当前位置:好文网>实用文>教案>分式的教案

分式的教案

时间:2023-02-25 12:10:47 教案 我要投稿
  • 相关推荐

分式的教案

  作为一位优秀的人民教师,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。如何把教案做到重点突出呢?以下是小编为大家整理的分式的教案,欢迎大家借鉴与参考,希望对大家有所帮助。

分式的教案

分式的教案1

  一,内容综述:

  1、解分式方程的基本思想

  在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程。即

  分式方程整式方程

  2、解分式方程的基本方法

  (1)去分母法

  去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。但要注意,可能会产生增根。所以,必须验根。

  产生增根的原因:

  当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解。

  检验根的方法:

  将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。

  为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去。

  注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公

  分母为0。

  用去分母法解分式方程的一般步骤:

  (i)去分母,将分式方程转化为整式方程;

  (ii)解所得的整式方程;

  (iii)验根做答

  (2)换元法

  为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决。辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法。换元法是解分式方程的一种常用技巧,利用它可以简化求解过程。

  用换元法解分式方程的一般步骤:

  (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;

  (ii)解所得到的关于辅助未知数的`新方程,求出辅助未知数的值;

  (iii)把辅助未知数的值代回原设中,求出原未知数的值;

  (iv)检验做答。

  注意:

  (1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。

  (2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。

  (3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。

分式的教案2

  【教学目标】

  一、知识目标

  经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

  二、能力目标

  知道分时方程的意义,会解可化为一元一次方程的分式方程。

  三、情感目标

  在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

  【教学重难点】

  将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。

  【教学过程】

  一、课前预习与导学

  1.什么叫做分式方程?解分式方程的步骤有哪几步?

  2.判断下面解方程的过程是否正确,若不正确,请加以改正。

  解方程:=3-

  解:两边同乘以(x-1),得

  2=3-x=1,①

  x=3+1-2,②

  所以x=2.③

  (不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)

  3.解下列分式方程:(1)=(2)+=2.

  二、新课

  (一)情境创设:

  1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?

  设甲每天加工服装多少件,可得方程:

  2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的相等关系?

  设这个两位数的十位数字是x,可得方程:

  3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的相等关系?

  设自行车的速度为xkm/h,可得方程:

  (二)探索活动:

  1.上面所得到的方程有什么共同特点?

  2.这些方程与整式方程有什么区别?

  结论:分母中含有未知数的方程叫做分式方程。

  3.如何解分式方程=?

  解:这个分式方程的两边同乘各分式的最简公分母x(x+1),

  可以得到一元一次方程:20(x+1)=24x

  解这个方程,得

  x=5

  为了判断x=5是否是原方程的解,我们把x=5代入原方程:

  左边==4,右边==4,左边=右边。

  x=5是原方程的`解。

  说明:解分式方程的一般步骤是先去分母(在分式方程的两边同乘各分式的最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。

  三、例题教学:

  例1.解方程:-=0

  板书出解分式方程的一般过程及完整的书写格式。

  解:方程两边同乘x(x-2),得

  3(x-2)-2x=0

  解这个方程,得

  x=6

  把x=6代入原方程:左边=右边=0,左边=右边。

  x=6是原方程的解。

  四、课堂练习:

  1.下列各式中,分式方程是()

  A.B.C.D.

  2.分式方程解的情况是()

  A.有解,B.有解C.有解,D.无解

  3.解下列方程:

  4.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。

分式的教案3

  一、教材分析

  《分式》是北师大版八年级下册第3章第一节内容。本节课的主要内容是分式概念、意义和用分式表示数量关系。分式是小学所学分数的延伸和扩展,也是今后继续学习分式的性质、运算以及解分式方程的前提。

  学生在七年级已经学习了整式,也初步养成了自主探究的数学学习意识。分式学习的方法与整式相类似可以通过类比进行分式的学习。依据课程标准,教材特点和学生认知水平,将本节课的教学目标确定为以下3个方面: (1)知识:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。

  (2)能力:学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。

  (3 情感:通过数学活动,体验数学活动充满着探索和创造,体会分式的模型思想。

  其中分式概念是《分式》这一章学习的起点和基础,因此我把分式的概念确定为本节课的教学重点。又由于初中学生不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分母中整式的值何时不为零、用分式描述数量关系自然就成了本节课的教学难点。

  二、教法学法:基于以上教材特点和学生情况,为能更好地达成教学目标,我在本节课主要采用引导发现教学法,并借助于多媒体课件,通过问题情境建立模型应用与拓展的模式展开教学。

  三、教学过程:《数学课程标准》明确指出:数学教学是数学活动的教学,学生是数学学习的主人。为能更多地向学生提供从事数学活动的机会,我将本节课的'教学过程设为以下四个环节:

  (一)创设情景发现新知:我创设了这样的情境: 代数式庄园的果树上挂满了整式的果子:t,300,s,n,a-x,0,请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。其中有不同于整式的 式子吗?请说一说。 通过学生对自己所构造的代数式进行观察,创设发现情境,使学生学会把自己的活动作为思考的对象,从而更好地进行分式概念的建构活动。 针对学生的发现,采用议一议:你们所发现的这一类新代数式:它们有什么共 同特征?它们与整式有什么不同?的方式引导学生继续观察新式子的特征,类比分数,概括出分式的概念及一般表示形 式。然后通过小组内互举例子,在活动过程中强化分式概念,并注意辨析整式与分式的区别,强调分式的分母中必须含有 字母。

  (二)合作交流再探新知:到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我创设了以下活动供学生自主探究分式有意义的条件:首先是组织学生独立填写表格并交流:分式的值与字母取值有关,分式并不都有意义。自主得出分式有意义的条件:表达式里的分母B不等于0。

  为了能让学生对刚获得的新知识进行最基本的应用,紧接着我安排了例题与练习。比较简单,可由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生都能达到基本的学习目标,获得成功感。

  (三)应用新知巩固提高:分式来源于生活,又服务于生活。为使学生有所体会, 课本中的引例:土地沙化、固沙造林问题,我保留了前两问原计划完成一期工程需要( )个月,实际完成一期工程用了( )个月,使题目难度更适合学生的思维水平;同时向学生介绍中国土地沙化问题渗透环保意识。

  (五)总结反思深化拓展:1,引导学生从知识、方法、情感三个方面谈一谈这一节课的收获。2, 举例让学生说出分式的实际意义

分式的教案4

  教学目标

  知识与技能

  理解分式的基本性质。

  运用分式的基本性质进行分式变形。

  过程与方法

  通过类比分数的基本性质,探索分式的基本性质,体会类比的思想方法;利用数形结合的思想验证分式的基本性质。

  情感态度与价值观

  在研究解决问题的过程中,树立合作交流意识与探究精神。

  重点

  理解并掌握分式的基本性质。

  难点

  运用分式的基本性质进行分式变形。

  教学流程

  活动1 复习分数的基本性质

  活动2 类比探究得到分式的基本性质

  从分数的变形着手,为类比学习新知做铺垫。

  猜想得到分式的基本性质。

  学习例1和例2,掌握分式的基本性质的应用。

  通过一组练习题,巩固并拓展知识,培养学生的运算能力。

  归纳、梳理本节的知识和方法。

  问题情境

  师生行为

  设计意图

  【问题情境】

  (1)如果将一个面积为1的圆对折,每一份面积是多少?( )

  (2)你还能举出与 相等的分数吗?

  (3)刚才分数变形过程的依据是什么?

  教师提出问题

  学生思考交流,回答问题

  在活动中教师要关注:

  学生对学过的知识是否掌握得较好;学生对新知识的探究是否有浓厚的兴趣。

  通过具体例子,引导学生回忆前面学段学过的分数的基本性质,再用类比的方法猜想出分式的基本性质。在这个活动中,首先激活了学生原有的知识,体现了学生的学习是在原有知识上自我生成的过程。

  【探究与思考一】

  问题

  如何用语言和式子表示分式的基本性质?

  应用分式的基本性质时需要注意什么?

  教师提问

  学生思考、议论后在全班交流。

  分式的分子与分母都乘(或除以)同一个不等于0的整式,分式的值不变。这个性质叫做分式的基本性质。用式子表示为:

  其中A,B,C是整式。

  学生归纳以下要点:①分子、分母应同时做乘、除法中的同一种变换;②所乘(或除以)的必须是同一个整式;③所乘(或除以)的整式应该不等于零。

  在活动中教师要关注:

  能否用数学语言表述新知识;

  学生对“性质”的运用注意事项是否理解。

  教师引导学生用语言和式子表示分式的基本性质,这是学生运用类比的方法可以做到的。在这一活动中,学生的知识不是从老师那里直接复制或灌输到头脑中来,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。

  活动3初步应用分式的基本性质

  例2填空:

  教师提出问题。

  学生先独立思考问题,然后分小组讨论。

  教师参与并知道学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。让学生总结出解题经验:

  对于第(1)题,看分母如何变化,想分子如何变化;对于第(2)题,看分子如何变化,想分母如何变化。

  在活动中教师要关注:

  学生能否紧扣“性质”进行分析思考;

  学生能否逐步领会分式的恒等变形依据

  学生是否能认真听取他人的意见。

  例2是分式基本性质的运用,让学生研究每一题的特点,紧扣“性质”进行分析,以期达到理解并掌握性质的.目的。

  活动4练习巩固拓展知识

  利用分式的基本性质,将下列各式化为更简单的形式:

  ①

  ②

  不改变分式的值,使下列分式的分子和分母都不含“—”号:

  ① ②

  ③ ④

  你能从中发现规律吗?

  教师出示问题训练单。

  学生先独立思考,并安排三名同学板演。

  教师巡视,注意对学习有困难的学生进行个别辅导

  对问题(2),学生思考、归纳后,在小组进行交流,并综合各小组中同学的不同见解得出结论。

  在活动中教师要关注:

  大部分学生能否准确、熟练地完成任务;

  学生能否用数学语言表述发现的规律;

  学生在运算中表现出来的情感与态度是否积极。

  通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题实际上指明了分式的变号法则。这一法则在分式的变形中经常用到,学生对此又极易出现错误,所以要予以足够重视,进行有针对性地讲解。

  活动5小结评价布置作业

  问题

  分式的基本性质是什么?

  运用分式基本性质时的注意事项;

  经历分式基本性质得出的过程,从中学到了什么方法?受到什么启发?

  布置课后作业:

  第11页第4题、第12页第12题。

  教师提出问题。

  学生在教师的引导下整理知识、理顺思维。

  在活动中教师要关注:

  学生对本节课的学习内容是否理解;

  学生能否从获取新知的中领悟到其中的数学方法。

  学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。

  类比联想以旧引新世界

  师生互动探究新知

  练习反馈巩固应用

  引导小结

  布置作业

  优点:

  学情分析明确,教学目标设计合理,重难点适当。

  缺点:

  上传的教学活动例题不明确。

分式的教案5

  一、目标要求

  1.理解掌握异分母分式加减法法则。

  2.能正确熟练地进行异分母分式的加减运算。

  二、重点难点

  重点:异分母分式的加减法法则及其运用。

  难点:正确确定最简公分母和灵活运用法则。

  1.异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减。用式子表示为:±=。

  2.分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的'基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。

  三、解题方法指导

  【例1】计算:(1)++;

  (2)-x-1;

  (3)--。

  分析:(1)把分母的各多项式按x的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法。(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x-1=,要注意负号问题。

  解:(1)原式=-+=-+====;

  (2)原式======;

  (3)原式=--===。

  【例2】计算:。+++。

  分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的。各式的分母适用于平方差公式,所以采取分步通分的方法进行加减。

  解:原式=++=++=+=+==。

  四、激活思维训练

  ▲知识点:异分母分式的加减

  【例】计算:-+。

  分析:此题如果直接通分,运算势必十分复杂。当各分子的次数大于或等于分母的次数时,可利用多项式的除法,将其分离为整式部分与分式部分的和,再加减会使运算简便。

  解:原式=[x+2-]-[x+3+]

  +[+1]

  =x+2--x-3-++1

  =--+=====。

  五、基础知识检测

  1.填空题:

分式的教案6

  教学目标

  (一)教学知识点

  1.异分母的分式加减法的法则.

  2.分式的通分.

  (二)能力训练要求

  1.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养数学学习中转化未知问题为已知问题的能力.

  2.进一步通过实例发展学生的符号感.

  (三)情感与价值观要求

  1.在学生已有数学经验的.基础上,探求新知,从而获得成功的快乐.

  2.提高学生用数学意识.

  教学重点

  1.掌握异分母的分式加减运算.

  2.理解通分的意义.

  教学难点

  1.化异分母分式为同分母分式的过程.

  2.符号法则、去括号法则的应用.

  教学方法

  启发、探索相结合

  教具准备

  投影片五张

  第一张:做一做,(记作3.3.2 A)

  第二张:例1,(记作3.3.2 B)

  第三张:例2,(记作3.3.2 C)

  第四张:例3,(记作3.3.2 D)

  第五张:补充练习,(记作3.3.2 E)

  教学过程

  Ⅰ.创设问题情境,类比异分母分数的加减法引入新课

  [师]大家知道,对于异分母的分数相加减必须利用分数的基本性质,化成同分母的分数相加减,然后才能运算.

  上一节课,我们讨论较简单的异分母的分式加减法.下面我们再来看几个异分母的加减法.(出示投影片 3.3.2 A)

分式的教案7

  一、教学目标

  1.使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。

  2.使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。

  3.使学生能够灵活运用分式的有关法则进行分式的四则混合运算。

  4.引导学生不断小结运算方法和技巧,提高运算能力。

  二、教学重点和难点

  1.重点:分式的加减运算。

  2.难点:异分母的分式加减法运算。

  三、教学方法

  启发式、分组讨论。

  四、教学手段

  幻灯片。

  五、教学过程

  (一)引入

  1.如何计算:2.如何计算:3.若分母不同如何计算?如:

  (二)新课

  1.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  2.通分的依据:分式的基本性质。

  3.通分的关键:确定几个分式的公分母。

  通常取各分母的所有因式的.最高次幂的积作公分母,这样的公分母叫做最简公分母。

  例1通分:

  (1)解:∵最简公分母是,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

  (2)解:

  例2通分:

  (1)解:∵最简公分母的是2x(x+1)(x—1),

  小结:当分母是多项式时,应先分解因式。

  (2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),

  练习:教材P,79中1、2、3。

  (三)课堂小结

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

分式的教案8

  从分数到分式

  课时: 一课时

  知识与技能目标

  1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分.

  2.使学生能够求出分式有意义的条件,过程与方法目标

  能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比

  转化的思想方法研究解决问题.

  教学重点和难点,准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点

  教学方法: 探究与讲授结合.

  教学过程

  活动一 情境引入:

  一般轮船在静水中的最大航速为20千米/时,它沿江

  以最大航速顺流流航行100千米所用时间,与以最大航

  速逆水航行60千米所用时间相等,江水的流速为多少?

  活动二 思考

  活动三 观察

  (1) 由学生分组讨论分式的定义,对于“两个整式相

  除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

  (2)由学生举几个分式的例子.

  (3)学生小结分式的.概念中应注意的问题.

  ①两个整式相除

  ②分母中含有字母.

  (4)整式与分数的不同.分工具有一般性.

  活动四 分式中的分母应满足什么条件?

  如同分数一样,分式的分母不能为零

  活动五 : 1、求分式的值.2、何时分式的值为零?

  例1(1)当a=1,2时,求分式 的值;

  解:(1)当a=1时,

  当a=2时

  例2当x取何值时,下列分式有意义?

  思考:若把题目要求改为:“当x取何值时下列分式无意义?”该怎样做?

  例3 当x取何值时,下列分式的值为零?

  解:由分子x+3=0得x=-3.

  而当x=-3时,分母2x-7=-6-7≠0.

  ∴当x=-3时,原分式值为零.

  例4 当x 取何值是分式 的值为零。

  解:由分子|x| - 1 =0得x = ±1

  当x = 1时 x+1≠0

  当x=-1时x+1=0,分式无意义。

  ∴当x = 1时原分式的值为零。

  小结:若使分式的值为零,需满足两个条件:

  ①分子值等于零;②分母值不等于零.

  活动六 课堂练习p课本第6页1——3

  活动七 课堂小结

  本节课你学到了哪些知识和方法?

  1.分式的定义。

  2、分式与分数的区别.

  3.分式何时有意义?

  4.分式何时值为零?

  作业

  教材p10页 第1—3题

分式的教案9

  教学目标

  (一)教学知识点

  1.分式的基本性质.

  2.利用分式的基本性质对分式进行等值变形.

  3.了解分式约分的步骤和依据,掌握分式约分的方法.

  4.使学生了解最简分式的意义,能将分式化为最简分式.

  (二)能力训练要求

  1.能类比分数的基本性质,推测出分式的基本性质.

  2.培养学生加强事物之间的`联系,提高数学运算能力.

  (三)情感与价值观要求

  通过类比分数的基本性质及分数的约分,推测出分式的基本性质和约分,在学生已有数学经验的基础上,提高学生学数学的乐趣.

  教学重点

  1.分式的基本性质.

  2.利用分式的基本性质约分.

  3.将一个分式化简为最简分式.

  教学难点

  分子、分母是多项式的约分.

  教学方法

  讨论自主探究相结合

  教具准备

  投影片六张:

  第一张:问题串,(记作3.1.2 A);

  第二张:例2,(记作3.1.2 B);

  第三张:例3,(记作3.1.2 C);

  第四张:做一做,(记作3.1.2 D);

  第五张:议一议,(记作3.1.2 E);

  第六张:随堂练习,(记作3.1.2 F).

  教学过程

  Ⅰ.复习分数的基本性质,推想分式的基本性质.

分式的教案10

  教学目标

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:分式通分的理解和掌握。

  教学难点:分式通分中最简公分母的确定。

  教学工具:投影仪

  教学方法:启发式、讨论式

  教学过程

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为: 然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为 。通分如下:

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:

  (1)

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。

  例2 通分:

  设问:对于分母为多项式的分式通分如何找最简公分母?

  前面讲的是单项式,对于多项式首先应该对多项式因式分解,确定各分母所含的因子然后再确定最简公分母。

  解:∵ 最简公分母是2x(x+1)(x-1),

  小结:当分母是多项式时,应先分解因式.

  解:

  将分母分解因式:x2-4=(x+2)(x-2).4-2x=-2(x-2).

  ∴最简公分母为2(x+2)(x-2).

  由学生归纳一般分式通分:

  通分的关键是确定几个分式的'最简公分母,其步骤如下:

  1.将各个分式的分母分解因式;

  2.取各分母系数的最小公倍数;

  3.凡出现的字母或含有字母的因式为底的幂的因式都要取;

  4.相同字母或含字母的因式的幂的因式取指数最大的;

  5.将上述取得的式子都乘起来,就得到了最简公分母;

  6. 原来各分式的分子和分母同乘一个适当的整式,使各分式的分母都化为最简公分母。

  练习:教材P.79中1、2、3.

  (三)课堂小结

  1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

  2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

  3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.

  六、作业

  教材P.85中1、2.

  七、板书设计

分式的教案11

  教学目标:

  1、本节课使学生在学完了可化为一元二次方程的分式方程的解法后,解决实际问题应用之一.——行程问题,使学生正确理解行程问题的有关概念和规律,会列分式方程解有关行程问题的应用题.

  2、本节课通过列分式方程解有关行程问题的应用题,就是把实际问题转化为数学问题,这就要求学生能对实际问题分析、概括、总结、解,从而能进一步地提高学生分析问题和解决问题的能力.

  教学重点:

  列分式方程解有关行程问题.

  教学难点:

  如何分析和使用复杂的数量关系,找出相等关系,对于难点,解决的关键是抓住时间、路程、速度三者之间的关系,通过三者之间的关系的分析设出未知数和列出方程.

  3.疑点:对于列分式方程解应用题,学生往往考虑到所解出的答案是否和题意相吻合,而认为可以不需要检验.通过本节的学习,使学生清楚地懂得列分式方程解应用题应首先检验所求出的方程的解是否是所列分式方程的解,然后考虑所满足方程的解是否与题意相吻合.

  教学过程:

  在上一节课,我们已经学习了可化为一元二次方程的分式方程的解法,我们知道,我们现在所学习的理论是先人通过千百年的实践总结,概括出来的,我们学习理论是为了更好地解决实践当中所出现的问题.这一节课所学的内容就是运用上节课所学过的分式方程解法的知识去解决实际问题,关于本节内容,是学生在上节课所学过的分式方程的解法的基础上而学习的,所以点出由实践——理论——实践这一观点,能更加激发学生的求知欲,使得学生能充分地认识到学习理论知识和理论知识的运用同等重要,从而抓住学生的注意力,能使得学生充分地参与到教学活动中去.

  为了使学生能充分地利用所学过的理论知识来解决实际问题,首先应对上一节课所学过的分式方程的解法进行复习,同时让学生回忆行程问题中的三个量——速度、路程、时间三者之间的关系,从而将学生的思路调动到本节课的内容中来,这样对于面向全体学生,大面积地提高教学质量大有益处.

  一、新课引入:

  1.解分式方程的'基本思路是什么?解分式方程常用的两种方法是什么?

  2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?

  3.以前所学过的列方程解应用题的步骤有哪些?

  通过对问题1的复习,使学生对前一节内容得到巩固,对问题2的复习给学生设定一种悬念,以抓住学生的注意力,对问题3的复习,使学生对于问题2的悬念有了一种初步的判断,以便于点题——本节课所学的内容.

  通过对前面三个复习问题的设计,学生能充分的认识到本节所要学习的内容,再加上适时点题,完全地将学生的注意力全部地集中到教师身上,充分发挥教师的指导作用,并调动起学生的积极性,发挥学生的主体作用.

  二、新课讲解:

  例1甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?

  分析:

  (1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系在题中的隐含.

  (2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙

分式的教案12

  教学目标

  1.通过实践总结分式 的乘 除法,并能较熟练地进行式的乘除法 运算.

  2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘 方运算

  3.引 导学生通过分析、归纳,培养学生用类比的 方法探索新知识的能力

  教学重点 分式的乘除法、乘方运算

  教学难点 分式的乘除法、混合运算,分式乘法,除法 、乘方运算中符号的确定.

  教学过程

(一)复习与情境导入

  1.(1)什么叫做分式的.约分?约分的根据是什么?

  (2):下列各式是否正确?为什么?

  2.(1)回忆:

  计算:

  (2)尝试探究:计算:

  (1) ; (2) .

  概括 :分式的乘除法用式子表示即 抢答

  尝试 探究用式子表示,用文字表达.培养学生的合情推理能力.

  (二)实践与探索 1

  例2计算

  分析:①本题是几个分式在进行什么运算?

  ②每个分式的分子 和分母都是什么代数式?

  ③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?

  ④怎样应用分式 乘法法则得到积的分式?

  解 原式= = .

  练习:①课本练习1.

  ②计 算:

  (三)实践与探索2

  探索分式的乘方的法则1.思 考

  我们都学过了有理数的乘方,那么分式的乘 方该是怎样运算的呢?

  先做下面的乘法:(1) = =( )3;

  (2) = =( )k.

  2.仔细观察这两题的结果,你能发现什么 规律?与同伴交流一下,然后完成下面的填 空: )(k) =___________(k是正整数)

  老师应格外强调符 号问题 自主探究,后合作交流学习探索分式的乘方的法则

  (四)小结与作业 怎样进 行分式 的乘除法?怎样进行分式的乘方?

  作业:

  (五)板书设计

分式的教案13

  教学目标

  1。知识与技能

  能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。

  2。过程与方法

  经历探索一次函数的应用问题,发展抽象思维。

  3。情感、态度与价值观

  培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。

  重、难点与关键

  1。重点:一次函数的应用。

  2。难点:一次函数的应用。

  3。关键:从数形结合分析思路入手,提升应用思维。

  教学方法

  采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。

  教学过程

  一、范例点击,应用所学

  例5、小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。

  y=

  例6、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

  解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的.肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

  由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。

  拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

  二、随堂练习,巩固深化

  课本P119练习。

  三、课堂总结,发展潜能

  由学生自我评价本节课的表现。

  四、布置作业,专题突破

  课本P120习题14。2第9,10,11题。

分式的教案14

  学习目标

  1、掌握同分母分式加减法则。

  2、会进行同分母分式的加减运算。

  学习重难点重点:同分母分式的加减运算。

  难点:有的题目中涉及到分式的分母做适当的转化能运用同分母分式的加减法则,过程较为复杂。

  学习过程设计教学过程设计

  看一看

  同分母分式相加减法则:

  同分母的'分式相加减,

  分母不变,分子相加减.

  做一做

  1.填空:

  2.一只袋了中有m个球,其中有n个是红球,其余都是黑球,从袋中任意取一个球,取到红球的概率是______,取到黑球的概率是________,

  则两者的概率之和=_____+_______=________.

  3.计算,

  正确的结果是()

  4.计算:

  5.先化简再求值:,

  其中x=2.

  想一想

  你还有哪些地方不是很懂?请写出来。

  ________________________________________________________________________

  预习检测:

  下列运算对吗?如不对,请改正.

  变式:

  1.(口算)计算:

  2.计算:

  应用探究

  台风中心距A市S千米,正以b千米/时的速度向A市移动,救援队从B市出发以4倍于台风中心移动的速度向A市前进。已知A,B两地路程为3s千米,问救援队能否在台风中心到来前赶到A城?

  拓展提高

  计算:

  教后反思分式的加减,学生最容易错的是异分母分式进行加减,需要同分才可以进行计算。在同分的过程中要找到最简公分母。

分式的教案15

  教学任务分析

  教学目标

  知识技能

  一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

  二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

  数学思考

  在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

  解决问题

  一、会进行同分母和异分母分式的加减运算.

  二、会解决与分式的加减有关的简单实际问题.

  三、能进行分式的加、剪、乘、除、乘方的混合运算.

  情感态度

  通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

  重点

  分式的加减法.

  难点

  异分母分式的加减法及简单的分式混合运算.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1:问题引入

  活动2:学习同分母分式的加减

  活动3:探究异分母分式的加减

  活动4:发现分式加减运算法则

  活动5:巩固练习、总结、作业

  向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

  类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

  回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

  通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

  通过练习、作业进一步巩固分式的运算.

  课前准备

  教具

  学具

  补充材料

  课件

  教学过程设计

  问题与情境

  师生行为

  设计意图

  [活动1]

  1.问题一:比较电脑与手抄的录入时间.

  2.问题二;帮帮小明算算时间

  所需时间为,

  如何求出的值?

  3.这里用到了分式的加减,提出本节课的主题.

  教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

  分式如何进行加减?

  通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

  [活动2]

  1.提出小学数学中一道简单的分数加法题目.

  2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

  3.教师使用课件展示[例1]

  4.教师通过课件出两个小练习.

  教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

  学生在教师的引导下,探索同分母分式加减的运算方法.

  通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

  由两个学生板书自主完成练习,教师巡视指导学生练习.

  运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

  师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

  让学生进一步体会同分母分式的加减运算.

  [活动3]

  1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

  2.教师提出思考题:

  异分母的分式加减法要遵守什么法则呢?

  教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

  教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

  由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

  通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

  [活动4]

  1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

  2.教师使用课件展示[例2]

  3.教师通过课件出4个小练习.

  4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的`有关定律可知总电阻R与R1R2满足关系式 ;

  试用含有R1的式子表示总电阻R

  5.教师使用课件展示[例4]

  教师提出要求,由学生说出分式加减法则的字母表示形式.

  通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

  教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

  教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

  分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

  由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

  让学生体会运用的公式解决问题的过程.

  锻炼学生运用法则解决问题的能力,既准确又有速度.

  提高学生的计算能力.

  通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

  提高学生综合应用知识的能力.

  [活动5]

  1.教师通过课件出2个分式混合运算的小练习.

  2.总结:

  a)这节课我们学习了哪些知识?你能说一说吗?

  b)⑴方法思路;

  c)⑵计算中的主意事项;

  d)⑶结果要化简.

  3.作业:

  a)教科书习题16.2第4、5、6题.

  学生练习、巩固.

  教师巡视指导.

  学生完成、交流.,师生评价.

  教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

  教师布置作业.

  锻炼学生运用法则进行运算的能力,提高准确性及速度.

  提高学生归纳总结的能力.

【分式的教案】相关文章:

《解分式方程》教案03-13

分式说课稿07-06

分式的定义教学反思11-19

分式的加减教学反思03-24

《分式加减》教学反思04-22

分式的乘除教学反思03-31

分式方程教学反思10-27

分式和方程教学反思12-23

分式的基本性质教学反思03-25