
一、创设情境,引入新课
引导语:
我们生活的世界中,蕴涵着大量的相交线和平行线.
本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.
二、尝试活动,探索新知
教师出示一块布片和一把剪刀,表演剪刀剪布的过程.
教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?
学生观察、思考、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.
教师提问:我们可以把剪刀抽象成什么简单的图形?
学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.
教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)
学生根据观察和度量完成下表:
两条直线相交、所形成的角、分类、位置关系、数量关系
教师提问:
如果改变∠AOC的`大小,会改变它与其他角的位置关系和数量关系吗?
学生思考回答:
只会改变数量关系而不会改变位置关系.
师生共同定义邻补角、对顶角:
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.
教师提问:
你同意下列说法吗?如果错误,如何订正?
1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.
2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.
3.邻补角是互补的两个角,互补的两个角也是邻补角.
学生思考回答:1、2是对的,3是错的.
第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.
教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.
教师把说理过程规范地板书:
在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角的性质:
对顶角相等.
强调对顶角的概念与对顶角的性质不能混淆:
对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
三、例题讲解
【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、巩固练习
1.判断下列图中是否存在对顶角.
2.按要求完成下列各题.
(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.
eq o(sup7(,图(1)) ,图(2))
(2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?
【答案】
1.都不存在对顶角.
2.(1)对顶角,邻补角.
对顶角:∠AOC和∠BOD,∠AOD和∠BOC.
邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.
(2)垂直.
五、课堂小结
教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
教学反思
通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。
初中数学教案3
教学目标:
1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。
2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。
3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的`灵活性。
4、培养学生大胆猜想、合理论证的科学精神。
教学重点:
探索并运用三角形中位线的性质。
教学难点:
运用转化思想解决有关问题。
教学方法:
创设情境——建立数学模型——应用——拓展提高
教学过程:
情境创设:测量不可达两点距离。
探索活动:
活动一:剪纸拼图。
操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。
观察、猜想: 四边形BCFD是什么四边形。
探索: 如何说明四边形BCFD是平行四边形?
活动二:探索三角形中位线的性质。
应用
练习及解决情境问题。
例题教学
操作——猜想——验证
拓展:数学实验室
小结:布置作业。
初中数学教案4
教学目标
(一)知识与能力
1.通过对不等式的复习和具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念。2.通过例题教会学生解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集,让学生感受数形结合的作用。
(二)过程与方法
1.创设情境,通过实例引导学生考虑多个不等式联合的解法。2.通过例题总结解一元一次不等式组的方法,并总结一元一次不等式组的解与一元一次不等式的解之间的关系。
(三)情感、态度与价值观
1.通过数轴的表示不等式组的解,让学生加深对数形结合的作用的理解,使他们逐步熟悉和掌握这一重要的思想方法。2.在对例题的讲解中,使学生认识一元一次不等式组的解集即每个不等式解集的公共部分,从而渗透“交集”的思想。
3.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美 教学重、难点 重点:掌握一元一次不等式组的解法,会用数轴表示一元一次不等式组解集 的情况。难点 :1.弄清一元一次不等式的解集与一元一次不等式组的解集之间的关系。2.灵活运用一元一次不等式组的知识解决问题。
教学过程
一.设置情景,引入课题
学生活动:请学生观看购物街转转盘游戏.(在看之前先让学生看一看游戏规则:转轮上平均分布着5、10、15一直到100共20个数字。每位选手最多有两次机会。选手转动转轮的数字之和,最大且不超过100者为胜出,可以获得相应的奖品。选手每次必须把转轮转动1圈才有效.)
设第三位选手第二次转的数字为x,他要胜出应满足什么条件? 预设学生
1x?10?75,预设学生2
x?10?教师提出问题:这两个条件只需满足一个还是缺一不可?
预设学生:同时具备??x?10?75
x?10?100?教师活动:
1、讲解联立符号的作用,并引入课题.2、给出定义:由几个含有同一未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组.【设计意图】从一个学生感兴趣的游戏入手.问题的提出具有一定的现实性和探究性,目的是激发学生探究新知的欲望,在教师的引导下,将生活中的问题转化为数学问题,从而引出本课题.学生活动
用心找一找:下列不等式组中哪些是一元一次不等式组?
?3?x?4?2x?x?2?1?2y?7?6?x?2?2a?7?1?(1)?(2)?(3)?1(4)?(5)??5x?3?4x?1 3x?3?1x?33a?3?0?1????7?2x?6?3x??x?预设学生1:(2)(3)(4)(5)预设学生2:(2)(4)(5)预设学生3:(2)(4)
【设计意图】教师组织学生分组讨论,明析一元一次不等式组的定义.使学生进一步明确“几个含有同一个未知数的一元一次不等式组成.”
二、探索过程
问题一:??x?10?75这两个不等式的解分别是什么呢?
x?10?100??x?65 ?x?90?问题二:怎么表示不等式组的解呢?
什么是不等式组的解呢?
【设计意图】通过这两个问题的探讨,让学生在解不等式的过程中得出不等式组的解法和不等式组的解的表示方法.文字语言:大于65小于或等于90的数.图形语言: O***0
数学式子:65<x≤90 学生活动:探究不等式组的解
问题:求下列不等式组的`解,并找出其中的规律(1)??x?3?x?2?x?3?x?3(2)?(3)?(4)? ?x?7?x??5?x?5?x?7学生预设1:通过数轴,能求出不等式组的解
学生预设2:找不出其中的规律
【设计意图】让学生利用数轴寻找不等式组的解,并表示出来,引导学生找出其中的规律,培养学生善于现问题、总结规律的能力
三、练习巩固,拓展提高
学生活动:1.写出下列不等式组的解
(1)不等式组??x??5的解在数轴上表示为____________则不等式组的解为 x??2??x??5的解在数轴上表示为_______________则不等式组的解?x??2(2)不等式组?为
(3)不等式组??x??1的解为 x?2??x??1的解为 x?2?(4)不等式组 ?2.选择题:(1)不等式组??x?2的解是()x?2??2 ?2 C.无解 ?2(2)不等式组??x??2的负整数解是()x??3?A.–2,0,-1 B.-2 C.–2,-1 D.不能确定
【设计意图】让学生及时巩固,准确找出不等式组的解,在找不等式组的解的过程中引入整数解.四、合作小结,课外探索 学生活动:
1每位同学写一个以x为未知数的一元一次不等式;
2、同桌的两个不等式组在一起叫做什么?三位同学的不等式组在一起呢?
3、每位同学把你所写的不等式解出来;
4、同桌所组成的不等式组的解是什么?
【设计意图】通过问题串,在生生、师生互动的情况下,复习一元一次不等式组的定义和解.增强了学生之间的合作交流.五、布置作业
3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品?
【设计意图】通过实际问题的解决,有利于学生体会到数学来源于生活,并能有效地复习巩固本堂课所学的知识和方法.【板书设计】
一元一次不等式组 ?x?10?75??x?10?100?x?65 文字语言:大于??x?9065小于或等于90的数.图形语言: O***0数学式子:65<x≤90
求下列不等式组的解,并找出其中的规律(1)??x?3?x?7(2)??x?2?x?3?x??5(3)??x?5(4)规律:大大取大,小小取小;
大小小大中间找
大大小小为
初中数学教案5
教学目标
1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2, 能区分两种不同意义的量,会用符号表示正数和负数;
3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点 正确区分两种不同意义的量。
知识重点 两种相反意义的量
教学过程(师生活动) 设计理念
设置情境
引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的`类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多
地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习 教科书第5页练习
小结与作业
课堂小结 围绕下面两点,以师生共同交流的方式进行:
1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要
初中数学教案6
课 题:几何画板简介
教学目标:1)通过几何画板课件演示展示其魅力激起兴趣
2)了解几何画板初步操作
教学重点:让学生了解几何画板的工作界面
教学难点:能用几何画板将三角形分成四等份,并用几何画板验证。 教学过程:
一、概述几何画板
几何画板是专门为数学学习与教学需要而设计的软件。有人说它是电子圆规,有人说它是绘图仪,有人说它是数学实验室。它号称二十一世纪的动态几何。它可帮助我们理解数学,动态地表达数量关系,并可设计出许多有用或有趣的作品。
二、几何画板作品展示
三、几何画板简介
1)启动
开始|程序|几何画板|几何画板。启动几何画板后将出现 菜单、工具、 画板。工具(从上到下) 选择 、画点、画圆 、画线、 文本 、对象信息、 脚本工具目录。
2)操作初步
1、文件
新画板 打开一个新的空白画板。
新脚本 打开一个新的空白脚本窗口。用于录制画板的画图过程。 打开 打开一个已存在的画板文件(.gsp)或脚本文件(.gss)。
保存 [保存当前画板窗口画板文件或脚本窗口脚本文件],路径+文件名,确认。
打印预览
打印
退出
2、 选择 几何画板的操作都是先选定,后操作。
选工具(选择 画点 画圆 画线 文本 对象信息 脚本工具目录) 单击:工具选项。
选选择方式 移到选择按左键不放→平移/旋转/缩放;拖曳到平移/旋转/缩放;放→选定。
功能:移动选定的目标按 平移/旋转/缩放 方式移动。
选一个目标 鼠标对准画板中的目标(点、线、圆等),指针变为横向箭头,单击。
选两个以上目标 法一 第二个及以后,Shift+单击。
选两个以上目标 法二 空白处拖曳→虚框;虚框中的'目标被选。 选角 选三点:第一、第三点:角两边上的点;第二点:顶点。 不选 单击:空白处。
从多个选中的目标中不选一个 Shift+单击。
选目标的父母和子女 选定,编辑|选择父母/或选择子女。
选所有 编辑|选择所有。
选画点/画圆...,编辑|选择所有点/圆...。
3、删除
删除目标 选目标;Del键(注:同时删除子女目标)。
复原一步 Ctrl+Z = 编辑|复原。
画板变成空白画板 Shift+Ctrl+Z = Shift+编辑|复原。
4、显示
线类型 设置选定的线/轨迹 为 粗线/细线/虚线。应用 使对象更突出。 颜色 设置选定的图形的颜色。应用 使对象更突出。
字号/字型 设置选定的标注、符号、测算等文字的字号和字型。
字体 设置选定的标注、符号、测算等文字的字体。
显示/隐藏 显示/隐藏 选定的目标(Ctrl+H)。
显示所有隐藏 显示所有的隐藏目标。
显示符号 显示/隐藏 选定目标的符号。
符号选项 更改 符号/符号序列。
轨迹跟踪 设置/消除 选定目标为轨迹跟踪状态。
动画 根据选定的目标条件进行动画运动。
参数设置 角度、弧度、精确度等的设置。
5、对象信息 单击对象信息→?;单击对象→简单信息;双击对象→目标信息对话框。
6、快捷键 隐藏Ctrl+H显示符号Ctrl+K轨迹跟踪Ctrl+T当前目标可操作的内容右键。
(以上简略选讲1、2、3)
四、熟悉几何画板的界面,了解常用工具的用法,
五、把一个三角形分成四等份:
1)用画线工具画一个三形,2)标注:选文本工具,单击画好的点,用文本工具双击显示的标签,可进行修改。
3)选择“构造”,---“画中点”
六、验证面积相等:
1)按住shift键,选取点。
2)“构造”---“多边形内部”。
3)“测算”---“面积”
七、等分线段:
1)画射线作辅助线。
2)选取一段做标记向量。
3)“变换”---“平移”。
4)“作图”---“平行线”。
用平行线的性质等分线段。
八、画基本图形
1、画点 选画点,单击画板上一点。(并显示标签)
2、画圆 画圆的两种方法及区别。 (设置不同显示方式)
3、选线段/射线/直线 选画线;按左键不放→线段/射线/直线
九、课后反思
在图中标注文本文字,用辅助线把一线段如何分为四等份
初中数学教案7
今天小编为大家精心整理了一篇有关初中数学教案之公式的相关内容,以供大家阅读!
教学设计示例一——公式
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的'公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例二——公式
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题.
2.使学生理解公式与代数式的关系.
(二)能力训练点
1.利用数学公式解决实际问题的能力.
2.利用已知的公式推导新公式的能力.
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践.
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.
二、学法引导
1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2.学生学法:观察分析推导计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式.
2.难点:同重点.
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课
师:下面利用面积公式进行有关计算
(出示投影2)
例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)
学生口述解题过程,教师予以指正并指出,强调解题的规范性.
【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.
(出示投影3)
例2如图是一个环形,外圆半径,内圆半径求这个环形的面积
学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.
评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.
2.本题实际上是由圆的面积公式推导出环形面积公式.
3.进一步强调解题的规范性
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.
测试反馈,巩固练习
(出示投影4)
1.计算底,高的三角形面积
2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t
3.已知圆的半径,,求圆的周长C和面积S
4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
(1)求A地到B地所用的时间公式。
(2)若千米/时,千米/时,求从A地到B地所用的时间。
学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.
【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.
师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.
八、随堂练习
(一)填空
1.圆的半径为R,它的面积________,周长_____________
2.平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________
3.圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________
(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,,V是多少?
九、布置作业
(一)必做题课本第xx页x、x、x第xx页x组x
(二)选做题课本第xx页xx组x
初中数学教案8
第一课时
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容 .
2.了解平均数的意义,会计算一组数据的平均数 .
3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .
(二)能力训练点
培养学生的观察能力、计算能力 .
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯 .
2.渗透数学来源于实践,反地来又作用于实践的观点 .
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .
重点·难点·疑点及解决办法
1.教学重点:平均数的概念及其计算 .
2.教学难点:平均数的简化计算 .
3.教学疑点:平均数简化公式的应用,a如何选择 .
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的`飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.
(三)教学过程
这节课我们首先来学习平均数.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
86 91 100 72 93 89 90 85 75 95
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .
2.平均数的概念及计算公式
一般地,如果有n个数 .
那么 ①
叫做这n个数的平均数, 读作“x拨” .
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .
3.平均数计算公式①的应用
例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温 .
让学生动手计算,以巩固平均数计算公式(一名学生板演)
教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .
例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
计算它们的平均质量 .(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .
讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .
3.推导公式②
一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,
那么 ,
因此,
即 ②
为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)
课堂练习:
教材P148中~P149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .
2.求n个数据的平均数的公式① .
3.平均数的简化计算公式② .这个公式很重要,要学会运用 .
方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .
八、布置作业
教材P153中1、2、3、4 .
初中数学教案9
课型:新授课 备课人:徐新齐 审核人:霍红超
学习目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质的探索.
教学过程
一、复习导入
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.
学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.
二、自学指导
观察剪刀剪布的过程,引入两条相交直线所成的角
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
三、 问题导学
认识邻补角和对顶角,探索对顶角性质
(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的`两角相等.
(3).概括形成邻补角、对顶角概念.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
四、典题训练
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
2.:判断下列图中是否存在对顶角.
小结
自我检测
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )
二、填空题:
1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
(1) (2)
2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.
三、解答题:
1.如图,直线AB、CD相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛
2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?
初中数学教案10
教学目标:
1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题.
2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律.
教学重点:
使学生准确、熟炼、灵活地运用切线的判定方法及其性质.教学难点:学生对题目不能准确地进行论证.证题中常会出现不知如何入手,不知往哪个方向证的情形.
教学过程:
一、新课引入:
我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题.
二、新课讲解:
实际上在几何证明题中,我们更多地将切线的判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤.p.109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad.求证:dc是⊙o的切线.
分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形.所以辅助线应该是连结oc.只要证od⊥cd即可.亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果.而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等.
∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的位置关系,可以造成角的相等关系,从而导致∠3=∠4.命题得证.证明:连结od.教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴.p.110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切.
分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点.这个时候我们必须从圆心o向cd作垂线,设垂足为f.此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切.题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的.一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe.证明:连结oe,过o作of⊥cd,重足为f.
请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的.
练习一
p.111,1.已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e.求证:ob与⊙d相切.分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况.这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de.再根据角平分线的性质,问题便得到解决.证明:连结de,作df⊥ob,重足为f.p.111中2.已知如图7-61,△abc为等腰三角形,o是底边bc的中点,⊙o与腰ab相切于点d.求证:ac与⊙o相切.
分析:欲证ac与⊙o相切,同第1题一样,同属于直线与圆的公共点未给定情况.辅助线的方法同第1题,证法类同.只不过要针对本题特点还要连结oa.从等腰三角形的”三线合一”的性质出发,证得oa平分∠bac,然后再根据角平分线的性质,使问题得到证明.证明:连结od、oa,作oe⊥ac,垂足为e.同学们想一想,在证明oe=od时,还可以怎样证?
(答案)可通过“角、角、边”证rt△odb≌rt△oec.
三、新课讲解
:为培养学生阅读教材的习惯让学生阅读109页到110页.从中总结出本课的主要内容:
1.在证题中熟练应用切线的判定方法和切线的性质.
2.在证明一条直线是圆的切线时,只能遇到两种情形之一,针对不同的情形,选择恰当的证明途径,务必使同学们真正掌握.
(1)公共点已给定.做法是“连结”半径,让半径“垂直”于直线.
(2)公共点未给定.做法是从圆心向直线“作垂线”,证“垂线段等于半径”.
四、布置作业
1.教材p.116中8、9.2.教材p.117中2.
初中数学教案11
这节课的内容是义务教育课程标准教材数学九年级下册锐角三角函数——正弦。我将从以下几个方面来就本节课的教学进行解说。
一、教材分析
教材所处的地位及作用:
本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,这对学生来说是个全新的领域。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础.
二、学情分析
1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础,学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。
三、教学目标
1、理解锐角正弦的意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的变化与对应的思想;
2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;
3、经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法;
4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。
四、重点、难点
1、重点:锐角正弦的定义及应用;
2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.
3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。
五、教法及学法
本节课采用情境引导和探究发现教学法,通过适宜的问题情境引发新的认知冲突,建立知识间的'联系。同时采用多媒体辅助教学,以直观生动地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
六、教学过程
为了实现本节的教学目标,教学过程分为以下六个环节:
(一)复习旧知,情境引入(二)合作探究,获得新知:(三)巩固训练,落实双基
(四)强化提高,培养能力(五)小结归纳,拓展深化(六)反馈练习,自主评价。
下面就几个主要环节进行解说
(一)复习旧知,情境引入
(二)先让学生回顾直角三角形知识,再从铺设水管引入30°的直角三角形中的边与角的关联。
(二)合作探究,获得新知:
先让学生猜想,再利用几何画板演示,在直角三角形中,任意角度的锐角的对边和斜边的比和这个角的关系。得出结论:
当∠A的度数一定时,∠A的对边和斜边的比值是一个定值。这个比值随着角度的变化而变化,当角度一定时,有唯一和它对应的比值。所以∠A的对边和斜边的比值是关于∠A度数的函数。
再引出课题和正弦概念,给出正弦的含义和表示方法。认识几个特殊角的正弦值。
(三)巩固训练
讲解一道求正弦值的例题。
(四)强化提高,培养能力
出示三道提高题,第一道是关于直接利用正弦值求斜边的题,然后进行变式,第二题是关于不是直角三角形中求正弦的题,第三题是关于用不同的方法求一个锐角的正弦值。
(五)小结归纳,拓展深化
初中数学教案12
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写代数式的注意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.
如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,
#FormatImgID_0#
.数字与数字相乘一般仍用“×”号.
(2)代数式中有除法运算时,一般按照分数的写法来写.
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律 a+b=b+a;
(2)乘法交换律 a·b=b·a;
(3)加法结合律 (a+b)+c=a+(b+c);
(4)乘法结合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的.速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.
三、讲授新课
1代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2举例说明
例1 填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 说出下列代数式的意义:
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3 用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____
2说出下列代数式的意义:(投影)
3用代数式表示:(投影)
(1)x与y的和; (2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫代数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
六、作业
1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4a千克大米的售价是6元,1千克大米售多少元?
5圆的半径是R厘米,它的面积是多少?
6用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3 的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
初中数学教案13
复习目标:
(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)会解一元一次方程。
(3)会根据具体问题中的数量关系列出一元一次方程并求解。
重点、难点:
1.重点:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
会用一元一次方程解决实际问题。
2.难点:
一元一次方程的解法的灵活应用。
寻找实际问题中的等量关系。
【典型例题】
例1.
分析: 明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。
在这里特别注意:未知数的次数及系数。
这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。
解:
例2.
分析: 此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。
此题从问题出发,求解关于x的方程即要求出x的值,而要求x的'值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。
解:
将m=1代入关于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。
例4.
分析: 此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。
解:
例5.
分析: 此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。
解:
注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。
解:
例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。
分析: 列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm
解一: 设车的速度为xm/s
经检验,符合题意。
答: 车的速度为20m/s。
解二: 设车身的长度为xm
经检验,符合题意。
答: 车的速度为(1000+200)/60=20m/s
例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票
售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?
分析: 此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。
解: 设团体票共2a张,零售票共a张,零售票价x元
经检验,符合题意。
答: 零售票价为19.2元。
初中数学教案14
一、课题
略。
二、教学目标
1.结合具体例子,体会数学与我们的成长密切相关。
2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。
三、教学重点和难点
重点
难点
1.结合具体例子,体会数学与我们的成长密切相关。
2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
结合具体例子,体会数学与我们的成长密切相关。
四、教学手段
现代课堂教学手段
教学准备
教师准备
录音机、投影仪、剪刀、长方形纸片。
学生准备
预习、剪刀、长方形纸片
五、教学方法
启发式教学
六、教学过程设计
一、导入
教师活动
学生活动
展示图片并播放录音。
宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。
观察图片,听录音。
二、板书课题。
三、导学
教师活动
学生活动
1.现在让我们进入时空的隧道,回忆我们的成长历程:
出生——学前——小学(板书),我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。(积极鼓励)
(师、生共同讨论交流,从具体事例中分析并找出数学信息。)
2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?
3.指定若干名学生口答,师生共同系统归纳:
数与式:认识、计算、方程、解应用题;
图形:图形的认识、图形的画法、图形的计算;
统计知识。
4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的`聪明才智,尝试解决下面的2个问题:
(1)投影或小黑板展示下列问题:
①计算并观察下列三组算式:
②已知25×25=625,则24×26=(不要计算)
③你能举出一个类似的例子吗?
④更一般地,若a×a=m,则(a+1)(a-1)= 。
(老师点评、表扬)
(2)投影或小黑板展示教材第13页第4题。
通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,同学们课后可以阅读一下第1节第2点《人类离不开数学》,体会数学对促进人类社会发展的重大作用。
布置作业:
(1)谈一谈你对数学的兴趣、学习数学的方法以及学习中存在的困难等;
(2)习题1.1第2、4题。
1.回忆、交流、积极大胆发言。
2.回忆、交流。
3.观察、计算、思考、探索。
4.学生取出剪刀和长方形纸片,小组合作,动手尝试解决。
学生1
学生2
学生拼图(略)
七、练习设计
课堂基础练习
1、下列图形中,阴影部分的面积相等的是.
答案:A与B;C与D
2、三个连续奇数的和是21,它们的积为
答案:315
3、计算:7+27+377+4777
答案:5188
课后延伸练习
1、猜谜语(各打数学中常用字)
千人分在北上下;②1人立在口上边
答案:①乘;②倍
2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?
答案:[5-(1÷5)]×5
3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:
1 2 3 4 5 6 7 8 9 =100
答案:123-(45+67-89)=100
4、把长方形剪去一个角,它可能是几边形?
答案:三边形,四边形,五边形.
5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?
答案:
能力提高训练
18
19
答案:7个,边长从大到
小依次为11、8、
7、5、3
1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?
2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?
答案:36
八、板书设计
(一)知识回顾(四)例题解析(六)课堂小结
(二)观察发现例1、例2
(三)解方程(五)课堂练习练习设计
九、教学后记
初中数学教案15
把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
一、教材内容分析
本节课是数学人教版七年级上册第三章第二节第二小节的内容。这是一节“概念加例题型”课,此种课型中的学习内容一部分是概念,一部分是运用前面的概念解决实际问题的例题。本节课主要内容是利用移项解一元一次方程。是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基础。这类课一般采用“导学导教,当堂训练”的方式进行,教师指导学生学习的重点一般不放在概念上,要特别留意学生运用概念解题或做与例题类似的习题时,对概念的理解是否到位。
二、教学目标:
1.知识与技能:(1)找相等关系列一元一次方程;(2)用移项解一元一次方程。(3)掌握移项变号的基本原则
2.过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
3.情感、态度:通过具体情境引入新问题,在移项法则探究的过程中,培养学生合作意识,渗透化归的思想。
三、学情分析
针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。在课堂教学中,学生主要采取自学、讨论、思考、合作交流的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、教学重点:利用移项解一元一次方程。
五、教学难点:移项法则的探究过程。
六、教学过程:
(一)情景引入
引例:请同学们思考这样一个有趣的问题,我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨分别是( )
A.3个老头,4个梨 B.4个老头,3个梨 C.5个老头,6个梨 D.7个老头,8个梨
设计意图:大部分同学会用算术法(答案代入法)来解答的,而这类问题我们如何用方程来解答呢?激起学生求知的欲望,巧妙过渡,揭示课题。板书课题:解一元一次方程——移项
(二)出示学习目标
1.理解移项法,明确移项法的依据,会解形如ax+b=cx+d类型 的.一元一次方程。
2.会建立方程解决简单的实际问题。
设计意图:这两个目标的达成,也验证了本节课学生自学的效果,这也是本节课的教学重难点。
(三)导教导学
1.出示自学指导
自学教材问题2到例3的内容,思考以下问题:(1)问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题可作为列方程的依据的等量关系是什么?(2)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤(8分钟后,比谁能仿照问题2和例3的格式正确解答问题)
2.学生自学
学生根据自学提纲进行独立学习,教师巡视,对自学速度慢的、自学能力差的、注意力不够集中的学生给以暗示和帮扶,有利于自学后的成果展示。
3.交流展示(小组合作展示)
(合作交流一)教材问题2中这批书的总数有哪几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
1)设未知数:设这个班有X名学生,根据两种不同分法这批书的总数就有两种表示方法,即这批书共有(3 X+20)本或(4X-25)本。
2)找相等关系:这批书的总数是一个定值,表示同一个量的两个不同的式子相等。(板书)
3)根据等量关系列方程: 3x+20 = 4x-25(板书)
【总结提升】解决“分配问题”应用题的列方程的基本要点:
A.找出能贯穿应用题始终的一个不变的量.
B.用两个不同的式子去表示这个量.
C.由表示这个不变的量的两个式子相等列出方程.
设计意图:因为在自学提纲的引领下,每个小组自主学习的效果不同,反馈的意见不同,所以在展示中首先要展示学生对课本例题的理解思路。采取主动自愿的方式,一个小组主讲,其它小组补充。
(变式训练1)某学校组织学生共同种一批树,如果每人种5棵,则剩下3棵;如果每人种6棵,则缺3棵树苗,求参与种树的人数
(只设列即可)
(变式训练2)我国民间流传着许多趣味算题,多以顺口溜的形式表达,请看这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,老头和梨各多少?
设计意图:检查提问学生对“分配问题”应用题掌握的情况,学生回答后教师板书所列方程为后面教学做好铺垫。学生会带着“如何解这类方程?”的好奇心过渡到下一个环节的学习。
(合作交流二)什么是移项?移项的依据是什么?移项时应该注意什么问题?解形如“ax+b=cx+d”类型的方程中移项起了什么作用?自学例3后请归纳解这类一元一次方程的步骤。
(板书 )把等式一边的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项。
《解一元一次方程——移项》教学设计(魏玉英)
师:为什么等式(方程)可以这样变形?依据什么?
(出示)依据等式的基本性质1.即:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式.
师:解一元一次方程中“移项”起了什么作用?
(出示) 通过移项,使等号左边仅含未知数的项,等号右边仅含常数的项,使方程更接近x=a的形式.(与课题对照渗透转化思想)
(基础训练)抢答:判断下列移项是否正确,如有错误,请修改
《解一元一次方程——移项》教学设计(魏玉英)
设计理念:让各个小组凭着势力去抢答。这五个习题重点考察学生对移项的掌握是本节课的重难点,习题分层设计且成梯度分布。
【归纳板书】 解“ax+b=cx+d”型的一元一次方程的步骤:(1) 移项,(2) 合并同类项,(3) 系数化为1
(综合训练) 解下列方程(任选两题)
设计理念:第(2)、(3)两题未知数系数是相同类型的,所以让学生任选一题即可。通过综合训练能让学生更进一步巩固用移项和合并同类项去解方程了。
(中考试练)若x=2是关于x的方程2x+3m-1=0的解,则m的值为
设计理念:通过本题的训练让学生明确中考在本节的考点,同时激励学生在数学知识的学习中要抓住知识的核心和重点。
(四)我总结、我提高:
通过本节课的学习我收获了。
设计意图:通过小组之间互相谈收获的方式进行课堂小结,让学生相互检查本节课的学习效果。可以引导学生从本节课获得的知识、解题的思想方法、学习的技巧等方面交流意见。
(五)当堂检测(50分)
1.下列方程变形正确的是( )
A.由-2x=6, 得x=3
B.由-3=x+2, 得x=-3-2
C.由-7x+3=x-3, 得(-7+1)x=-3-3
D.由5x=2x+3, 得x=-1
2.一批游客乘汽车去观看“上海世博会”。如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和游客各有多少?(只设出未知数和列出方程即可)
3.(20分)已知x=1是关于x的方程3m+8x=m+x的解,求m的值。
(师生活动)学生独立答题,教师巡回检查,对先答完的学生进行及时批改,并把得满分的学生作为小老师对后解答完的学生的检测进行评定,最后老师进行小结。
(六)实践活动
请每一位同学用自己的年龄编一 道“ax+b=cx+d”型的方程应用题,并解答。先在组内交流,选出组内最有创意的一个记在题卡上,自习在全班进行展示 。
设计意图:
让学生课后完成,让学生深深体会到数学来源于生活而又服务于生活,体现了数学知识与实际相结合。
【初中数学教案】相关文章:
初中数学教案11-04
初中数学教案02-21
初中数学教案优秀03-21
初中数学教案:公式12-29
初中数学教案【精品】07-13
[推荐]初中数学教案05-16
初中数学教案范文12-16
初中数学教案(精选15篇)02-24
初中数学教案(精选20篇)10-11
初中数学教案15篇01-10