当前位置:好文网>实用文>教案>等腰三角形教案

等腰三角形教案

时间:2023-03-06 08:06:56 教案 我要投稿
  • 相关推荐

等腰三角形教案

  作为一名默默奉献的教育工作者,时常需要编写教案,教案是备课向课堂教学转化的关节点。那么写教案需要注意哪些问题呢?以下是小编精心整理的等腰三角形教案,仅供参考,大家一起来看看吧。

等腰三角形教案

  等腰三角形教案 篇1

  教学目标

  重难点

  1、知识与技能

  (1)理解掌握等腰三角形的性质.

  (2)运用等腰三角行的性质进行证明和计算.

  (3)发展合情推理,培养观察、分析、归纳问题的能力.

  2、过程与方法

  通过动手操作、观察、归纳,经历探索等腰三角形的性质的过程,体会获得数学结论的过程,逐渐形成自己对数学知识的理解和有效的学习策略.

  3、情感态度与价值观

  (1)通过引导学生动手操作,对图形的`观察发现,激发学生的学习兴趣.

  (2)在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的快乐.

  (3)在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.

  4、教学重点:等腰三角形的性质的发现和应用.

  5、教学难点:等腰三角形性质的证明

  教学过程

  (交互式白板使用功能)

  1、情境创设

  问题:地震过后,同学用下面方法检测教室的房梁是否水平:在等腰直角三角板斜边中点绑一条线绳,线绳的另一端悬挂一个铅锤。把三角板斜边紧贴在横梁上。这就能检查横梁是否水平,你知道为什么吗?1。提出问题。

  2、演示课件(1):介绍方法,设下悬念,引出课题。思考作答;

  带着问题进入学习。激发学生思考,设置悬念,激活学习所必需的先前经验,唤起学生的学习需要,激发学生的学习兴趣。用课件演示检测方法:旋转“房梁和三角板”,保持铅垂线不动,判断房梁是否水平。演示可能的情况,给学生直观感受,激发学生的学习兴趣。

  3、动手操作

  (1)把一张长方形的纸片对折,并剪下阴影部分(教科书图12.3—1),再把它展开,得到一个什么图形?

  (2)上述过程中得到的

  问题(1):△ABC有什么特点?

  问题(2):除了以上方法,还可以怎样剪出一个等腰三角形?发出指令引导学生操作;画图介绍腰、底、顶角、底角。

  问题(3)让学生各抒己见的基础上介绍自己的想法

  要关注学生是否积极参与到活动中来。

  动手操作,观察。讨论、回答问题给学生提供参与活动的时间与空间,调动学生主观能动性,激发学习

  等腰三角形教案 篇2

  【学习目标】

  1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。

  2. 通过学生之间的交流活动,培养学生主动与他人合作 交流的意识和良好的学习习惯。

  【学习重点】

  探索和掌握等腰三角形的性质及其应用。

  【学习难点】

  等腰三角形的性质的应用。

  【学习 过程】

  一、你知道吗?

  等腰三角形的`有关概念

  《等腰三角形应用》讲义

  课前预习

  1.SAS,SSS,ASA,AAS,HL

  2.这条线段的两个端点的距离相等

  3.这个角的两边的距离相等

  4.这样的点有4个

  ?知识点睛

  1.线段垂直平分线上的点到这条线段的两个端点的距离相等

  2.角平分线上的点到这个角的两边距离相等

  3.顶角的平分线 底边上的中线 底边上的高 三线合一

  《13.3等腰三角形》专项练习

  1、填空题

  2、如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,如此作下去。若OA=OB=1,则第 个等腰直角三角形的面积 。

  等腰三角形教案 篇3

  教学目标

  1.掌握等腰三角形的判定定理.

  2.知道等边三角形的性质以及等边三角形的判定定理.

  3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径.

  4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力.

  教学重点

  熟练地掌握等腰三角形的判定定理.

  教学难点

  正确熟练地运用定理解决问题及简洁地逻辑推理.

  教学过程(教师活动)

  学生活动

  设计思路

  前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识.

  本节课我们将继续学习等腰三角形的轴对称性.

  一、创设情境

  如图所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc和一个底角∠c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看.

  1.学生观察思考,提出猜想.

  2.小组交流讨论.

  一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的.方法,另一方面通过创设情境,自然地引入课题.

  二、探索发现一

  请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:

  (1)在半透明纸上画一条长为6cm的线段bc.

  (2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.

  (3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折.

  问题1:ab与ac有什么数量关系?

  问题2:请用语言叙述你的发现.

  1.根据实验要求进行操作.

  2.画出图形、观察猜想.

  3.小组合作交流、展示学习成果.

  演示折叠过程为进一步的说理和推理提供思路.

  通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验.

  三、分析证明

  思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?

  问题3:已知如图,在△abc中,

  ∠b=∠c.求证:ab=ac.

  引导学分析问题,综合证明.

  思考:你还有不同的证明方法吗?

  问题4:“等边对等角”与“等角对等边”, 它们有什么区别和联系?

  思考——讨论——展示.

  1.学生独立完成证明过程的基础上进行小组交流.

  2.班级展示:小组代表展示学习成果.

  在实验的基础上获得问题解决的思路,在合情推理的基础上让学生经历演绎推理的过程,培养学生的逻辑思维能力.

  通过“你有不同的证明方法吗”的问题,让学生学会质疑,学会从不同的角度思考问题,培养学生的发散性思维,激发探究问题的欲望和兴趣,通过对问题4的思考让学生加深对性质与判定的理解.

  四、探索发现二

  问题5:什么是等边三角形?等边三角形与等腰三角形有什么区别和联系?

  问题6:等边三角形有什么性质?

  问题7:一个三角形满足什么条件就是等边三角形了?为什么?

  1.学生阅读教材,进行自主学习.

  2.小组讨论交流.

  3.展示学习成果:等边三角形的概念、等边三角形的性质、

  等腰三角形教案 篇4

  一、教学目标

  1.知识与技能

  (1)理解公理,能够举一反三,证明等腰三角形的性质定理;

  (2)能够通过全等三角形的判定定理证明等腰三角形的定理,进一步感受证明过程;

  (3)熟悉证明的基本步骤和书写格式. 2.过程与方法

  2.通过诱导、启发学生利用全等三角形证明等腰三角形的定理.发展学生的初步演绎逻辑推理的能力,鼓励学生在交流探索中发现证明的多样性,提高逻辑思维水平.

  3.情感态度及价值观

  使学生渗透数学思想,培养学生合作交流的意识,同时使学生通过独立思考去考虑问题的能力加强,培养良好的学习习惯.

  二、教学重点、难点

  重点:探索证明等腰三角形的性质定理的思路与方法,掌握证明的基本要求和方法.

  难点:通过探索利用全等三角形的判定与定义证明等腰三角形的性质定理,明确推理证明的基本要求.

  三、教具准备

  (两个等腰三角形、彩色粉笔、教案、尺子)

  四、教学过程

  1.复习旧知,引入新知

  (1)请同学们回忆判定三角形全等的公理有哪些? ? 公理:三边对应相等的两个三角形全等(SSS). ? 公理:两边及其夹角对应相等的两个三角形全等(SAS). ? 公理:两角及其夹边对应相等的两个三角形全等(ASA)

  (2)推论呢?

  两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).

  (3)根据全等三角形的定义,我们可以得到 定理:全等三角形的对应边相等、对应角相等.

  学生讨论:等腰三角形有哪些性质吗? 根据等腰三角形的性质给予证明.

  设计意图:为学生对本节课证明等腰三角形的定理作铺垫. 2.新授课

  猜想:如果一个三角形是等腰三角形,那么这个三角形的.两个底角有什么关系呢?如何证明呢?

  (1) 画出图形;

  (2) 根据图形写出已知求证;

  (3) 写出推理过程.

  已知:如图1-1,在△ABC中,AB=AC. 求证:∠B=∠C.

  分析:(折叠法)要证明两底角相等,将等腰三角形对折,折痕将等腰三角形分成了两个全等三角形,可作一条辅助线(注意辅助线要画成虚线).

  设计意图:锻炼学生的动手操作能力.

  证明:如图1-2,取BC的中点D,连接AD.

  (已知),?AB?AC ?在△BAD和△CAD中,?BD?CD (已作),

  ?AD?AD (公共边),?∴ △BAD ≌ △CAD (SSS).

  ∴ ∠B=∠C (全等三角形的对应角相等). 你还有其他证明方法吗?与同伴交流.

  作出底边上的高或作出顶角的平分线,大家可以自己证明.

  3.巩固练习

  在 △ ABC中,AB=AC.

  (1)若∠ A=40°, 则∠ C 等于多少度?

  (2)若∠B= 72°,则∠ A 等于多少度?

  设计意图:加强学生对等腰三角形定理的认识.

  4.引出推论

  在图1-2 中,观察AD还具有怎样的性质?为什么?由此能得到什么结论? 我们作出了底边上的中线,已证明△BAD ≌ △CAD.

  所以∠BAD=∠CAD(全等三角形对应角相等),即AD也是顶角的平分线,∠ADB=∠ADC(全等三角形对应角相等).因为∠BDC=180°(平角的定义),所以∠ADB=90°,即AD也是底边上的高线.

  由此我们得到以下推论:等腰三角形顶角的角平分线、底边上的中线及底边上的高线互相重合.(简称“三线合一”)

  5.随堂练习

  (1)如图1-3,在△ABC中,AB=AC,且AD⊥BC,已知BD=2 cm,则DC=___cm, BC=___cm.

  (2)如图1-4,在△ABD中,AC⊥BD,垂足为C,AC=BC=BD. ①求证:△ABD是等腰三角形. ②求∠BAD的度数.

  图1-4

  6.课堂小结

  等腰三角形的性质定理:

  等腰三角形的两个底角相等(简写成“等边对等角”). 等腰三角形顶角的平分线平分底边并且垂直于底边.

  等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.简称“三线合一”.

  7.教学反思

  等腰三角形教案 篇5

  一、教学目标:

  1.使学生掌握等腰三角形的判定定理及其推论;

  2.掌握等腰三角形判定定理的运用;

  3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

  4.通过自主学习的发展体验获取数学知识的感受;

  5.通过知识的纵横迁移感受数学的辩证特征.

  二、教学重点:

  等腰三角形的判定定理

  三、教学难点

  性质与判定的区别

  四、教学流程

  1、新课背景知识复习

  (1)请同学们说出互逆命题和互逆定理的概念

  估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

  (2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

  启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

  1.等腰三角形的.判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).

  由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

  已知:如图,△ABC中,∠B=∠C.

  求证:AB=AC.

  教师可引导学生分析:

  联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

  注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

  (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

  (3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.

  要让学生自己推证这两条推论.

  小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

  证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

  3.应用举例

  例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

  分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠

  1、∠2的关系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求证:AB=AC.

  证明:(略)由学生板演即可.

  补充例题:(投影展示)

  1.已知:如图,AB=AD,∠B=∠D.

  求证:CB=CD.

  分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

  证明:连结BD,在

  中,

  (已知)

  (等边对等角)

  (已知)

  即

  (等角对等边)

  小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.

  2.已知,在 中,

  的平分线与

  的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

  分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.

  证明: DE//BC(已知)

  ,

  BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:

  (1)等腰三角形判定定理及推论.

  (2)等腰三角形和等边三角形的证法.

  七.练习

  教材 P.75中

  1、

  2、3.

  八.作业

  教材 P.83 中 1.1)、2)、3);

  2、

  3、

  4、5.

  五、板书设计

  等腰三角形教案 篇6

  等腰三角形判定

  教学目标

  (一)教学知识点

  探索等腰三角形的判定定理.

  (二)能力训练要求

  通过探索等腰三角形的判定定理 及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

  (三)情感与价值观要求

  通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.

  教学重点

  等腰三角形的判定定理的探索和应用。

  教学难点

  等腰三角形的判定与性质的区别。

  教具准备

  作图工具和多媒体课件。

  教学方法

  引以学生为主体的讨论探索法;

  教学过程

  Ⅰ.提出问题,创设情境

  1.等腰三角形性质是什么?

  性质1 等腰三角形的两底角相等.(等边对等角)

  性质2等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.

  (等腰三角形三线合一)

  2、提问:性质1的逆命题是什么?

  如果一个三角形有两个角相等, 那么这个三角形是等腰三角形。 这个命题正确吗?下面我们来探究: Ⅱ.导入新课

  大胆猜想:

  如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

  [例1]已知:在△ABC中,∠B=∠C(如图).

  求证:AB=AC. 教师可引导学生分析:

  BA12DC联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC. (学生板演证明过程)

  证明:作∠BAC的平分线AD. 在△BAD和△CAD中

  ??1??2,? ??B??C,

  ?AD?AD,? ∴△BAD≌△CAD(AAS).

  ∴AB=AC.

  提问:你还有不同的`证明方法吗?(由学生口述证明过程)

  等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

  符号语言:在△ABC中 ∵ ∠B=∠C ∴ AB=AC (等角对等边)

  4、等腰三角形的性质与判定有区别吗? 性质是:等边 等角 判定是:等角 等边

  小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

  下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.

  (演示课件)

  [例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

  这个题是文字叙述的证明题,?我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).

  求证:AB=AC.

  同学们先思考,再分析.(由学生完成)

  要证明AB=AC,可先证明∠B=∠C.

  接下来,可以找∠B、∠C与∠

  1、∠2的关系.

  (演示课件,括号内部分由学生来填)

  证明:∵AD∥BC,

  ∴∠1=∠B(两直线平行,同位角相等),

  ∠2=∠C(两直线平行,内错角相等).

  又∵∠1=∠2,

  ∴∠B=∠C,

  ∴AB=AC(等角对等边).

  看大屏幕,同学们试着完成这个题.

  (课件演示)

  已知:如图,AD∥BC,BD平分∠ABC.

  求证:AB=AD.

  (投影仪演示学生证明过程)

  证明:∵AD∥BC,

  ∴∠ADB=∠DBC(两直线平行,内错角相等).

  又∵BD平分∠ABC,

  ∴∠ABD=∠DBC,

  ∴∠ABD=∠ADB,

  ∴AB=AD(等角对等边).

  下面来看另一个例题.

  (演示课件)

  ? 例

  2、已知等腰三角形的底边等于a,底边上的高等于b,你能用尺规作图的方法作出

  EA12DBCADBCM A

  这个等腰三角形吗? a

  b

  作法:(1)作线段BC,使BC=a;

  (2)作BC的垂直平分线MN,交BC于D; (3)在MN上截取DA=h,得A点;

  (4)连结AB、AC,则△ABC即为所求等腰三角形。

  例

  3、思考:在△ABC中,已知,BO平分∠ABC,CO平分∠ACB.过点O作直线EF//BC交AB于E,交AC于F.(1)请问图中有多少个等腰三角形?说明理由.(2)线段EF和线段EB,FC之间有没有关系?若有是什么关系?

  Ⅲ.随堂练习

  (一)课本P79

  1、

  2、

  3、4.

  Ⅳ.课时小结

  1、等腰三角形的判定方法有下列几种: ①定义,②判定定理。

  2、等腰三角形的判定定理与性质定理的区别是:条件和结论刚好相反。

  3、运用等腰三角形的判定定理时,应注意 在同一个三角形中。 Ⅴ.作业布置:

  学力水平:必做42页 1------7题

  选做 42页 8-----10题

4 12.

  3.1.2 等腰三角形判定

  等腰三角形教案 篇7

  教学目标

  (一)教学知识点

  1。等腰三角形的概念。

  2。等腰三角形的性质。

  3。等腰三角形的概念及性质的应用。

  (二)能力训练要求

  1。经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点。

  2。探索并掌握等腰三角形的性质。

  (三)情感与价值观要求

  通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯。

  教学重点

  1。等腰三角形的概念及性质。

  2。等腰三角形性质的应用。

  教学难点

  等腰三角形三线合一的性质的理解及其应用。

  教学过程

  Ⅰ。提出问题,创设情境

  [师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

  [生]有的三角形是轴对称图形,有的三角形不是。

  [师]那什么样的`三角形是轴对称图形?

  [生]满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

  [师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

  Ⅱ。导入新课

  在上述过程中,我们可以得到ABC中AB = AC,这样就得到了一个等腰三角形。

  [师]按照我们的做法,得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。

  [师]同学们通过自己的思考来做一个等腰三角形。并在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

  [生乙]在甲同学的做法中,A点可以取直线L上的任意一点。

  [师]同学们来想一想。

  1。等腰三角形是轴对称图形吗?请找出它的对称轴。

  2。等腰三角形的两底角有什么关系?

  3。顶角的平分线所在的直线是等腰三角形的对称轴吗?

  4。底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  [生甲]等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

  [师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

  [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等。

  [生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线。

  [生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴。

  [生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴。

  [师]你们说的是同一条直线吗?大家来动手折叠、观察。

  [生齐声]它们是同一条直线。

  [师]很好。现在同学们来归纳等腰三角形的性质。

  等腰三角形的性质:

  1。等腰三角形的两个底角相等(简写成等边对等角)。

  2。等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作三线合一)。

  [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程)。

  [生甲]如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为所以△BAD≌△CAD(SSS)。所以C。

  [生乙]如右图,在△ABC中,AB=AC,作顶角BAC的角平分线AD,因为所以△BAD≌△CAD。所以BD=CD,BDA=CDA=BDC=90。

  [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范。

  Ⅲ。课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

  等腰三角形教案 篇8

  一、教学目标:

  1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。3、结合实例休会反证的含义。

  二、教学重点:

  了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。教学难点:能够用综合法证明等腰三角形的'关性质定理和判定定理。

  三、教学方法:观察法。

  四、教学过程:

  复习:1、 什么是等腰三角形?2、 你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。3、试用折纸的办法回忆等腰三角形有哪些性质?新课讲解:在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。同学们和我一起来回忆上学期学过的公理w 本套教材选用如下命题作为公理 :w 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; w 2.两条平行线被第三条直线所截,同位角相等; w 3.两边夹角对应相等的两个三角形全等; (SAS)w 4.两角及其夹边对应相等的两个三角形全等; (ASA)w 5.三边对应相等的两个三角形全等; (SSS)w 6.全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论:推论 两角及其中一角的对边对应相等的两个三角形全等。(AAS)证明过程:已知:∠A=∠D,∠B=∠E,BC=EF求证:△ABC≌△DEF证明:∵∠A=∠D,∠B=∠E(已知)∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)∠C=∠F(等量代换)BC=EF(已知)△ABC≌△DEF(ASA)这个推论虽然简单,但也应让学生进行证明,以熟悉的基本要求和步骤,为下面的推理证明做准备。

  五、议一议:

  (1)还记得我们探索过的等腰三角形的性质吗?(2)你能利用已有的公理和定理证明这些结论吗?等腰三角形(包括等边三角形)的性质学生已经探索过,这里先让学生尽可能回忆出来,然后再考虑哪些能够立即证明。定理:等腰三角形的两个底角相等。这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,AB=AC。求证:∠B=∠C我们刚才利用折叠的方法说明了这两个底角相等。实际上,折痕将等腰三角形分成了两个全等三角形。能否通过作一条线段,得到两个全等的三角形,从而证明这两个底角相等呢?证明:取BC的中点D,连接AD。∵AB=AC,BD=CD,AD=AD,∴△ABC△≌△ACD (SSS)∴∠B=∠C (全等三角形的对应边角相等)让同学们通过探索、合作交流找出其他的证明方法。想一想:在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论,这一结合通常简述为“三线合一”。推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。随堂练习:做教科书第4页第1,2题。课堂小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。五、课外作业:教科书第5页第1,2题。

  六、板述设计:

  七、课后记:

  等腰三角形教案 篇9

  初二上册数学知识点总结:等腰三角形

  一、等腰三角形的性质:

  1、等腰三角形两腰相等.

  2、等腰三角形两底角相等(等边对等角)。

  3、等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.

  4、等腰三角形是轴对称图形,对称轴是三线合一(1条)。

  5、等边三角形的性质:

  ①等边三角形三边都相等.

  ②等边三角形三个内角都相等,都等于60°

  ③等边三角形每条边上都存在三线合一.

  ④等边三角形是轴对称图形,对称轴是三线合一(3条).

  6.基本判定:

  ⑴等腰三角形的判定:

  ①有两条边相等的三角形是等腰三角形.

  ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).

  ⑵等边三角形的`判定:

  ①三条边都相等的三角形是等边三角形.

  ②三个角都相等的三角形是等边三角形.

  ③有一个角是60°的等腰三角形是等边三角形.

  等腰三角形教案 篇10

  教学目标

  1、掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

  教学重点

  等边三角形的判定定理和直角三角形的性质定理。

  教学难点

  能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

  教学方法

  教学后记

  教学内容及过程

  教师活动学生活动

  一、定理:一个角等于60°的等腰三角形是等边三角形

  1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

  2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

  3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

  二、一种特殊直角三角形的'性质

  1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

  2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?

  3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

  4.让学生准备一张正方形纸片,,按要求动手折叠。

  5.讲解例题,应用定理。

  6.布置学生做练习。

  练习:课本随堂练习1

  三、课堂小结:

  通过这节课的学习你学到了什么知识?了解了什么证明方法?

  四、作业:同步练习

  板书设计:

  1.积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

  2.积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。

  3.认真听讲,体会分类讨论的数学思维方法,理解定理。

  1.积极动手操作,并很快得到结果:可以拼出等边三角形。

  2.在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

  3.认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

  4.很有兴趣地折叠纸片,体会定理的应用。

  5.听讲,体会定理的应用。

  6.认真做练习。

  (学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)

  等腰三角形教案 篇11

  教学目标:

  【知识与技能】

  1、理解并掌握等腰三角形的性质。

  2、会用符号语言表示等腰三角形的性质。

  3、能运用等腰三角形性质进行证明和计算。

  【过程与方法】

  1、通过观察等腰三角形的对称性,发展学生的形象思维。

  2、通过实践、观察、证明等腰三角形的性质,积累数学活动经验,感受数学思考过程的条理性,发展学生的合情推理能力。

  3、通过运用等腰三角形的性质解决有关问题,提高学生运用几何语言表达问题的,运用知识和技能解决问题的能力。

  【情感态度】

  引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验。

  【教学重点】

  等腰三角形的性质及应用。

  【教学难点】

  等腰三角形的证明。

  教学过程:

  一、情境导入,初步认识

  问题1什么叫等腰三角形?它是一个轴对称图形吗?请根据自己的理解,利用轴对称的知识,自己做一个等腰三角形。要求学生独立思考,动手作图后再互相交流评价。

  可按下列方法做出:

  作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形。

  问题2每位同学请拿出事先准备好的长方形纸片,按下图方式折叠剪裁,再把它展开,观察并讨论:得到的△ABC有什么特点?

  教师指导:上述过程中,剪刀剪过的两条边是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

  把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。由这些重合的线段和角,你能发现等腰三角形的性质吗?说说你的猜想。

  在一张白纸上任意画一个等腰三角形,把它剪下来,请你试着折一折。你的猜想仍然成立吗?

  教学说明:通过学生的动手操作与观察发现,加深学生对等腰三角形性质的理解。

  二、思考探究,获取新知

  教师依据学生讨论发言的情况,归纳等腰三角形的性质:

  ①∠B=∠C→两个底角相等。

  ②BD=CD→AD为底边BC上的中线。

  ③∠BAD=∠CAD→AD为顶角∠BAC的平分线。

  ∠ADB=∠ADC=90°→AD为底边BC上的高。

  指导学生用语言叙述上述性质。

  性质1等腰三角形的.两个底角相等(简写成:“等边对等角”)。

  性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”)。

  教师指导对等腰三角形性质的证明。

  1、证明等腰三角形底角的性质。

  教师要求学生根据猜想的结论画出相应的图形,写出已知和求证。在引导学生分析思路时强调:

  (1)利用三角形全等来证明两角相等。为证∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

  (2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等。

  2、证明等腰三角形“三线合一”的性质。

  【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验。

  三、典例精析,掌握新知

  例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

  解:∵AB=AC,BD=BC=AD,

  ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)。

  设∠A=x,则∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x。

  于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°

  于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

  【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数。要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题。

  四、运用新知,深化理解

  第1组练习:

  1、如图,在下列等腰三角形中,分别求出它们的底角的度数。

  如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段。

  2、如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数。

  第2组练习:

  1、如果△ABC是轴对称图形,则它一定是( )

  A、等边三角形

  B、直角三角形

  C、等腰三角形

  D、等腰直角三角形

  2、等腰三角形的一个外角是100°,它的顶角的度数是( )

  A、80° B、20°

  C、80°和20° D、80°或50°

  3、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm。求这个等腰三角形的边长。

  4、如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E。求证:AE=CE。

  【教学说明】

  等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用。

  【答案】

  第1组练习答案:

  1、(1)72°;(2)30°

  2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

  3、∠B=77°,∠C=38、5°

  第2组练习答案:

  1、C

  2、C

  3、设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三边长为4cm,6cm和6cm。

  4、延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可证:AE=DE。∴AE=CE。

  四、师生互动,课堂小结

  这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用。请学生表述性质,提醒每个学生要灵活应用它们。

  学生间可交流体会与收获。

  等腰三角形教案 篇12

  一、教材分析

  教材是教师教学的基本依据,因此,教师必须把握教材,了解教材的内容体系与脉络。

  首先, 我们来分析教材的地位与作用: 等腰三角形是在学习了全等三角形的判定及性质与轴对称之后编排的,它不仅是对前面所学知识的延伸应用,同时也是今后探究线段相等、角相等以及两直线垂直等的重要依据,它所应用的观察-发现-猜想-论证的数学思想方法是今后研究数学的基本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  基于以上分析,根据新课标的要求,结合学生的具体实际,我制定了如下教学目标:

  知识技能:掌握等腰三角形的性质,运用等腰三角形的性质进行证明和计算。

  数学思考: 使学生经历知识的形成和发展过程,发展合情推理和演绎推理能力,培养主动探究的习惯。

  问题解决: 通过学生体验发现问题,提出问题及解决问题的全过程,培养学生的数学应用能力。

  情感态度: 通过学生参与数学活动,激发学生学习数学的好奇心和求知欲,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.

  本节课的重点为等腰三角形的性质及其应用,我将通过创设情境和解决问题来突出重点。由于现阶段学生把文字命题翻译成数学符号语言的能力有待提高,所以本节课的难点在于等腰三角形性质的证明,我将通过折纸实验和小组合作探究来突破难点。

  二、学情分析:

  学生是教学工作的落脚点,是备课活动的最终服务对象。现阶段学生已了解全等三角形和轴对称图形的相关知识,这个阶段学生的思维以形象思维为主,他们好奇爱问、求知欲强、想像力丰富,会进行简单的说理,但他们对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。

  三、教法学法分析:

  教需有法,教无定法;大法必依,小法必活。

  根据学生的具体情况和本节课的特点,我将采用“探索、归纳与合作交流”相结合的方法,以学生主动参与为前提、自主学习为途径、合作交流为形式,培养学生动手、动脑、合作、交流,为学生的终身学习奠定基础。

  对于本节课的教学,我从兴趣着手,让学生在自主探究中经历知识的形成、发展过程,并使其思维能力在小组合作交流中得到锻炼.

  为了达到更好的教学效果,本节课我将采用师生互动、生生互动的教学组织形式.

  四、教学过程设计

  也就是说课的重头戏,我的教学过程将围绕以下四个环节展开:创设情境、导入新课;合作交流、探究新知;体验新知,学以致用;小结升华、布置作业。首先进入第一个环节:创设情境,导入新课:

  具体生动的情境具有很强的感染力和说服力,可以触及到学生的内心深处,使其思想与本节课的内容—等腰三角形发生联结.所以,上课伊始,在美妙的音乐中,我会用课件展示生活中含有等腰三角形模型的一些图片。

  之后联系已学的等腰三角形的定义,我会向学生介绍 腰 底边 顶角 底角 等相关概念,并给学生设疑:等腰三角形作为一种特殊的三角形,有没有自己特殊的性质呢?从而引出本节课的内容。(板书)

  荷兰数学家弗赖登塔尔曾说过: “学习数学唯一正确的方法是实现再创造,也就是由学生本人把要学的东西自己去发现或创造出来,教师的任务则是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。”

  为此,我设置了合作交流、探究新知这一环节并通过以下四个活动展开:剪等腰三角形 实验探究—等腰三角形性质 概括总结—等腰三角形性质 推理证明—等腰三角形性质

  首先我将带领学生进入活动1: 剪等腰三角形

  为了提高学生的动手能力,使学生从本质上认识等腰三角形,我让学生拿出事先准备好的长方形纸片,分组活动,剪等腰三角形。

  剪完以后,我会请各小组推荐一名代表上台展示所剪三角形,并讲解自己的剪法,学生的想像力是相当丰富的,剪的方法多种多样,在这里我仅展示了以下四种剪法:

  (1) (2) (3) (4)

  如图(1)的操作,剪出的是等腰直角三角形 ,图(2)中,学生先画出了一个等

  腰三角形,再把它剪下来,图(3)为教材中的剪法,得到了这样一个等腰三角形,按图(4)的操作可以得到两个三角形,将它们拼在一起则为等腰三角形。为方便下一步使用,对于采用第(4)种剪法的学生,我会建议他们用第(3)种剪法再剪一次。

  对于活动1的处理,我跟教材上是不同的。大家都知道,教材知识具有系统性,一般编写得比较简练。教师不是教教材,而是用教材创造性地去教.我之所以这样设计,一是培养学生的发散思维,二是让学生明白剪腰三角形有很多方法,辨析最简单的方法。

  接下来进入活动2: 实验探究—等腰三角形的性质

  让学生将刚才所剪的等腰三角形标上字母后,对折成两个全等的三角形,分小组观察并完成事先准备好的实验单,在实验单上,我设置了2个问题:

  ((1)等腰三角形ABC是轴对称图形吗?

  (2)对折后的△ABC重合的部分是什么?

  之后,各小组推荐一名代表上台,在投影仪下展示他们的探究结果。根据学生所填实验单,我会引导学生将符号语言转化为自然语言, △ABC两底角相等是显而易见的,我会引导学生发现:折痕AD在△ABC中具有三重身份。

  通过前2个活动的铺垫,在活动3,让学生概括总结出等腰三角形的性质:(1)等腰三角形的两个底角相等; (2)等腰三角形的顶角平分线、底边上中线、底边上的高相互重合.

  通过前3个活动,让学生经历了发现问题、提出问题、解决问题的全过程,教会了他们怎样进行数学思考。

  数学知识具有高度的严谨性,我们得到的实验结果需要理论上加以推证,因此,我设计了活动4: 推理证明—等腰三角形性质

  性质1的证明对于现阶段学生有2个难点:一是将文字性命题转化为符号语言,二是怎样添加辅助线,在这个环节为突破第1个难点,我会先就性质1 “等腰三角形的两个底角相等”的条件和结论对学生进行提问,引导学生完成转化。

  为了突破第二个难点,我会提示学生,由前面试验中的折痕我们容易想到过A点添加辅助线,由于△ABC得折痕具有三重身份,所以性质1的证明方法不止一种,让他们体会条条道路通罗马的'道理。安排学生分组讨论并发言之后,我会用板书示范一种证明过程,另外两种方法证明过程由学生类比完成。

  教师多1分精心的预设,课堂就多1份动态的生成,学生就会多一1份发展。所以,在学生体验成功的喜悦之时,我会乘胜追击,反问学生:前面3种证明方法都借助了辅助线,不作辅助线你能证明性质1吗?一石激起千层浪,再次激起了学生的求知欲。

  我预测,学生很难想到不作辅助线如何完成性质1的证明,其实,只要将△ABC看作两个三角形 ABC和ACB,并证明它们全等即可。这种证法培养了学生的发散思维,启发学生要敢于打破陈规,张开想像的翅膀。在此,我之所以这样设计,是想以教师教学方式的转变促进学生学习方式的转变,使学生走出思维定势,给学生一个活性的大脑。

  性质1证明完毕,我会提出问题:受性质1的证明的启发,你能证明性质2(等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合)吗?我会引导学生把性质2分解为3个命题,让学生分组讨论证明。

  通过实验探究,逻辑推理,得到了性质1和性质2,性质1,我们又简称 等边对等角,性质2,又简称 三线合一。至此,探究新知环节已经完成。

  学生对知识的掌握是通过“学得”和“习得”而来的,为了巩固本节课所学知识,我设置了体验新知,学以致用环节, 本环节按照循序渐进原则设置了2个练习题和1个思考题,它们由浅入深,由易到难,各有侧重。练习1作为性质1的有效补充,提示学生等边对等角这一性质必须在同一个等腰三角形中才可使用,强调审题的重要性;

  练习2直接来自课本,它的设置,是为了巩固和应用 “等边对等角”,培养学生的转化思想和方程思想。

  之后,我又给了一道思考题,让学生利用刚学到的知识,做一个用来测量屋顶的横梁是否水平的工具?将枯燥的数学问题赋予于有趣的实际背景,同时激发学生学习数学的兴趣让学生充分感受本节课内容在解决实际问题中的作用。

  为了拓宽学生的知识面,我上网查阅了资料,有关等腰三角形的面积说,以等腰三角形的底边代表人的遗传因素,两腰分别代表饮食营养和身心健康,那么等腰三角形的面积越大,人的寿命就越长,怎样扩大等腰三角形的面积从而延长寿命呢?我会让有兴趣的同学在课下上网查阅。

  叶澜教授说:一个教师写一辈子教案不一定成为名师,如果一个教师写三年的反思,有可能成为名师。因此,反思是进步的阶梯。

  本环节中,我会先带领学生对本节课内容作出小结,之后让学生畅所欲言,对自己说:我有什么收获,对老师说:我有什么疑惑,对同学说:我有什么温馨提示。同时给学生提供一个充分从事数学活动的机会,体现了学生是学习的主人的理念。

  作业设计是教师了解、掌握学生学习情况的一把尺子。这个环节遵循因材施教的原则,必作题体现新课标下落实“人人都能获得良好的数学教育”,选做题则让“不同的人在数学上得到不同的发展”, 体现分层思想。让学生不仅学会,而且会学,最终达到乐学的目的.

  五.板书设计

  板书是课堂教学的缩影,是把握教学重点的示意图,也是提示教学难点的辐射源。由于借助了多媒体辅助教学,我的板书将分为2个区域,第一个区域,是等腰三角形的性质,突出了重点,第二个区域是性质1的示范证明,突破了难点

  等腰三角形教案 篇13

  一、教材分析

  v 《等腰三角形》是冀教版八年级数学第十五章第五节的教学内容,等腰三角形这节课在教学中起着比较重要的作用,它是对三角形的性质的呈现。利用轴对称变换,探索等腰三角形的性质是本节课的主要内容。在以往的教科书中,等腰三角形的有关内容一般安排于介绍三角形的内容之中,利用三角形的全等研究等腰三角形的性质,而本书中,等腰三角形的有关内容安排在轴对称变换之后,在掌握了轴对称的相关性质之后,通过实验、观察,发现等腰三角形的性质,再利用三角形的全等的知识给以证明

  二、教学目标

  1.知识与技能:了解等腰三角形的概念,探索并掌握等腰三角形的性质;

  2.数学思考:使学生经历通过观察、实验、探究、归纳、推理、证明的认识图形的全过程,上实验几何与论证几何有机结合;

  3.情感态度与价值观:通过剪纸等活动,培养学生的实验意识和探索精神,使学生进一步认识到数学与现实生活的密切联系,感受数学的严谨性以及结果的确定性。

  三、教学重、难点

  1.重点:等腰三角形的性质

  2.难点:“等边对等角”的证明

  四、教学方法

  动手体验、小组、讨论、合作、交流、探究验证师生互动

  五、教、学具

  1.教具:长方形纸,剪刀,幻灯片。

  2.学具:长方形纸,剪刀。

  六、教学媒体:投影仪

  七、教与学互动设计:

  一、联系生活实际,创设问题情境。激发学生兴趣,导入新课

  师:同学们:我们在剪纸中欣赏了轴对称图形带给我们的享受,中外建筑中也洋溢着轴对称图形的艺术气息,国旗及各种标志中轴对称图形又向我们展示着它独特的社会含义,而我们亲自动手实践中又体会了轴对称图形带给我们的二次惊喜!今天老师给大家带来了这个(展示折纸-----飞机),你们喜欢折纸吗?一页普普通通的纸经过我们灵巧的双手就可以变成飞机、小船和各种有趣的动物建筑特等,其实通过折纸我们还可以发现很多数学知识!下面就让我们折一折,剪一剪,看看会有什么发现?

  学生活动:要求:(1)拿出事先准备好的长方形纸片,对折,使两部分重合。

  (2)对折出一角,沿折痕撕开或剪开,你得到了什么图形?

  师:板书: 15.5 等腰三角形

  师:为了更好的掌握这节课的知识,老师把咱们班分了六组,设计了几个环节来完成,希望同学们踊跃的参与各个环节中来,好不好?

  第一环节:精彩回放《投影1》

  要求:全班分六组,各组在最短的.时间各显其能,展示自己的才华回答方式为抢答

  问题:1、在等腰三角形ABC中,请你介绍

  一下哪个是等腰三角形的腰、底边、顶角和底角?

  2、你知道等腰三角形的哪些知识?

  给同学们介绍一下?

  (1、三角形的两边之和大于第三边2、内角和为180度等)

  师:各组同学在这个环节中表现的非常出色,连老师也为你们的成功感到骄傲,希望下一个环节再接再励。(教师给予鼓励性的评价)

  在初中研究一个图形的性质,一般都从对称性、角、边、角平分线来探究,为了使同学们都成为探究者,请进入第二环节(投影)

  第二环节:探究等腰三角形的边、角

  师:拿出剪好的等腰三角形观察说出边和角的特点?你是怎样得到的?各小组谈见解

  生:1、等腰三角形两腰相等 2、等腰三角形两底角相等

  几何格式:∵ AB=AC ∴∠B=∠C

  学生活动:为了培养学生的思维,启发他们从1、度量法2折叠法、3证全等法、三个方面来验证等腰三角形两底角相等这一性质

  师:利用等腰三角形的边和角的性质可以帮助我们解决一些简单的计算题和证命题《投影2》

  要求:各组出一名同学回答,答对给各组加1分

  1、如果等腰三角形的一个底角75°那么它的顶角等于( )度?

  2、如果等腰三角形的一个角为90°那么其余两角( )度?

  3、如果等腰三角形的一个角为100°那么其余两角( )度?

  4、两边长为10和8,则第三边长是( )?

  学生总结解题方法:要求:抢答并加分

  (1)等腰三角形中顶角与底角的关系:顶角十 2 ×底角=180°

  (2)推论:等边三角形三个内角相等,每一个内角都等于60°(板书)

  结论:在等腰三角形中1、当一内角是锐角时两种情况。2、直角或钝角时一种情况

  师:各组同学表现的非常出色,解题的技巧总结的很好,让我们带着胜利的喜悦竟如第三个环节

  第三个环节:探讨等腰三角形的对称性

  学生活动:拿出剪好的等腰三角形猜想:

  1、 等腰三角形是轴对图形吗?它有几条对对称轴?

  2、 请同学们动手画出顶角平分线、底边的高线、底边的中线有什么特征?

  学生回答:1、 等腰三角形是轴对称图

  第四个环节:智者闯关

  规则:各组可抢答比一比,赛一赛哪一队的同学能够顺利过关

  现在是不是感觉数学网为大家准备的初二上册数学等腰三角形教学计划很关键呢?欢迎大家阅读与选择!

  等腰三角形教案 篇14

  (一)、温故知新,激发情趣:

  1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?

  2、指出等腰三角形的腰、底边、顶角、底角。

  (首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)

  (二) 、构设悬念,创设情境:

  3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)

  4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?

  (把问题3作为教学的出发点,激发学生的学习兴趣。问题4给学生留下悬念。)

  (三)、目标导向,自然引入:

  本节课我们一起研究——9。3 等腰三角形

  (板书课题) 9。3 等腰三角形(了解本节课的学习内容)

  (四)、设问质疑,探究尝试:

  结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。

  [问题]通过观察,你发现了什么结论?

  (让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)

  [结论]等腰三角形的两个底角相等。

  (板书学生发现的结论)

  等腰三角形特征1:等腰三角形的两个底角相等

  在△ ABC中,∵AB=AC( )

  ∴∠B=∠C( )

  [方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。

  例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数。

  〔学生思考,教师分析,板书〕

  练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)

  〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)

  [问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?

  (通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)

  [引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?

  [学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。

  [结论]等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。简称为:“三线合一”。

  等腰三角形特征2:

  等腰三角形的顶角平分线、底边上的中线和高线互相重合(三线合一)

  (出示小黑板)

  [填空]根据等腰三角形特征的推论,在△ABC中

  (1)∵AB=AC,AD⊥BC,

  ∴∠_=∠_,_=_;

  (2)∵AB=AC,AD是中线,

  ∴∠_=∠_,_⊥_;

  (3)∵AB=AC,AD是角平分线,

  ∴_⊥_,_=_

  通过直观模具演示,引出推论2,并出示小黑板[填空]、强调“三线合一”的运用方法。使学生留下深刻印象,并通过[填空]了解三线合一的运用方法。

  强调“三线合一”特征中的三线段前的.定语的重要性,可让学生实际画图验证。

  (五)、启发诱导,初步运用:

  例2:如图,在△ABC中,AB=AC,D是BC边上的中点,

  ∠B=30°,求∠1和∠ADC的度数。

  课堂练习:

  (1)P85练习3

  (2)例3已知:如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC、屋椽AB=AC.求顶架上∠B、∠C、∠BAD、∠CAD的度数.

  (这是一道几何计算题,要使学生加深对本课内容的应用,引导学生写出解题过程)

  (六)、归纳小结,强化思想:

  (1)叙述等腰三角形的特征及其应用;

  (2)利用等腰三角形的特征可证明:两角相等,两线段相等,两直线互相垂直。

  (3) 联想方法要经常运用,对今后解题大有裨益。

  (七)、布置作业,引导预习:

  P86 习题9。3 1、3、4 预习课本:P85 等腰三角形

  课后思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

【等腰三角形教案】相关文章:

等腰三角形的性质教案优秀03-19

等腰三角形教学教案设计08-25

《等腰三角形性质》教案设计08-26

等腰三角形教学反思03-28

《等腰三角形性质》说课稿07-07

等腰三角形的性质说课稿07-25

等腰三角形性质定理08-10

《等腰三角形的性质》教学反思05-23

教案中班教案02-23