当前位置:好文网>实用文>教案>高中数学教案

高中数学教案

时间:2024-04-14 07:17:59 教案

高中数学教案

  作为一名无私奉献的老师,总归要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么什么样的教案才是好的呢?以下是小编为大家收集的高中数学教案,欢迎阅读,希望大家能够喜欢。

高中数学教案

高中数学教案1

  教学目标

  知识与技能目标:

  本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:

  (1)通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

  (2)从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

  (3)依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。即:

  导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k

  在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

  过程与方法目标:

  (1)学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

  (2)学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

  (3)结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

  情感、态度、价值观:

  (1)通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;

  (2)在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

  教学重点与难点

  重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数形结合、以直代曲的思想方法。

  难点:发现、理解及应用导数的几何意义。

  教学过程

  一、复习提问

  1.导数的定义是什么?求导数的三个步骤是什么?求函数y=x2在x=2处的导数.

  定义:函数在导数的几何意义教案处的导数导数的几何意义教案就是函数在该点处的瞬时变化率。

  求导数的步骤:

  第一步:求平均变化率导数的几何意义教案;

  第二步:求瞬时变化率导数的几何意义教案.

  (即导数的几何意义教案,平均变化率趋近于的确定常数就是该点导数)

  2.观察函数导数的几何意义教案的图象,平均变化率导数的几何意义教案在图形中表示什么?

  生:平均变化率表示的是割线PQ的斜率.导数的几何意义教案

  师:这就是平均变化率(导数的几何意义教案)的几何意义,

  3.瞬时变化率(导数的几何意义教案)在图中又表示什么呢?

  如图2-1,设曲线C是函数y=f(x)的图象,点P(x0,y0)是曲线C上一点.点Q(x0+Δx,y0+Δy)是曲线C上与点P邻近的任一点,作割线PQ,当点Q沿着曲线C无限地趋近于点P,割线PQ便无限地趋近于某一极限位置PT,我们就把极限位置上的直线PT,叫做曲线C在点P处的切线.

  导数的几何意义教案

  追问:怎样确定曲线C在点P的切线呢?因为P是给定的,根据平面解析几何中直线的点斜式方程的知识,只要求出切线的斜率就够了.设割线PQ的倾斜角为导数的几何意义教案,切线PT的倾斜角为导数的几何意义教案,易知割线PQ的斜率为导数的几何意义教案。既然割线PQ的极限位置上的直线PT是切线,所以割线PQ斜率的极限就是切线PT的斜率导数的几何意义教案,即导数的几何意义教案。

  由导数的定义知导数的几何意义教案导数的几何意义教案。

  导数的几何意义教案

  由上式可知:曲线f(x)在点(x0,f(x0))处的切线的斜率就是y=f(x)在点x0处的导数f'(x0).今天我们就来探究导数的几何意义。

  C类学生回答第1题,A,B类学生回答第2题在学生回答基础上教师重点讲评第3题,然后逐步引入导数的几何意义.

  二、新课

  1、导数的几何意义:

  函数y=f(x)在点x0处的导数f'(x0)的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率.

  即:导数的几何意义教案

  口答练习:

  (1)如果函数y=f(x)在已知点x0处的导数分别为下列情况f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.试求函数图像在对应点的切线的倾斜角,并说明切线各有什么特征。

  (C层学生做)

  (2)已知函数y=f(x)的图象(如图2-2),分别为以下三种情况的直线,通过观察确定函数在各点的导数.(A、B层学生做)

  导数的几何意义教案

  2、如何用导数研究函数的增减?

  小结:附近:瞬时,增减:变化率,即研究函数在该点处的瞬时变化率,也就是导数。导数的正负即对应函数的增减。作出该点处的切线,可由切线的升降趋势,得切线斜率的正负即导数的正负,就可以判断函数的增减性,体会导数是研究函数增减、变化快慢的有效工具。

  同时,结合以直代曲的思想,在某点附近的切线的变化情况与曲线的变化情况一样,也可以判断函数的增减性。都反应了导数是研究函数增减、变化快慢的有效工具。

  例1函数导数的几何意义教案上有一点导数的几何意义教案,求该点处的导数导数的几何意义教案,并由此解释函数的增减情况。

  导数的几何意义教案

  函数在定义域上任意点处的瞬时变化率都是3,函数在定义域内单调递增。(此时任意点处的切线就是直线本身,斜率就是变化率)

  3、利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程.

  例2求曲线y=x2在点M(2,4)处的切线方程.

  解:导数的几何意义教案

  ∴y'|x=2=2×2=4.

  ∴点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.

  由上例可归纳出求切线方程的两个步骤:

  (1)先求出函数y=f(x)在点x0处的导数f'(x0).

  (2)根据直线方程的点斜式,得切线方程为y-y0=f'(x0)(x-x0).

  提问:若在点(x0,f(x0))处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)

  (先由C类学生来回答,再由A,B补充.)

  例3已知曲线导数的几何意义教案上一点导数的'几何意义教案,求:(1)过P点的切线的斜率;

  (2)过P点的切线的方程。

  解:(1)导数的几何意义教案,

  导数的几何意义教案

  y'|x=2=22=4. ∴在点P处的切线的斜率等于4.

  (2)在点P处的切线方程为导数的几何意义教案即12x-3y-16=0.

  练习:求抛物线y=x2+2在点M(2,6)处的切线方程.

  (答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).

  B类学生做题,A类学生纠错。

  三、小结

  1.导数的几何意义.(C组学生回答)

  2.利用导数求曲线y=f(x)在点(x0,f(x0))处的切线方程的步骤.

  (B组学生回答)

  四、布置作业

  1.求抛物线导数的几何意义教案在点(1,1)处的切线方程。

  2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.

  3.求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角

  4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;

  (C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)

  教学反思:

  本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代曲”的思想。

  本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数的几何意义解释实际问题”两个教学重心展开。先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率——瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义——“导数是曲线上某点处切线的斜率”。

  完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整地体验导数与切线斜率的关系,并感受导数应用的广泛性。本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。

高中数学教案2

  高中数学趣味竞赛题(共10题)

  1 、撒谎的有几人

  5个高中生有,她们面对学校的新闻采访说了如下的话:

  爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”

  玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”

  千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?

  2、她们到底是谁

  有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。

  穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?

  3、半只小猫

  听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。

  “一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?

  4、被虫子吃掉的算式

  一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的`部分它没有吃(因为没有墨水)。

  那么,请问原来的算式是什么样子的呢?

  5、巧动火柴

  用16根火柴摆成5个正方形。请移动2根火柴,

  使

  正形变成4。

  6、折过来的角

  把正三角形的纸如图那样折过来时,角?的度数是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、啊!双胞胎?

  丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。

  结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?

  9、赠送和降价哪个更好?

  1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?

  10、折成15度

  用折纸做成45度很简单是吧。那么,请折成15度,你会吗?

高中数学教案3

  教学目标:

  1、理解流程图的选择结构这种基本逻辑结构。

  2、能识别和理解简单的框图的功能。

  3、能运用三种基本逻辑结构设计流程图以解决简单的问题。

  教学方法:

  1.通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。

  2.在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。

  教学过程:

 一、问题情境

  1、情境:

  某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为其中(单位:)为行李的`重量。

  试给出计算费用(单位:元)的一个算法,并画出流程图。

  二、学生活动

  学生讨论,教师引导学生进行表达。

  解算法为:

  输入行李的重量;

  如果,那么,否则;

  输出行李的重量和运费。

  上述算法可以用流程图表示为:

  教师边讲解边画出第10页图1-2-6。

  在上述计费过程中,第二步进行了判断。

  三、建构数学

  1、选择结构的概念:

  先根据条件作出判断,再决定执行哪一种

  操作的结构称为选择结构。

  如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行。

  2、说明:

  (1)有些问题需要按给定的条件进行分析、比较和判断,并按判

  断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

  (2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

  (3)在上图的选择结构中,只能执行和之一,不可能既执行,又执

  行,但或两个框中可以有一个是空的,即不执行任何操作;

  (4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和

  两个退出点。

  3。思考:教材第7页图所示的算法中,哪一步进行了判断?

高中数学教案4

  一、活动主题的提出

  根据新课改课程标准及高中数学教学要求,为切实实施素质教育,改革教学方式与方法,变教教材为用教材,有机地开展校本课程,培养学生的综合实践能力和创新能力,培养学生的探索精神和用数学的意识,以教材中的阅读与思考为素教材,推进高中数学研究性学习的进程,对该问题进行研究,旨在为深化课堂教学内容,促进性自主研究和学习,从而探讨高中数学研究性学习的实施办法。

  二、活动的具体目标

  1、知识目标:通过集合中元素的个数问题的研究,探求有限集合中元素个数间的关系,比较几个集合中元素个数的多少的方法。

  2、能力目标:能多方面、多角度、多层面来探究问题,运用知识来解决问题,培养学生的发散思维和创新思维能力。

  3、情感目标:学该课题的研究,激发学生的学习热情和学习兴趣,享受探索成功的乐趣,培养科学态度与科学精神。

  三、活动的实施过程、方式

  1、出示活动内容与思考的问题(5分钟)

  (1)、学校小卖部进了两次货,第一次进的货是圆珠笔、钢笔、橡皮、笔记本、方便面、汽水共6种,第二次进的货是圆珠笔、铅笔、火腿肠、方便面共4种,两次一共进了几种货?回答两次一共进了10(6+4)种,对吗?应如何解答?有哪些方法?因此可以得出什么结论(集合中元素个数间的关系)?

  (2)、学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人。两次运动会中,这个班共有多少名同学参赛?应如何解答?由此解出以下结论(集合中元素个数间的关系)?又如:某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人是多少?应如何解答?

  (3)涉及三个及三个以上,集合的并、交问题,能用类似的.结论吗?应怎样表达?如:学校开运动会,设。若参加一百米的同学有5人,参加二百米跑的同学有6人,参加四百米跑的同学有7人,参加一百、二百同学有2人,参加一百、四百的同学有3人,参加二百、四百的同学有5人,三项都参加的人有1人,求有多少人参赛?

  (4)设计比较集合与集合B=中元素的个数的多少的方法。

  2、活动分工及时间安排(25分钟)

  全班以大组为单位(共四个大组)来研究以上4个问题。第一大组研究(1)问题,第二大组研究(2)个问题,第三大组研究(3)个问题,第四大组研究(4)个问题。要求每组由学生自行确定一位负责人,并由此同学组织具体活动,明确该同学是下步活动交流中心发言人。有余力的组可协助思考其它组的问题。教师下到各组视察,了解情况,并作必要的指导。

  3、活动交流(15分钟)

  请每一小组中心发言人回答各自分配的问题,全班其它同学补充,教师引导学生概括,得出结论:

  列举法

  问题(1)涉及的集合元素个数较少而且具体,可用列举法写出,很快可解决此问题,并由特殊到一般的思维方式概括得出:

  图解法

  当集合元素个数较少而不具体时,据题意画出集合的韦恩图,从而解决实际问题如问题(2),并归纳得出:这一结论。

  数形结合法

  利用集合间的关系,结合示意图,据未知可设适当的未知数,建立方程求解,如问题(2)中的第二个问题。设喜爱篮球运动但不喜爱乒乓球运动的人数为x,则两项都喜爱的有(15-x)人,喜爱乒乓球而不喜爱篮球的有[10-(15-x)]人,据题意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜爱篮球运动但不喜爱乒乓球运动的有12人。

  归纳、猜想法

  通过对问题(3)的求解,并结合问题(1)、(2)的求解,归纳、猜想出:。

  概念派生法

  通过问题(4)的研究求解,大部分学生较易得出A,因此,由真子集的概念得出集合B的元素的个数少于集合A的元素的个数。这个结论是由概念的内涵派生出来的。

  “对应”法

  经研究讨论,同学中有“集合A的元素个数等于集合B的元素个数”的结论。少数同学运用“对应”思想:,显然有此结论。这是一个多好的想法啊!

  四、活动评价

  充分运用高中数学子教材资源“阅读与思考”,广泛开展第二课堂活动,能很好地调动学生的学习兴趣,能很好地开发学生的创造潜能,有助于学生探究能力和创新能力的提高。通过本课题的研究,至少有以下成功之处:第一、深化了课堂知识,进一步巩固和拓展了所学知识;第二、培养了学生探究能力,很好地改变了学生的学习方式、方法;第三、增强了学生运用知识解决问题的意识:该课题以解决问题为背景,通过分工与合作和恰当地引导,学生用知识的意识明显增强,运用知识解决问题的能力明显提高;第四、培养了学生的思维品质。通过问题(4)的研究,我们得出了不一样的结论,但都有道理,学生向引发争议,学生的批判性思维得到较好的发展。

  五、注意事项

  1、教师课题准备要充分。要认真钻研材料;查阅相关资料或研究成果;作好周密的活动计划。切忌无准备或准备不充分就上课。

  2、避免“活动研究课”上课学科化,要充分地让学生自主的活动,不人为地牵制学生。

  3、积极引导学生搞好“交流——合作”环节的活动,充分听取学生的意见,让学生自己总结作法和研究成果,切忌教师包办,强加于人。

  4、坚持引导学生写好活动总结和体会,归纳研究方法与成果,忌只管上课不管下课,课后不巩固。

高中数学教案5

  教学目标:

  1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进

  学生全面认识数学的科学价值、应用价值和文化价值。

  2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

  教学重点:

  如何建立实际问题的目标函数是教学的重点与难点。

  教学过程:

  一、问题情境

  问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?

  问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?

  问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?

  二、新课引入

  导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

  1。几何方面的应用(面积和体积等的最值)。

  2。物理方面的应用(功和功率等最值)。

  3。经济学方面的应用(利润方面最值)。

  三、知识建构

  例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

  说明1解应用题一般有四个要点步骤:设——列——解——答。

  说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极

  值及端点值比较即可。

  例2圆柱形金属饮料罐的容积一定时,它的.高与底与半径应怎样选取,才

  能使所用的材料最省?

  变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?

  说明1这种在定义域内仅有一个极值的函数称单峰函数。

  说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:

  S1列:列出函数关系式。

  S2求:求函数的导数。

  S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。

  例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为

  多大时,才能使电功率最大?最大电功率是多少?

  说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。

  例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。

  例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。

  (1)设,生产多少单位产品时,边际成本最低?

  (2)设,产品的单价,怎样的定价可使利润最大?

  四、课堂练习

  1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。

  2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。

  3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?

  4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。

  五、回顾反思

  (1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。

  (2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。

  (3)相当多有关最值的实际问题用导数方法解决较简单。

  六、课外作业

  课本第38页第1,2,3,4题。

高中数学教案6

  一、教学目标

  【知识与技能】

  在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

  【过程与方法】

  通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

  【情感态度与价值观】

  渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

  二、教学重难点

  【重点】

  掌握圆的一般方程,以及用待定系数法求圆的一般方程。

  【难点】

  二元二次方程与圆的'一般方程及标准圆方程的关系。

  三、教学过程

  (一)复习旧知,引出课题

  1、复习圆的标准方程,圆心、半径。

  2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高中数学教案7

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

  四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的"理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣。

  五、教学重点与难点:

  教学重点

  1、对圆锥曲线定义的理解

  2、利用圆锥曲线的定义求“最值”

  3、“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出——

  例题1:(1)已知A(—2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)线段(D)不存在

  (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

  (二)理解定义、解决问题

  例2(1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

  (2)在(1)的条件下,给定点P(—2,2),求|PA|

  【设计意图】

  运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

  【学情预设】

  根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

  (三)自主探究、深化认识

  如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会

  练习:设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

  引申:若将点A移到圆C外,点M的轨迹会是什么?

  【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,可借助“多媒体课件”,引导学生对自己的结论进行验证。

  【知识链接】

  (一)圆锥曲线的定义

  1、圆锥曲线的第一定义

  2、圆锥曲线的统一定义

  (二)圆锥曲线定义的应用举例

  1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

  2、|PF1||PF2|2、P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

  3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

  4、(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

  (2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

  (3)已知点P(—2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

  七、教学反思

  1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的'时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

  2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法。循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题。而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学教案8

  三维目标:

  1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

  2、过程与方法:

  (1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

  (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

  3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

  4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

  教学方法:

  讲练结合法

  教学用具:

  多媒体

  课时安排:

  1课时

  教学过程:

  一、问题情境

  假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?

  二、探究新知

  1、统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体、个体:每一个考察的对象叫做个体、样本:从总体中抽取的一部分个体叫做总体的一个样本、样本容量:样本中个体的数目叫做样本的容量、统计的基本思想:用样本去估计总体、

  2、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

  下列抽样的方式是否属于简单随机抽样?为什么?

  (1)从无限多个个体中抽取50个个体作为样本。

  (2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

  (3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)

  3、常用的简单随机抽样方法有:

  (1)抽签法的定义。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

  思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?例1、若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏,请设计一个抽取的方法,要使得每位同学被抽到的机会相等。

  分析:可以把57位同学的学号分别写在大小,质地都相同的`纸片上,折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可、基本步骤:第一步:将总体的所有N个个体从1至N编号;第二步:准备N个号签分别标上这些编号,将号签放在容器中搅拌均匀后每次抽取一个号签,不放回地连续取n次;第三步:将取出的n个号签上的号码所对应的n个个体作为样本。

  (2)随机数法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799。

  第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;

  继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。

  三、课堂练习

  四、课堂小结

  1、简单随机抽样的概念一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

  2、简单随机抽样的方法:抽签法随机数表法

  五、课后作业

  P57练习1、2

  六、板书设计

  1、统计的有关概念

  2、简单随机抽样的概念

  3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法

  4、课堂练习

高中数学教案9

  教学目标

  (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。

  (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程。

  (3)掌握直线方程各种形式之间的互化。

  (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力。

  (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点。

  (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法。

  教学建议

  1、教材分析

  (1)知识结构

  由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式。

  (2)重点、难点分析

  ①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程。

  解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线。本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用。

  直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头。学生对点斜式学习的效果将直接影响后继知识的学习。

  ②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明。

  2、教法建议

  (1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显。教学中各部分知识之间过渡要自然流畅,不生硬。

  (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础。

  直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证。教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

  (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解。

  (4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件。两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率。因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要。教学中应突出点斜式、两点式和一般式三个教学高潮。

  求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程。根据两个条件运用待定系数法和方程思想求直线方程。

  (5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数)。

  (6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力。

  (7)直线方程的理论在其他学科和生产生活实际中有大量的应用。教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力。

  (8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上。

  教学设计示例

  直线方程的一般形式

  教学目标:

  (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化。

  (2)理解直线与二元一次方程的关系及其证明

  (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点。

  教学重点、难点:直线方程的一般式。直线与二元一次方程(不同时为0)的对应关系及其证明。

  教学用具:计算机

  教学方法:启发引导法,讨论法

  教学过程:

  下面给出教学实施过程设计的简要思路:

  教学设计思路:

  (一)引入的设计

  前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

  问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是,属于二元一次方程,因为未知数有两个,它们的次数为一次。

  肯定学生回答,并纠正学生中不规范的表述。再看一个问题:

  问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的次数为一次。

  肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的次数为一次”。

  启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。

  学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

  【问题1】“任意直线的方程都是二元一次方程吗?”

  (二)本节主体内容教学的设计

  这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。

  学生或独立研究,或合作研究,教师巡视指导。

  经过一定时间的研究,教师组织开展集体讨论。首先让学生陈述解决思路或解决方案:

  思路一:…

  思路二:…

  ……

  教师组织评价,确定方案(其它待课下研究)如下:

  按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。

  当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。

  当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

  学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

  平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的`。

  综合两种情况,我们得出如下结论:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于直线的二元一次方程。

  至此,我们的问题1就解决了。简单点说就是:直线方程都是二元一次方程。而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。

  同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

  学生们不难得出:二者可以概括为统一的形式。

  这样上边的结论可以表述如下:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。

  启发:任何一条直线都有这种形式的方程。你是否觉得还有什么与之相关的问题呢?

  【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

  不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面。这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论。那么如何研究呢?

  师生共同讨论,评价不同思路,达成共识:

  回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即

  (1)当时,方程可化为

  这是表示斜率为、在轴上的截距为的直线。

  (2)当时,由于、不同时为0,必有,方程可化为

  这表示一条与轴垂直的直线。

  因此,得到结论:

  在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线。

  为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的。

  【动画演示】

  演示“直线各参数。gsp”文件,体会任何二元一次方程都表示一条直线。

  至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系。

  (三)练习巩固、总结提高、板书和作业等环节的设计在此从略

高中数学教案10

  教学目标:

  1、了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义。

  2、通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义。

  教学重点:

  复数的几何意义,复数加减法的几何意义。

  教学难点:

  复数加减法的几何意义。

  教学过程:

一、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示。那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

  问题2平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

  问题3任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离。任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1、复数的几何意义:在平面直角坐标系中,以复数a+bi的`实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义。

  2、复平面:建立了直角坐标系来表示复数的平面。其中x轴为实轴,y轴为虚轴。实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数。

  3、因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义。

  4、复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离。同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的。

  四、数学应用

  例1在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i。

  练习课本P123练习第3,4题(口答)。

  思考

  1、复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2、如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3、“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件。

  4、“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件。

  例2已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。

  例3已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小。

  思考任意两个复数都可以比较大小吗?

  例4设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3。

  变式:课本P124习题3、3第6题。

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1、复数的几何意义。

  2、复数加减法的几何意义。

  3、数形结合的思想方法。

高中数学教案11

  一、教材分析

  1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

  2、教学目标:

  知识目标:

  (1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

  (2)进一步培养学生把空间问题转化为平面问题的化归思想。

  能力目标:

  (1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

  (2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

  德育目标:

  (1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识

  (2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

  情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

  3、重点、难点:

  重点:“二面角”和“二面角的平面角”的概念

  难点:“二面角的平面角”概念的形成过程

  二、教法分析

  1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

  2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

  3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

  三、学法指导

  1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

  2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

  3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。

  四、教学过程

  心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

  (一)、二面角

  1、揭示概念产生背景。

  问题情境1、在平面几何中“角”是怎样定义的?

  问题情境2、在立体几何中我们还学习了哪些角?

  问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。

  通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2、展现概念形成过程。

  问题情境4、那么,应该如何定义二面角呢?

  创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。

  问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。

  (二)、二面角的平面角

  1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面

  与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。

  问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。

  2、展现概念形成过程

  (1)、类比。教师启发,寻找类比联想的对象。

  问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。

  问题情境8、两定义的.共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。

  问题情境9、这个平面的角的顶点及两边是如何确定的?

  (2)、提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。

  问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。

  (3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。

  (4)、继续探索,得到定义。

  问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。

  (5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。

  (三)、二面角及其平面角的画法

  主要分为直立式和平卧式两种,用电脑《几何画板》作图。

  (四)、范例分析

  为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。

  例:一张边长为10厘米的正三角形纸片ABc,以它的高AD为折痕,折成一个1200二面角,求此时B、c两点间的距离。

  分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDc是二面角B—AD—c的平面角。

  变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。

  题后反思:

  (1)解题过程中必须证明∠BDc是二面角B—AD—c的平面角。

  (2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)

  (五)、练习、小结与作业

  练习:习题9。7的第3题

  小结在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。

  作业:习题9.7的第4题

  思考题:见例题

  五、板书设计(见课件)

  以上是我对《二面角》授课的初步设想,不足之处,恳请大家批评指正,谢谢!

高中数学教案12

  一、教学目标:

  掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  二、教学重点:

  向量的性质及相关知识的综合应用。

  三、教学过程:

  (一)主要知识:

  1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的.有关性质解决诸如平面几何、解析几何等的问题。

  (二)例题分析:略

  四、小结:

  1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

  2、渗透数学建模的思想,切实培养分析和解决问题的能力。

  五、作业:

  略

高中数学教案13

  一、教学目标

  知识与技能:

  理解任意角的概念(包括正角、负角、零角)与区间角的概念。

  过程与方法:

  会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

  情感态度与价值观:

  1、提高学生的推理能力;

  2、培养学生应用意识。

  二、教学重点、难点:

  教学重点:

  任意角概念的理解;区间角的集合的书写。

  教学难点:

  终边相同角的集合的表示;区间角的集合的书写。

  三、教学过程

  (一)导入新课

  1、回顾角的定义

  ①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

  ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  (二)教学新课

  1、角的有关概念:

  ①角的定义:

  角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  ②角的名称:

  注意:

  ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

  ⑵零角的`终边与始边重合,如果α是零角α =0°;

  ⑶角的概念经过推广后,已包括正角、负角和零角。

  ⑤练习:请说出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

  例1、如图⑴⑵中的角分别属于第几象限角?

高中数学教案14

  教学准备

  教学目标

  熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

  掌握两角和与差的正、余弦公式,能用公式解决相关问题。

  教学重难点

  熟练两角和与差的'正、余弦公式的正用、逆用和变用技巧。

  教学过程

  复习

  两角差的余弦公式

  用- B代替B看看有什么结果?

高中数学教案15

  组合

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  (4)通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。

  教学建议

一、知识结构

  二、重点难点分析

  本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。

  组合与组合数,也有上面类似的关系。从n个不同元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。

  解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步。切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).

  三、教法设计

  1.对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系。

  2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题。这样既调动了学生学习的积极性,又在编题辨题中澄清了概念。

  为了理解排列与组合的概念,建议大家学会画排列与组合的树图。如,从a,b,c,d 4个元素中取出3个元素的排列树图与组合树图分别为:

  排列树图

  由排列树图得到,从a,b,c,d取出3个元素的'所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

  组合树图

  由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).

  从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图。

  学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式。

  3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题。

  对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播。对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择方案,总结解题规律。对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高。

  4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是

  这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的。

  对定理2,可启发学生从下面问题的讨论得出。从n个不同元素,,…,里每次取出m个不同的元素( ),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有的;(3)在这些组合里,有多少个是含有的;(4)从上面的结果,可以得出一个怎样的公式。在此基础上引出定理2.

  对于,和一样,是一种规定。而学生常常误以为是推算出来的,因此,教学时要讲清楚。

  教学设计示例

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题。

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕。

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答。

  答案提示:(1)排列;(2)组合。

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题。这节课着重研究组合问题。

  设计意图:组合与排列所研究的问题几乎是平行的。上面设计的问题目的是从排列知识中发现并提出新的问题。

  (二)新课讲授

  [提出问题创设情境]

  (教师活动)指导学生带着问题阅读课文。

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答。

  (教师活动)对照课文,逐一评析。

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境。

  【归纳概括建立新知】

  (教师活动)承接上述问题的回答,展示下面知识。

  [字幕]模型:从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合。如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合。

  组合数:从个不同元素中取出个元素的所有组合的个数,称之,用符号表示,如从6个元素中取出2个元素的组合数为.

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题。

  (学生活动)倾听、思索、记录。

  (教师活动)提出思考问题。

  [投影]与的关系如何?

  (师生活动)共同探讨。求从个不同元素中取出个元素的排列数,可分为以下两步:

  第1步,先求出从这个不同元素中取出个元素的组合数为;

  第2步,求每一个组合中个元素的全排列数为.

  根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算,即一条铁路上6个火车站有15种不同的票价的普通客车票。

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去。

  【例题示范探求方法】

  (教师活动)打出字幕,给出示范,指导训练。

  [字幕]例1列举从4个元素中任取2个元素的所有组合。

  例2计算:(1) ;(2) .

  (学生活动)板演、示范。

  (教师活动)讲评并指出用两种方法计算例2的第2小题。

  [字幕]例3已知,求的所有值。

  (学生活动)思考分析。

  解首先,根据组合的定义,有

  ①

  其次,由原不等式转化为

  即

  解得②

  综合①、②,得,即

  [点评]这是组合数公式的应用,关键是公式的选择。

  设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力。

  【反馈练习学会应用】

  (教师活动)给出练习,学生解答,教师点评。

  [课堂练习]课本P99练习第2,5,6题。

  [补充练习]

  [字幕]1.计算:

  2.已知,求.

  (学生活动)板演、解答。

  设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用。

  【点评矫正交流提高】

  (教师活动)依照学生的板演,给予指正并总结。

  补充练习答案:

  1.解:原式:

  2.解:由题设得

  整理化简得,解之,得或(因,舍去),所以,所求

  [字幕]小结:

  1.前一个公式主要用于计算具体的组合数,而后一个公式则主要用于对含有字母的式子进行化简和论证。

  2.在解含组合数的方程或不等式时,一定要注意组合数的上、下标的限制条件。

  (学生活动)交流讨论,总结记录。

  设计意图:由“实践——认识——一实践”的认识论,教学时抓住环节,使教学目标得以强化和落实。

  (三)小结

  (师生活动)共同小结。

  本节主要内容有

  1.组合概念。

  2.组合数计算的两个公式。

  (四)布置作业

  1.课本作业:习题10 3第1(1)、(4),3题。

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在的边上除顶点外有5个点,在边上有4个点,由这些点(包括)能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力。

  作业参考答案

  2.解;设有男同学人,则有女同学人,依题意有,由此解得或或2.即男同学有5人或6人,女同学相应为3人或2人。

  3.能组成(注意不能用点为顶点)个四边形,个三角形。

  探究活动

  同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

  解设四人分别为甲、乙、丙、丁,可从多种角度来解。

  解法一可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

  甲拿乙制作的贺卡时,则贺卡有3种分配方法。

  甲拿丙制作的贺卡时,则贺卡有3种分配方法。

  甲拿丁制作的贺卡时,则贺卡有3种分配方法。

  由加法原理得,贺卡分配方法有3+3+3=9种。

  解法二可从利用排列数和组合数公式角度来考虑。这时还存在正向与逆向两种思考途径。

  正向思考,即从满足题设条件出发,分步完成分配。先可由甲从乙、丙、丁制作的贺卡中选取1张,有种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法。根据乘法原理,贺卡的分配方法有(种).

  逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法。不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为1.故符合题设要求的取法共有(种).

  说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法。

  (2)设集合,如果S中元素的一个排列满足,则称该排列为S的一个错位排列。本例就属错位排列问题。如将S的所有错位排列数记为,则有如下三个计算公式(李宇襄编著《组合数学》,北京师范大学出版社出版):

  ①

  ②

  ③

【高中数学教案】相关文章:

高中数学教案11-08

高中数学教案15篇01-26

高中数学教案(15篇)01-29

高中数学教案(汇编15篇)02-04

高中数学教案合集15篇01-31

高中数学教案(集合15篇)02-27

高中数学教案(集锦15篇)02-13

高中数学教案集合15篇02-18

初中数学教案11-04