当前位置:好文网>实用文>教案>《数的运算》教案

《数的运算》教案

时间:2023-03-15 09:25:18 教案

《数的运算》教案

  作为一名专为他人授业解惑的人民教师,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?下面是小编精心整理的《数的运算》教案,欢迎阅读与收藏。

《数的运算》教案

《数的运算》教案1

  一、知识点回顾

  1、掌握有理数的概念和分类。

  2、知道有理数与数轴上的点的关系。掌握数轴的定义,会用数轴上的点表示有理数,理解有理数的有序性,会比较两个有理数的大小。

  3、利用数轴理解数的绝对值和一对相反数的意义。

  4、掌握有理数的运算法则。

  5、有理数的乘方。了解底数、指数、幂等概念。

  6、掌握有理数的运算律。

  7、熟练进行有理数的混合运算。运算时可合理运用运算律,使运算简便。

  8、掌握科学计数法。

  二、典型例题分析

  1、计算

  (1)、 (2)、(- 2 )+ 1 + 1 + (- 5 )

  (3)、-150(- )-250.125+50(- ) (4)、(+3 )(3 -7 ) (5)、3 (- )-(- )2 - (- )

  (6)- ( + - )

  (7)、{1+[ -(- )](-2)}(- - -0.05)

  (8)、

  (9)、

  (10)、

  (11)、已知|x|= ,|y|= ,且xy0,求代数式5x+7y-9的值。

  (12)、

  (13)、

  (14)、已知 的值。

  2、实数 在数轴上的位置如图,化简:

  3、已知a、b互为相反数,c、d互为倒数,求 的值;

  4、已知有理数a、b、c满足 + + = -1 求 的值。

  5、用计算器计算下列各式,并将结果填写在横线上。

  ①1715873=

  ②2715873=

  ③3715873=

  ④4715873=

  ⑴你发现了什么规律?把你发现的规律用简练的语言写出来;

  ⑵不用计算器,请你直接写出9715873的结果。

  6、任意写出一个数3的倍数,把它的各个数位上数字分别立方,再把这些立方数相加,得到一个新的数;接着,把这个新得到的数的各个数位上的数字分别立方,再把这些立方数相加,又得到一个新的数;,如此重复做下去,你发现了什么规律?请借助计算器进行探索。

  7、欢欢在一家玩具厂里测量了20个底座是圆形玩具的底座直径,测得直径如下(单位 mm):25、 25、 24、 24、 23、 24、 24、 25、 26、 25、 23、 23、 24、 25、 25、 24、 24、 26、 26、 25。 试计算这20个玩具的直径总和以及平均直径。你能找出比较简单的计算方法吗?如果请叙述你的方法。

  9、一口水井,水面比井口低3m,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.42m ,却下滑了0.15m;第二次往上爬了0.5m后又往下滑了0.1m;第三次往上爬了0.7m又下滑了0.15m;第四次往上爬了0.75m又下滑0.1m,第五次往上爬了0.55m,没有下滑;第六次蜗牛又往上爬了0.48m没有下滑,问蜗牛有没有爬上井口?

  有理数及其运算 测试与练习部分

  一、选择题

  1.下列说法中正确的是( )

  (A)一个数的倒数必小于这个数 (B)一个数的相反数必小于这个数

  (C)一个数的立方必大于这个数的平方(D)一个数的绝对值必不小于这个数

  2. 6.07 是( )

  (A)17位数 (B)18位数 (C)19位数 (D)20位数

  3.下列各式中正确的是( )

  (A) (B)- (C) (D)-

  4.两个不为零的数互为相反数,则它们的商为( )

  (A)-1 (B)1 (C)0 (D)不能确定

  5.10 (n是正整数)表示的`数是( )

  (A)10个n相乘的积 (B)n个10相乘的积 (C)1后面有n-1个零

  (D)1后面有n+1个零

  6.下列判断错误的( )

  (A)负数的偶次方是正数 (B)有理数的偶次方是正数

  (C)-1的任何次方的绝对值都是1 (D)有理数的偶次方不是负数

  7.有加法交换律可得,a-b+c=( )

  (A)a-c-b (B)c+a-b (C)a-c+b (D)c-a-b

  8.如果两个有理数的差是正数,那么这两个数( )

  (A)都是正数 (B)都不是正数 (C)不都是正数 (D)以上都可能

  9.计算(-2) +(-2) 所得结果是( )

  (A)2 (B)-1 (C)-2 (D)-2

  10、绝对值 小于7而大于3的所有整数的和是 ( )

  A、15 B、-15 C、0 D、30

  11、若│a │=7 ,b的相反数是2,则a+b的值是 ( )

  A、-9 B、-9或+9 C、+5或-5 D、+5或-9

  12、在(-5)-( )= -7中的括号里应填( )

  A、-2 B、2 C、-12 D、12

  13、下列说法中错误的有( )

  ①若两数的差是正数,则这两个数都是正数

  ②若两个数是互为相反数,则它们的差为零

  ③零减去任何一个有理数,其差是该数的相反数

  A、0个 B、1个 C、2个 D、3个

  14、减去一个正数,差一定 ( ) 被减数。

  A、大于 B、等于 C、小于 D、不能确定谁大

  15、若M+|-20|=|M|+|20|,则M一定是( )

  A、任意一个有理数 B、任意一个非负数

  C、任意一个非正数 D、任意一个负数

  16、两个负数的和为a,它们的差为b,则a与b的大小关系是( )

  A、a>b B、a=b C、a<b D、ab

  17 、数m和n,满足m为正数,n为负数,则m,m-n,m+n的大小关系是( )

  A、m>m-n>m+n B、m+n>m>m-n

  C、m-n>m+n>m D、m-n>m>m+n

  18、若 =a+b-c-d, 则 的值是( )

  A、4 B、-4 C、10 D、-10

  19、计算:-1.9917的结果是( )

  A、33.83 B、-33.83 C、-32.83 D、-31.83

  20、如果两个有理数的积小于零,和大于零,则这两个有理数( )

  A、符号相反 B、符号相反且负数的绝对值大

  C、符号相反且绝对值相等 D、符号相反且正数的绝对值大

  21、在计算( - + )(- 36)时,可以避免通分的运算律是( )

  A、加法交换律 B、分配律 C、乘法交换律 D、加法结合律

  22、定义运算:对于任意两个有理数a、b,有a*b=(a-1)(b+1) 则计算-3*4的值是( )

  A、12 B、-12 C、20 D、-20

  23、已知0>a>b,则 与 的大小是( )

  A、 > B、 = C、 < D、无法判定

  24、若 = -1,则a是( )

  A、正数 B、负数 C、非正数 D、非负数

  25、已知a与b互为倒数,m与n互为相反数,则 ab-3m-3n的值是( )

  A、-1 B、1 C、- D、

  二、填空题

  1.减去一个数,等于加上 ,除以一个数,等于乘以_______________.

  2.用科学记数法表示138000000得_____________

  3.绝对值小于4的整数的积是__________

  4.比较大小:-0.1 ___________ (-0.1)

  5.一个数的平方等于它的绝对值,则这个数是____________________

  6.列式计算:3的二次幂与- 的积的相反数______________________________

  7.已知 =4, =3,当ab0时,a-b=______________

  8、小丽沿着东西方向的道路行走,她先向正东方向走77米,再向正西方向走108 米,最后小丽停在出发点 方向 米处。

  9、当x、y 满足 时,│x│+│y│=│x+y│成立。

  10、(- 4 )+( )= -2 ( )-(-6 )=2

  11、已知有理数a.b在数轴上的对应点位置如图所示: ? ? ?

  b o a

  化简:①│a│-a= ③│a│+│b│=

  ②│a+b│= ④│b-a│=

  12、3.141 +0.314 -31.40.2= 。

  13、两个有理数相乘,若把其中一个因数换成它的相反数,则所得的积是原来的积的 。

  14、已知3a是一个负数,则a是 数

  15、数b与它的倒数 相等,则b= 。

  16、(1)绝对值不大于20xx的所有整数的和是 ,积是 。

  17、 的0.12倍等于-14.4

  三、解答题

  1、- 2、

  3.-1.53 4、 -2

  5、 6、(- )

  7、( - + )(- 63) 8、-150(- )-250.125+50(- )

  9、3 (- )-(- )2 - (- )

  10、{1+[ -(- )](-2)}(- - -0.05)

  11、(1)已知a、b互为相反数,c、d互为倒数,求 的值;

《数的运算》教案2

  一、 教学内容

  《四则运算的意义和法则》义务教育课程标准实验教科书数学六年级下册第80--81页,练习十四第1、2、4、5、6题。

  二、 教材分析

  在小学阶段已学习了四则运算的基础上进行整理复习,加法是在计数的基础上发展起来的一种连续性计数,是最基本的运算。减法是加法的逆运算,也是加法的还原。乘法又是加法的发展,是求相同加数加法的简便运算。除法是乘法的`逆运算,也是乘法的还原,它是减法的发展,是求相同减数的减法的简便运算。分数与百分数的运算与整数运算完全相同。

  三、 学情分析

  加强整理和复习的系统性,使所学知识结构化,是“整理与复习”单元教学的首要任务。复习时,应充分利用教材的留白,发挥学生参与知识整理的主动性和积极性。要注意查漏补缺,加强练习的针对性、有效性。加法、减法、乘法、除法的意义以及它们的计算法则;加法与减法、乘法与除法之间的关系。

  四、教学目标

  1.使学生熟练掌握整数、小数四则运算的计算方法,梳理整数小数四则运算之间的内 在联系,沟通与四则混合运算、简算的关系。

  2.能正确地进行整数小数四则计算,提高学生的计算能力。 3.培养学生认真计算、检查的好习惯。

  五、教学重点

  体现知识间的内在联系。

  六、教学准备

  课件 小卷子

  七、教学过程

  同学们,我们今天上一节有关计算的复习课。请你看小卷子完成第一题:直接写出下面各题的结果。把这几道题按自己的想法分类。

  530+380= 83-57=16×50= 96÷8=0.37+1.6= 1-0.74=0.25×4=3.2×0.4= 8.4÷0.7= (加减乘除、整小分)出示表格:课题:整数小数的计算 动画:各种运算意义

  我们前面已经学习了整数小数的四则计算,这节课来看看它们之间的区别与联系。

  (一)整数加减法

  计算并验算4325+385=(学生板演)

  师:进行整数加减法计算应做到什么?(相同数位对齐,从个位算起,满十向前一位 进1)(不够减向前一位借1)

  为什么强调相同数位对齐?

  (二)小数加减法

  请你把这道题改编成一道小数加法题。

  出现:43.25+38.5=81.7543.25+3.85=47.1 43.25+38.5=81.75 强调:小数点对齐问题,小数末尾有0的问题。

  选择一题由学生验算,解决小数减法的问题。(计算方法) 强调:1.减法与加法的关系(逆运算)

  2.小数加减法与整数加减法的联系与区别

  (三)整数乘除法

  出示:102×37= 3774÷37=请你选择一道题完成。 这两道题你是怎么算的?(自己的话说方法) 观察发现除法与乘法的关系。(逆运算)

  (四)小数乘除法

  以小组为单位,把102×37改编成小数乘法计算,看你能写出多少道,并迅速写出答案,不写竖式。 我们可以写出多少个?(无数个) 展示学生成果。(小结方法) 强调:1.补0占位的问题。

  (1)47.5+7.65=73.06-3.96=(2)32.5÷0.25=1.2×750= (集体订正,反馈。)

《数的运算》教案3

  教学目标:

  1、进一步认识整数四则运算的意义,正确掌握整数、小数、分数四则运算法则及整数计算方法与小数计算方法之间的联系,能正确地进行计算。

  2、掌握加减法之间、乘除法之间的关系,并能应用这种关系进行验算。

  3、在计算过程中熟练地进行估算。

  教学重点:掌握整数与小数四则运算的方法,熟练地进行估算。

  教学难点:正确掌握整数、小数、分数四则运算法则及整数计算方法与小数计算方法之间的联系,能正确地进行计算。

  课前准备:多媒体课件

  教学过程:

  一、计算导入

  1、计算。

  45+21=5+102=3、15+2、2=41、62-32、16=

  134-12=2、5+45=1/4+3/5=5/6-1/7=

  学生自主计算,完成后交流答案。

  2、师:今天我们复习的内容是关于整数、小数和分数的四则运算。(板书课题)

  二、整理与反思

  1、加、减法。

  (1)你能详细地分别说说整数、小数、分数的加减方法吗?

  (2)计算整数加减法要把相同数位对齐,

  计算小数加减法要把小数点对齐,

  计算分数加减法要先通分化成同分母分数,

  你能说说这之间的联系吗?

  你能用一句话小结出整数、分数、小数的加减法规律吗?概括得出:计算加减法时都要把相同单位的数直接相加减。

  2、乘、除法。

  (1)整数、小数、分数乘除法呢?你能分别说说各自的算法吗?小组交流,讨论。

  (2)完成P74“练习与实践”第2题。

  问:整数和小数乘法和除法法则分别是怎样的?小数乘法和除法的计算法则与整数乘法了除法有什么相似的地方?有什么不同?

  (3)分数乘法有几种情况?可以通过刚才计算的'例子及自己举例说说它们的计算法则。

  (4)分数乘以分数的计算法则,为什么适用于分数乘以整数的计算法则?

  三、复习拓展

  师:今天我们复习的内容是关于整数、小数和分数的四则运算。

  1、复习四则运算中的特殊规定。

  (1)在四则运算中关于0和1的运算,有一些特殊的规定。谁能说一说是怎样规定的?请学生说一说。

  (2)0为什么不能作除数?

  2、复习四则运算的验算方法。分别说一说对四则运算应该怎样验算?

  四、巩固应用

  1、“练习与实践”第1-5题。

  第4题请学生说说分别是怎样计算的,引导学生体会相关计算方法的内在联系。

  第5题请学生说说单价数量总价之间的数量关系,每一题分别是运用什么数量关系求出的。

  2、完成P75“练习与实践”第9题。

  让学生说说从图中得出什么信息。学生自主计算,集体订正。

  3、完成P75“练习与实践”第10题。

  (1)小组讨论,怎么比较他们的成绩更合理?讨论后请学生说说,引导学生明确单比较助跑摸高的厘米数是不合理的,合理的应该是先分别算出每人助跑摸高的厘米数相当于其身高的几分之几或百分之几,比较得到的数字。

  (2)学生自主计算,集体订正。

  五、作业

  “练习与实践”第6、7、8题。

  六、总结提升:

  这节课我们复习了什么内容?你有什么收获?

  教学反思

《数的运算》教案4

  教学目标

  1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;

  2.培养学生的运算能力及综合运用知识解决问题的能力.

  教学重点和难点

  重点:有理数的运算顺序和运算律的运用.

  难点:灵活运用运算律及符号的确定.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.叙述有理数的运算顺序.

  2.三分钟小测试

  计算下列各题(只要求直接写出答案):

  (1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

  (5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;

  (9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);

  二、讲授新课

  例1 当a=-3,b=-5,c=4时,求下列代数式的值:

  (1)(a+b)2; (2)a2-b2+c2;

  (3)(-a+b-c)2; (4) a2+2ab+b2.

  解:(1) (a+b)2

  =(-3-5)2 (省略加号,是代数和)

  =(-8)2=64; (注意符号)

  (2) a2-b2+c2

  =(-3)2-(-5)2+42 (让学生读一读)

  =9-25+16 (注意-(-5)2的符号)

  =0;

  (3) (-a+b-c)2

  =[-(-3)+(-5)-4]2 (注意符号)

  =(3-5-4)2=36;

  (4)a2+2ab+b2

  =(-3)2+2(-3)(-5)+(-5)2

  =9+30+25=64.

  分析:此题是有理数的混合运算,有小括号可以先做小括号内的',

  =1。02+6。25-12=-4。73.

  在有理数混合运算中,先算乘方,再算乘除.乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写

  例4 已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。

  :由题意,得a+b=0,cd=1,|x|=2,x=2或-2.

  所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

  =x2-x-1.

  当x=2时,原式=x2-x-1=4-2-1=1;

  当x=-2时,原式=x2-x-1=4-(-2)-1=5.

  三、课堂练习

  1.当a=-6,b=-4,c=10时,求下列代数式的值:

  2.判断下列各式是否成立(其中a是有理数,a≠0):

  (1)a2+1>0; (2)1-a2<0;

  四、作业

  1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:

  2.当a=-5。4,b=6,c=48,d=-1。2时,求下列代数式的值:

  3.计算:

  4.按要求列出算式,并求出结果.

  (2)-64的绝对值的相反数与-2的平方的差.

  5*.如果|ab-2|+(b-1)2=0,试求

  课堂教学设计说明

  1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练.

  2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径.

《数的运算》教案5

  学习目标

  1、掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算;

  2、在有理数的混合运算中,能合理地使用运算律简化运算。

  教学重点和难点

  重点:有理数的混合运算.

  难点:在有理数的混合运算中,能合理地使用运算律简化运算。注意符号问题。

  突破:从 小学四则混合运算出发, 采用以旧引新,课本示范,学生讨论,教师点拨。

  教学过程

  环节1 、温故知新

  1、计算 ( 三分钟练习 ) :

  ( 1)(-2) 3 ; (2)-2 3 ; ( 3)-7+3-6 ; ( 4)(-3) × (-8) × 25 ;

  ( 5)(-616) ÷ (-28) ; (6)0 21 ; ( 7)3.4 × 10 4 ÷ (-5)、

  2、说一说我们学过的有理数的运算律:

  加法交换律:

  加法结合律:

  乘法交换律:

  乘法结合律:

  乘法分配律:前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?本节课我们学习有理数的混合运算

  环节2、自主学习:

  师:请同学们先阅读完预习要求,再用15分钟时间进行预习。

  预习要求:

  请同学们利用15分钟的自学时间完成学习内容中的三个模块, 自学中保持自学环境的安静,认真高效的完成自学任务。

  自学内容要求:

  1 、完成法则自学模块,理解 掌握有理数混合运算的法则;

  2 、法则的运用。完成例1 、例2 的二个自学模块。

  自学模块(一)

  仔细阅读课本66 页第一段,完成下列内容。

  1、 计算:

  (1) -2 ×32=

  (2) (-2 ×3 )2 =

  2、 运算顺序有什么不同?

  3、 小组交流:

  回顾小学学过的四则混合运算顺序,有理数混合运算的顺序是怎样规定的?

  有理数混合运算法则:―――――――――――――――――――――

  ―――――――――――――――――――――

  自学模块(二)

  例1计算:6 1 1 5

  —×(-—-—)÷—

  5 3 2 4

  根据以下提示分析例1 计算

  1、例1 中是一些什么样的运算?像含有这样运算的习题与在小学时的运算顺序一样吗?

  观察运算:题目中有乘法、除法、减法运算,还有小括号.

  思考顺序:首先计算小括号里的`减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.

  动笔计算:按思考的步骤进行计算,在计算时不要“跳步”太多。

  检查结果:是否正确.

  2、写出例1计算过程

  3、巩固练习

  试用两种方法计算:

  16×(-3/4+5/8)÷(-2)

  ① ;

  ②、

  使用运算律,解题步骤是怎样的?能计算出相同结果吗?但哪种方法更简便?

  4、小组交流

  自学模块(三)

  例2计算:(-4) 2 ×[( -1) 5 +3/4+ (-1/2) 3 ]

  1、根据以下提示分析例2计算

  仿照例1.

  观察运算:

  思考顺序:

  动笔计算:

  检查结果:

  2、写出例2计算过程

  3、巩固练习

  ( 1 )(-4 × 3 2 )-(-4 × 3) 2、

  (2)(-2) 2 -(-5 2 ) × (-1) 5 +87 ÷ (-3) × (-1) 4、

  3、小组交流

  环节3、达标检测

  ( 1)1÷(-1)+0÷4-(-4)(-1) ;

  ( 2)18+32÷(-2) 3 -(-4) 2 ×5、

  (3)计算( 题中的字母均为自然数) :

  [ (-2) 4 +(-4) 2 · (-1) 7 ] 2m · (5 3 +3 5 )、

  以小组为单位计分,积分最高的组为优胜组.

  环节4、课堂小结

  今天我们学习了有理数的混合运算,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.

  教师引导学生一起总结有理数混合运算的规律.

  1、先乘方,再——————————————————————

  2、同级运算———————————————————————

  3、若有括号———————————————————————

  在有理数的混合运算中,能合理地使用运算律简化运算,并注意符号问题。

  环节5、课后作业

  课本67页习题

《数的运算》教案6

  活动目标:

  1.使幼儿进一步掌握5以内数的组成及加减法的含义。

  2.能分别列出算式,并迅速、准确地算出得数。

  活动准备:

  准备得分牌6块,幼儿每人一张练习纸。

  活动过程:

  1.引导幼儿在练习纸的空格内填数,复习5的组成。

  2.请幼儿讨论两种分法有什么不同。启发幼儿将练习纸左图分法讲出来;再观察右图的分法,比较分出来的两部分数有什么关系。

  3.教师小结:一个数分成的.两个数,其中一个数逐次增加1,则另一个数逐次减少1,但每次分成的两个数合起来都等于原来的数。用这种方法对一个数进行分合,既快又不会遗漏。

  4.教师口述加减法应用题,引导幼儿口头列算式。

  5.游戏:抢答比赛。

  (1)教师出示5以内加减法式题卡片,让全体幼儿很快地说出得数。

  (2)分组进行比赛,哪一组抢得快又答得对,就给哪一组记1分。

  6.指导幼儿完成第35页练习。

《数的运算》教案7

  教学内容:

  义务教育课程标准实验教科书第12册88页“整理与反思”和“练习与实践”第6、7题及补充练习。

  教学目标:

  使学生进一步认识分数百分数问题的实际生活中的运用,巩固生活中的税率、折扣、利息等问题解答方法,提高解决实际问题的能力。

  教学重点、难点:

  生活中的税率、折扣等问题的解题思路和解答方法。

  教学设计:

  一、整理回顾

  1、引导学生回顾:我们学过的分数、百分数问题在生活中还有哪些问题需要解决的?

  学生回顾,教师板书:税率问题、利息问题、打折问题等

  二、整理解题思路:

  1、利息问题:妈妈将8000元钱按3.24%的年利率存入银行3年,如果按5%的税率缴纳利息税,那么到期后一共可以从银行取回多少钱?

  引导学生分步解答,理解解答过程与每步意义。区分应得利息、实得利息,税后利息等术语意义。

  提醒学生三点,让学生自己先说说在前阶段学习中可能出现的问题,需要提醒大家的:

  (1)计算利息时,千万不要忘记乘时间。

  (2)不要忘记是否要交利息税。什么情况不用交?

  (3)要看题目要求是取出什么?像这题千万不能将“本”都丢了。

  2、纳税问题:教材上第88页上第7题

  读题理解:哪些稿费应该纳税?怎样计算?

  3、打折问题:教材上第88页上第6题

  读题看图理解题目意义。分析解题方法:原价乘折扣=现价

  三、拓展练习(补充)

  1、小琴妈妈七月份的工资收入是1350元,扣除800元后按5﹪的税率缴个人所得税。小琴妈妈应缴个人所得税多少元?

  2、爸爸20xx年6月1日把5000元钱存入 银行,定期三年,年利率为2.25﹪,到期时国家按所得利息的20﹪征收个人所得税。到期时爸爸应缴个人所得税多少元?爸爸这次储蓄实际收入多少元?

  3、一套瓷器,如果比成本价多80元出售,则可赚25%;实际卖出后,反而亏了80元,这套瓷器是打几折出售的?

  4、商店有100台洗衣机,如果按每台1000元出售,则每台可得20%的利润。但其中有一台在搬运时有些小问题了,所以只能打对折出售。那么卖出这些洗衣机一共赚了多少钱?

  5、20xx年我国公布了新的.个人收入所得税征收标准。个人月收入1600元以下不征税。月收入超过1600元,超过部分按下面的标准征税。

  不超过500元的 5%

  超过500元-20xx元的部分 10%

  超过20xx元-5000元的部分 15%

  ——————

  李明的爸爸月收入是4000元,妈妈的月收入是20xx元,他们各应缴纳个人所得税多少元?

  如果张叔叔每月要交200元的个人所得税,那么张叔叔的月收入是多少元?

  课后反思:

  对基本的分数百分数实际问题,由于有一定的数量关系式,所以学生还是比较好理解与掌握,但对于复杂的实际问题,学生的掌握程度差异很大,特别是期中练习中出现过一题有关股票的实际问题,所以学生也认识到仅仅掌握教材上的基本题还不行,必须要将学到的数学知识用于生活实际,在解答实际问题中检测自己学习的程度。所以现在有不少数学优秀的学生对有一定挑战性的习题很感兴趣。

《数的运算》教案8

  【学习目标】

  1.掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;

  2.通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的'重要性;

  【学习方法】

  自主探究与合作交流相结合。

  【学习重难点】

  重点:能熟练地按照有理数的运算顺序进行混合运算

  难点:在正确运算的基础上,适当地应用运算律简化运算

  【学习过程】

  模块一预习反馈

  一、学习准备

  1.四则(加减乘除)混合运算的顺序:先算_______,再算_______,如有括号,就先算__________.同级运算按照从___往___的顺序依次计算。

  2.有理数的运算定律:__________________________________________________.

  3.请同学们阅读教材p65—p66,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。

  《2.11有理数的混合运算》课后作业

  9.用符号“>”“<”“=”填空.

  42+32________2×4×3;

  (-3)2+12________2×ok3w_ads("s002");

  《2.11有理数的混合运算》同步练习

  5、小亮的爸爸在一家合资企业工作,月工资2500元,按规定:其中800元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过500元的部分按5%的税率;超过500元不超过20xx元的部分则按10%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?

《数的运算》教案9

  教学目标

  让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。

  教学重点和难点

  重点:加减运算法则和加法运算律。

  难点:省略加号与括号的代数和的计算。

  课堂教学过程

  一、从学生原有认知结构提出问题

  什么叫代数和?说出-6+9-8-7+3两种读法。

  二、讲授新课

  1.计算下列各题:

  2.计算:

  (1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;

  (7)-6-8-2+3.54-4.72+16.46-5.28;

  3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:

  (1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;

  (5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;

  (9)(a-c)-(b-d);(10)a-c-b+d.

  请同学们观察一下计算结果,可以发现什么规律?

  a-(b+c)=a-b-c;

  a-(b+c+d)=a-b-c-d;

  a-(b-d)=a-b+d;

  (a+b)-(c+d)=a+b-c-d;

  (a-c)-(b-d)=a-c-b+d.

  括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。

  4.用较简便方法计算:

  (4)-16+25+16-15+4-10.

  三、课堂练习

  1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:

  (1)两个数相加,和一定大于任一个加数.()

  (2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()

  (3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号.()

  (4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()

  (5)两数差一定小于被减数.()

  (6)零减去一个数,仍得这个数.()

  (7)两个相反数相减得0.()

  (8)两个数和是正数,那么这两个数一定是正数.()

  2.填空题:

  (1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。

  (2)若a<0,那么a和它的相反数的差的绝对值是______.

  (3)若|a|+|b|=|a+b|,那么a,b的关系是______.

  (4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.

  (5)-[-(-3)]=______,-[-(+3)]=______.

  这两组题要求学生自己分析,判断题中错的'应举出反例,同时要求符号语言与文字叙述语言能够互化。

  四、作业

  1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:

  (1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.

  2.分别根据下列条件求代数式x-y-z+w的值:

  (1)x=-3,y=-2,z=0,w=5;

  (2)x=0.3,y=-0.7,z=1.1,w=-2.1;

  3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:

  (1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.

  4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?

  (2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?

  5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例。

  (1)若a,b同号,则a+b=|a|+|b|.()

  (2)若a,b异号,则a+b=|a|-|b|.()

  (3)若a<0、b<0,则a+b=-(|a|+|b|).()

  (4)若a,b异号,则|a-b|=|a|+|b|.()

  (5)若a+b=0,则|a|=|b|.()

  6.计算:(能简便的应当尽量简便运算)

  课堂教学设计说明

  1.本课时是习题课.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能。讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

  2.关于“去括号法则”,只要求学生了解,并不要求追究所以然。

《数的运算》教案10

  教学目标:

  1.让学生经历发现问题、分析问题及解决问题的过程,进一步培养学生分析问题的能力,促进学生思维能力的发展。

  2.进一步体验解决问题策略的多样化,能综合调动数与代数的有关知识解决问题,促进学生解决问题的能力得到发展。

  3.促进学生主动精神与合作意识的进一步发展。

  教学过程:

  一、创设问题情景,提出问题

  教师:同学们,我们在数与代数中学习了很多知识,如四则计算、方程,也掌握了一些常见的数量关系,这些都可以用来帮助我们解决问题。今天我们就来对应用这些知识解决问题进行复习。请看,下面有一段关于农田小麦收割的信息,你能根据这些信息提出什么数学问题呢?你会解决这些问题吗?

  出示:某农场要收割1300公顷小麦,原计划每天收割60公顷。收割5天后改为每天收割80公顷。

  学生可能提出如下问题:

  学生1:5天收割了多少公顷?

  学生2:现在每天比原来多收割多少公顷?

  学生3:还需要多少天才能收割完?

  教师:第三个同学提出的问题要综合用到我们学习过的有关知识解决,有信心解决这个问题吗?

  二、自主解决,交流反思

  1.学生独立解决问题

  2.学生交流自己解决问题的思维过程及方法学生可能会出现这样的解法:(或教师引导学生分析得出)

  学生:我从问题分析,要求剩下的还要收割多少天才能完成,又知道剩下的每天收割80公顷,所以解决这个问题的关键是要知道还剩下多少公顷小麦没有收割。根据已经收割了5天,每天收割60公顷这两个条件(信息),可以算出已经收割的公顷数

  教师:除了像他这样从问题入手分析,还有别的思路吗?

  学生:可以从条件入手分析,从原计划每天收割60公顷,收割了5天,就可以计算出已经收割小麦的公顷数,再由要收割的总公顷数是1300公顷可以计算出收割5天后还剩下的公顷数

  教师:请想一想,这两个同学在分析解决这个问题时,运用了哪些知识?

  学生:他们运用了乘法、减法和除法的知识(教师:你能说具体些吗?),如每天收割60公顷,收割了5天,就是5个60,所以根据乘法的意义可以计算出5天收割的公顷数

  教师:其实我们在分析问题时还要综合考虑,比如,我看到每天收割60公顷,收割了5天,同时我也看到要收割小麦的.总公顷数是1300公顷,所以,我在思考时,直观感受到可以求得剩下的公顷数。像这样在分析时,既看到根据某几个条件可以求得什么问题,还要思考求得的问题对解决最后的问题有什么作用。

  教师:还有其他的解决办法吗?

  学生:可以用方程解的,在这个问题情景中我发现一个等量关系,就是前面5天收割的加上后面收割的就是要收割小麦的总公顷数1300

  学生:还可以这样找等量关系:根据总公顷数减去已经收割的公顷数等于剩下的公顷数来列出方程,即:80x=1300-605,x=12.5。

  教师:解决了这个问题,我们还可以写上答语。

  3.反思

  教师:通过刚才对解决问题的复习,你有什么收获和体会?

  学生:我们在解决含有等量关系的问题时,不但可以运用四则计算的知识去分析解决,用方程去解决更有利于帮助我们对问题的思考和解决。

  学生:我们对前面学习的有关知识得到了进一步的巩固。

  学生:我认为解决问题时要综合应用我们已经学过的知识,对问题情景中的信息进行综合分析。

  三、课堂活动,增强体验

  1.学生独立解决练习十九的第1题,解决后再交流在交流时教师强调:要解决唐阿姨带的50元钱够不够买15kg大米的问题,用到了怎样的策略?(比较,用15kg大米的价钱与50元比较)

  2.学生独立解决练习十九的第5题,解决后再交流在交流时教师强调:(1)王教练大约要带多少钱?为什么可以用估算?你是怎样估计的?(2)王教练付给售货员20xx元,应找回多少钱,可以用估算吗?为什么?

  四、独立解决,促进发展

  学生独立解决练习十九的第2,3,4,6题。

  五、课堂小结

  教师:说说你今天学习的收获。

  学生自由发言。

  教师:通过运用所学习的数学知识解决问题,不但帮助了我们对知识的理解和掌握,还培养了我们解决问题的能力,下一节课我们继续复习解决问题。

《数的运算》教案11

  教材分析:

  为体现新课标的要求,减少运算的繁琐,增加学生探究创新能力的培养,混合计算的步骤锐减,增加学生喜闻乐见的“二十四”点游戏。

  教学目标;

  [知识与技能]

  1.掌握有理数混合运算法则,并能进行有理数的混合运算的计算。

  2.经历“二十四”点游戏,培养学生的探究能力

  教学重点:有理数混合运算法则。

  教学难点:培养探索思维方式。

  教学流程:运算法则→混合运算→探索思维。

  教学准备:多媒体

  教学活动过程设计:

  一、生活应用引入:

  从学生喜爱的“开心辞典”中王小丫做节目的图片入手引学生进入学习兴趣

  [师]我们已学过哪种运算?

  [生]乘方、乘、除、加、减五种;复习各种运算的法则;

  例计算:

  ① ②(教师板书)

  ③ ④(学生计算)

  二、混合运算举例。

  1.(生口答)下列计算错在哪里?应如何改正?

  (1)74-22÷70=70÷70=1

  (2)(-112)2-23=114 -6 = -434

  (3)23-6÷3×13 =6-6÷1=0

  2.计算:(学生上台做,教师讲评)

  (1)(-6)2×(23 - 12)-23;(2)56 ÷23 - 13 ×(-6)2+32

  解:(1)(-6)2×(23 -12)-23=36×16 -8=6-8=-2。

  (2)56 ÷23-13 ×(-6)2+32

  =56 ×32-13 ×36+9。

  =54-12+9=-74

  三、合作学习1

  请看实例:

  如图:一圆形花坛的半径为3m,中间雕塑的底面是边长为1.2m的正方形。你能用算式表示该花坛的关际种花面积吗?这个算式有哪几种运算?应怎样计算?这个花坛的实际种化面积是多少?

  [生]列出算式3.14×32-1.22

  包括:乘方、乘、减三种运算

  [师]原式=3.14×9-1.44

  =28.26-1.44=26.82(m2)

  [师]请同学们说说有理数的混合运算的.法则

  (生相互补充、师归纳)

  一般地,有理数混合运算的法则是:

  先算乘方,再算乘除,最后算加减。如有括号,先进行括号里的运算。

  四、合作学习2

  例2:如图,半径是10cm,高为30cm的圆柱形水桶中装满了水,小明先将桶中的水倒满2个底面半径为3cm,高为6cm的圆柱形杯子,再把剩下的水倒入长、宽、高分别为50cm,30cm和20cm的长方体容器内,长方体容器内水的高度大约是多少cm(π取3,容器的厚度不计)?

  分析:如下图所示

  解:水桶内水的体积为π×102×30cm3,倒满2个杯子后,剩下的水的体积为

  (π×102×30-2×π×32×6)cm3

  (π×102×30-2×π×32×6)÷(50×30)

  =(9000-324) ÷1500 = 8676÷1500≈6(cm)

  答:容器内水的高度大约为6cm。

  三、分组探索(见ppt)

  下面请同学来玩“24点”游戏

  从一副扑克牌(去掉大、小王)中,任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次)使得运算结果可能为24或—24,其中红色扑克牌代表负数,黑色扑克牌代表正数,j、q、k分别代表11、12、13。

  (1)甲同学抽到了,a、8、7、3,他运用下列算式凑成24,=24。

  (2)乙同学抽到了,q、q、-3、a,他能凑成24或-24吗?=24。

  (3)丙同学抽到了,a、2、2、3,他能凑成24或-24吗?=24.

  (4)某同学如抽到下列一组牌6、5、3、a,你帮她设计一下算式使之能凑成24或-24。或-12×3-12×(-1)=-24

  (5)老师抽到下列四张牌,1、-2、2、3,你认为能凑成24或-24吗?

  (6)老师抽到下列四张牌,9、2、4、10,你认为能凑成24吗?

  试一试,你自编两组可凑成24或-24的牌,请邻座同学帮你设计算式。

  四、作业:课本第54页,作业题。

  教学反思:

  对于有理数混合运算,关键要把握好两点,运算次序和符号,不必让学生训练太繁琐、太复杂的计算,而多应该增加探索计算题(编不同的“二十四”点题就很好)。

《数的运算》教案12

  教学内容:

  教材第76页例1---5题、做一做,练习十五第1、2题。

  教学目标:

  1、四则运算意义的深入理解,归纳整数、小数、分数计算法则的异同点,进一步总结计算时应遵循的一般规律及四则运算中的一些特殊情况。

  2、系统地理解加、减、乘、除四则运算的意义和计算方法。经历对学过的知识进行归类整理、比较异同,形成知识结构。

  3、培养运用法则熟练计算的能力,探索知识间的内在联系,认识事物本质。

  教学重点:

  整理四则运算的意义计算法则。

  教学难点:

  对四则运算算理本质规律的认识和理解。

  教具准备:

  多媒体课件,实物投影

  教学过程:

  一、提问导入

  我们学过哪些运算?(加法、减法、乘法、除法),每一种运算都有其自己的含义,也有其自己的计算法则。下面我们就来学习整理这一部分的知识。

  二、四则运算的意义(教材第76页例1)。

  1、阅读以下信息

  A、我们折了36颗红星,还折了28颗蓝星。

  B、我们买了40瓶矿泉水,每瓶0.9元。

  C、我们有24m彩带,用31做蝴蝶结,用21做中国结。

  (1)你能提出哪些用计算解决的问题?

  (2)结合算式说明每一种运算的含义。

  2、口答

  ①什么叫做加法?小数加法、分数加法的.意义相同吗?

  ②什么叫做减法?小数减法,分数减法意义相同吗?

  ③整数乘法的意义是什么?小数、分数乘法的意义同整数乘法的意义相同吗?

  ④什么叫做除法?小数除法、分数除法的意义相同吗?

  整数、小数、分数的加法意义、减法意义与除法意义都分别相同。只有小数、分数乘法(第二个因数小于1时)是求一个数的几分之几是多少。

  三、四则运算的方法(教材第76页例2)。

  1、整数、小数加减法的计算方法各是什么?

  2、分数的加减法计算方法是什么?

  3、有什么相同点?

  ①整数加减时,数位对齐;

  ②小数加减时,小数点对齐;计数单位相同才能相加减。

  ③分数加减时,分数单位相同。(也就是通分。)

《数的运算》教案13

  教学目标:

  1、知识与技能

  了解有理数的混合运算顺序,在运算过程中能合理使用运算律简化运算。

  2、过程与方法

  通过适量的有理数的混合运算,掌握混合运算的顺序,获得运用运算律简化运算的经验。

  重点、难点

  1、重点:有理数的混合运算。

  2、难点:有理数混合运算中的符号确定以及运算中的顺序问题。

  教学过程:

  一、创设情景,导入新课

  已学过的有理数的运算有哪些?你能分别说出有理数的加、减、乘、除、乘方的运算法则吗?

  观察:(1) (2)-3-[-5+(1-0.6)]

  你能说出这个算式里有哪几种运算?

  二、合作交流,解读探究

  1、上面算式中,含有有理数的加、减、乘、除、乘方多种运算,我们称为有理数的混合运算。

  那有理数混合运算的顺序是什么?

  组织学生讨论:在小学里所学的混合运算顺序是什么?这些运算顺序在有理数的混合运算中是否适用?

  归纳有理数的混合运算顺序:

  先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里的

  三、应用迁移,巩固提高

  1、学生活动,计算下列各题:

  (1) (2) -3-[-5+(1-0.6)]

  教师活动:鼓励学生独立完成,指定两名学生到黑板演示,完成后,评析,强调运算顺序。

  解:(1)原式=17-8÷(-2)×3 (先乘方)

  =17-(-12) (再乘除)

  =17+12 (后加减)

  =29

  (2)原式=-3-[-5×0.4] (先算小括号里面的`)

  =-3-(-2) (再算中括号里面的)

  =-1

  注意:在运算过程中,注明运算顺序,目的是使学生明确运算顺序。

  2、学生练习并与同伴交流:

  计算:

  教师活动:鼓励学生独立完成然后交流各自的计算方法,选三位学生上黑板演示,比较不同的解法。

  解法一:原式= (先算括号里的)

  = (后算乘方)

  =-11 (再算乘除)

  解法二:原式= (运用分配律)

  = (先算乘方)

  =-6+(-5) (后算乘除)

  =-11 (最后算加减)

  引导学生比较两种不同的解法,体会运用运算律可以简化运算。

  3、练习:P47练习第1、2题

  四、总结反思

  本节课我们学习了有理数的混合运算,计算时要注意以下几点

  1、要按照运算顺序进行计算,在同级运算中,按从左到右的顺序进行计算。

  2、要正确使用符号法则,确定各步运算结果的符号。

  3、在运算中,要充分利用各种运算律。

  五、作业:P48习题1.7A组第1、2题

  备选题

  1计算:

  (1),(2)

  (3)

  2现定义两种新的运算:“○”、“▲”,对于任意的两个整数a、b,a○b=a+b+1,a▲b=ab-1

  求4▲的值。

  3:规定a※b=,求10※(2※4)的值。

《数的运算》教案14

  教学目的:

  1、要求学生理解加减混合运算统一为加法运算的意义。

  2、能初步掌握有关有理数的加减混合运算。

  教学分析:

  重点:如何更准确地把加减混合运算统一成加法。

  难点:将一个加减混合运算式写成省略加号的和的形式。

  教学过程:

  一、知识导向:

  本节是在对前面所学的有理数的加法运算法则及减法运算法则的综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。

  二、新课:

  1、知识基础:

  其一:有理数的加法法则;

  其二:有理数的减法法则。

  其三:“+”、“-”在不同情形的意义(运算符号及性质符号)

  2、知识形成:

  (引例)计算:

  根据减法法则,按照运算顺序,有:

  原式

  在一个加式里,通常把各个加数的括号和它前面的加号省略不写,即有:

  这个式子仍看作和式,有两种读法,

  按性质符号:读作“负8、正10、负6、负4的和”

  按运算意义:读作“负8加上10减去6减去4”

  例:把写成省略加号的和的形式,并把它读出来(两种读法)。

  例:按运算顺序直接计算:

  三、巩固训练:

  P46.1、2

  四、知识小结:

  本节课所涉及到的新知识点比较少,但在其中就特别注意的.是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对省略加号的算式的准确读法。

  五、家庭作业:

  P471、23

  六、每日预题:

  如何结合本节课所学习的内容对有关有理数的加减混合运算进行简化运算?

《数的运算》教案15

  学习目标:

  1、掌握四则运算定律和性质,并能根据题目灵活运用这些知识使计算简便。

  2、掌握整数、小数、分数四则混合运算顺序,并能熟练地进行计算。

  3、能理解四则运算中的数学术语,进一步提高计算能力。

  教学重点:

  掌握四则运算定律和性质。

  教学难点:

  选择合理、灵活的计算方法。

  学习过程:

  一、运算定律

  1、根据表格,填一填。

  名称

  加法交换律

  加法结合律

  乘法交换律

  乘法结合律

  乘法分配律

  2、算一算

  ①2.512.548

  =(2.54)(12.58)应用乘法交换律、结合律

  =10100

  =1000

  ②43/7 +44/7 ③102 34 ④5.03-2.14-1.86

  二、运算顺序

  1、说一说整数四则混合运算顺序,算一算:(710-184)2=

  2、分数、小数四则混合运算顺序与整数一样吗?

  3、算一算

  ☆友情小提示: 在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。

  在一个有括号的算式里,要先算小括号里面的,再算中括号外面的。

  4、组内交流算法

   三、知识应用

  独立完成P81做一做,组长检查核对,提出质疑。

  四、层级训练

  1、巩固训练:完成P83练习十四第3、4题。

  2、拓展提高:课外作业P37数的'运算(二)

  五、总结梳理

  回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

【《数的运算》教案】相关文章:

有理数的混合运算教案08-25

有理数的加减混合运算教案04-02

《数的运算》教学反思04-06

《数的运算》教学反思(15篇)04-06

《有理数的运算》教学反思04-14

《数的运算》教学反思15篇04-06

运算的教案08-26

有理数的加减混合运算教学反思04-15

混合运算教案02-22